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Abstract

This paper demonstrates how a model for tempo-
ral context reasoning can be implemented. The ap-
proach is to detect temporally related events in nat-
ural language text and convert the events into an
enriched logical representation. Reasoning is pro-
vided by a first order logic theorem prover adapted
to text. Results show that temporal context reason-
ing boosts the performance of a Question Answer-
ing system.

1 Introduction

Representing and reasoning about time-dependent informa-
tion is important for applications ranging from databases,
planning, natural language processing, and others. For exam-
ple, temporal reasoning is essential in question answering to
successfully addressing a time sensitive and dynamic world.
Questions requiring temporal relations are not currently solv-
able in most state of the art question answering systems. Of
the factoid TREC questions from 2001-2004 approximately
8.7% require temporal context reasoning. A temporal context
scopes changing world views and serves as a tool for disam-
biguating time dependent events or intervals. Questions such
as Who was the president of South Korea when Bill Clinton
was President of the US? need temporal event detection and
context based reasoning.

While there has been much theoretical research and mod-
eling of context reasoning in the temporal domain, few sys-
tems have reported an evaluation of end to end temporal con-
text enhanced question answering. This paper presents such a
system. We report on (1) temporal context indexing for pas-
sage retrieval, (2) a fast and robust representation of time and
annotation of time events, (3) the implementation of a ma-
chine learning based temporal event recognition module, (4)
a model for a knowledge representation that maps natural lan-
guage context into first order logic Suggested Upper Merged
Ontology(SUMO)[Niles and Pease, 2001] predicates, and (5)
a temporal context reasoning engine.

2 Approach
Several logic or semantic standard approaches to represent
time (or events in time) have been defined. The most com-
mon ones include absolute dating schemes, relative event or-
dering or duration based approaches. Decisions about the
nature of the event (instantaneous or extended) have to be
made. The problem with many discrete schemes for natural
language applications (such as Mani and Wilson, 2000) is the
lack of absolute timestamps for many events. Propagation ap-
proaches to assign absolute time stamps to event clauses for
sequence recognition have been implemented [Filatova and
Hovy, 2001]. However, besides the recognition problems (Fi-
latova and Hovy report 52% accuracy) these approaches do
not capture temporal relations that are based on duration of
events.

Relative event orderings and duration relations that hold
true at all times should not be labeled with absolute times-
tamps as in: People are born before they die. This holds true
also for event orderings commonly found in user manuals,
like IT support information or cookbooks as in: What process
do I need to terminate after a failed query?

[Allen, 1991] demonstrates a constraint propagation ap-
proach based on a set of possible interval relations that could
capture this, but the recognition of these events and their re-
lations is still an open research area.

Our approach uses a hybrid of the above mentioned meth-
ods. Passage retrieval makes use of a descrete time scale in
the form of temporal indexing so as to capture all the relevant
candidate passages that may not have absolute time specified
in the document text. For the time-event model, high cover-
age signal words and phrases that specify how temporal el-
ements should be related are used. The chosen signals are
based on the annotations in TimeML used in the TERQAS
project [Pustejovsky et al., 2002] and are mined for and an-
notated in a sampling of articles from the TREC collection.
The signals are then classified by the type of temporal rela-
tion they express, such as overlapping, inclusion, ordering,
and more. This data is used for training the automatic tempo-
ral event detection module that recognizes 7 distinct temporal
event interval relations on the question and its answer candi-
dates. The detected temporal events enrich a logical form
representation of the question and answer candidates with



SUMO predicates and functions. Based on these temporal
constraints, a context resolution engine operates as an answer
candidate filter.

3 Passage Retrieval with Temporal Context
One common class of time dependent questions targets facts
that are rooted in an absolute time, such as: Who led the NHL
in playoff goals in June 1998? To ensure that all passages rel-
evant to a temporally constrained question are retrieved it is
necessary to index the temporal contexts in a document. The
approach is to scan each document in a collection for its time
stamp as well as any underspecified or relative references to
time. A date resolution module processes all underspecified
and relative dates to accurately anchor these temporal refer-
ences in a calendar year. The context field consists of a (year,
month, day, hour, minute, second) tuple, where any member
in the tuple is optional. For a document with time, T(1998,
06, 15, X, X, X), the following temporal context entries are
computed and displayed in Table 1:

Temporal Reference Resolved Date
last year T(1999,X,X,X,X,X)
next week T(1998,06,16-22,X,X,X)
in a week T(1998,06,22,X,X,X)
today T(1998,06,15,X,X,X)

Table 1: Resolved Temporal Context

The resolved references as well as the document time
stamp is indexed and made searchable for time dependent
queries. For the question above the query issued to the in-
dex is:
( human) AND (lead) AND (nhl OR (national AND hockey
AND league)� 3) AND (playoff) AND (goal) AND T(1998, 06,
X, X,X,X,X)

For questions involving a time range, the query is trans-
lated into a conjunction of time operators. As an example,
What Chinese Dynasty was during 1412-1431? translates to:
( organization) AND (chinese) AND (dynasty) AND
(T(1412,X,X,X,X,X) OR T(1413,X,X,X,X,X ) OR ... OR
T(1431,X,X,X,X,X ))

Internally the search engine computes the allowed range
and searches for dates indexed in that range. The temporal
context for the question is enforced by searching the index for
the context detected in the question and applying document
dates to all passages retrieved that do not have an explicit con-
text within a window of 3 sentences. These resolved dates are
passed along to the answer processing module which invokes
the signal based temporal event recognizer and the context
resolution modules to verify that the candidate answers do
meet the temporal constraints in the question

4 Data Annotation
For an initial analysis of the signal words, the TimeML
[Pustejovsky et al., 2000] TimeBank4 data functioned as a
source of time signal expressions to be used as seeding ma-
terial in the TREC 2002 corpus. The signal list served as a

means to bootstrap a sample of the TREC collection for an-
notation purposes. The goal of the annotation was to provide
data for a machine learning algorithm aimed at disambiguat-
ing signal words, detecting time events, and determining the
boundaries of the time event.

Category (example) Interpretation %
Dist

Sequence (before, after) E1 happened in full be-
fore E2

12.7

Containment (in, of) E1 is contained by E2 30.2
Overlap (at,as,on) An interval exists that is

contained by E1 and E2
28.6

Right Open Interval
(from, since)

E1 is the left boundary
of E2, right is undefined

6.1

Left Open Interval (to,
until)

E2 is the right boundary
of E1, left is undefined

4.5

Closed Interval (for, all) E1 lasts for the duration
of E2

6.3

Absolute Ordering
(first, last)

E1 has an ordering rela-
tive to E1

11.6

Table 2: Signal Annotation Categories and their Distribution

The requirements of the annotation scheme used to mark up
1000 sentences from NYT, 150 from APW, and 150 sentences
from XIN were robustness, simplicity, and sufficient granu-
larity of the time events.

Time events are defined as related intervals, which are
bound by a signal expression indicating the relation of the
time events. Additionally, each signal can modify up to two
events and can determine one of the following relations: se-
quence, containment, overlap, open interval (left or right),
duration and absolute ordering. An event is interpreted as an
interval bound by signal words or phrases and can be noun
phrases (the bombing) or verb groups (participated).

Since the current model operates at the sentence level, a
marker is added to signals that need more information to re-
solve its arguments such as implicit context or missing dis-
course. Table 2 lists the categories of signal words, their nat-
ural language interpretation, and their distribution across a
sampling of the TREC collection.
Example annotations based on the signal categories:
Which country

�
E1 id=889 � declared

�
/E1 id=889 � inde-

pendence
�

S id=889 class=contain � in
�

/S id=889 � �
E2

id=889 � 1776
�

/E2 id=889 � ?� S id=358 class=sequence � After � /S id=358 � quickly�
E1 id=358 � decapitating

�
/E1 id=358 � the bird, Susan�

E2 id=358 � scalded
�

/E2 id=358 � the carcass.

5 Detection of Temporally Ordered Events
Automated discovery of temporally ordered events requires
detecting a temporal triple (S,E1,E2) which consists of a time
dependent signal word (S) and its corresponding temporal
event arguments, (E1) and (E2). Detection of a temporal triple
is complicated by two issues:
(1) Disambiguation of signal words: Not all signal words
are unambiguously classified as time indicators.
(a) He stood before the judge vs He proofread the



manuscripts before mailing it to the publisher
(b) He woke up at 10:00 vs He looked through the window at
the rising sun
(2) Attaching events to signal words: Although some tem-
poral events are found near their signal, many signals occur
with their temporal events underspecified (non-local).
(a) The problem was resolved after 4 hours of intensive main-
tenance but before anybody was harmed.

In the above example the signal word after easily attaches
to resolved and 4 hours, while the second signal word, before
has a non-local E1 reference (also resolved).

To address these issues machine learning is employed in
two stages, first to recognize and disambiguate signals, and
second to discover and attach temporal events to their signals.
The input to the learner is the data annotated. The predictive
classifiers that result from learning are used to automatically
detect temporal triples (signals with their attached temporal
events) in natural language text.

Signal Disambiguation
In the first stage of the machine learning process, a signal’s
surface form is classified either as a temporal (signal) or
non-temporal occurrence, with signals classified further as to
how they order their events, see Table 2.

A chunk parse tree is examined for text segments that
match the surface form of a signal which are placed in their
own chunk if necessary. A set of features, listed in Table 3,
is then computed and used to classify each of these chunks.
The hyperterm feature can be described as a broadly appli-
cable feature space constructed from SUMO. Each SUMO
class, instance, or relation is a unique string, here called a
term. All terms are collected and connected to their hypert-
erm via the SUMO axioms (subclass) (subrelation) and (in-
stance). The result is a directed acyclic graph connecting all
1020 terms to their hyperterms and rooted at the SUMO class
Entity. This hyperterm tree along with the WordNet to SUMO
mappings [Niles and Pease, 2003] is prepared offline. Us-
ing this resource to generate the hyperterm feature consists
of computing the union of the hyperterms for all WordNet
concepts (senses) for each word in the chunk.

The intuition behind using SUMO is: (1) Coarse grained
distinctions appear to be better represented in SUMO
hypterterm tree than in WordNet, that is, a single term
“Process” appears to capture the idea of eventness easily
where several WordNet hypernyms would be required to
capture the same distinction. (2) All open class words
are united in a single hyperterm tree whereas in WordNet
verbs have shallow hypernymy and Adjective and Adverbs
have no hypernymy. This allows for i) better general-
ization and similarity across chunks that have words not
seen during training since unseen words will still share
a significant set of hyperterm features and for ii) unified
treatment of all four open lexical classes in the software.
The resulting decision will be one of 8 choices correspond-
ing to “No signal” and the 7 types of signals listed in Table 2.

Temporal Event Attachment
Once a signal has been identified, its associated events (E1
and E2) must be attached. This task is achieved with a

Feature Description Origin
Signal surface form [Hindle and Rooth, 1993]
Chunk’s phrase tag [Kudo and Matsumoto, 2001]
Chunk’s hyperterms [new]
+/- 1 chunk’s phrase tag [Kudo and Matsumoto, 2001]
+/- 1 chunk’s hypert-
erms

[new]

+/- 2 chunk’s phrase tag [Kudo and Matsumoto, 2001]
+/- 2 chunk’s hypert-
erms

[new]

Table 3: Signal and Local Attachment Features and their Ori-
gin

local attachment algorithm followed by a signal chaining
attachment algorithm.

The Local Attachment Algorithm proceeds from left to
right evaluating each unattached chunk to its nearest signal
by generating features for classification. The decision associ-
ated with the features is one of Skip (do not attach), E1 (attach
as E1), or E2 (attach as E2). The features used and their origin
are listed in Table 4.

The Signal Chaining Attachment Algorithm enables sig-
nals that are missing an attachment to pick up an attach-
ment from another signal, called link signals. The algorithm
proceeds left to right evaluating a signal’s missing argument
against another signal’s existing argument. The decision is ei-
ther Skip, E1, or E2 wherein the latter two result in an attach-
ment. The algorithm iterates until no attachments are made.
Although this algorithm uses the features in Table 3, their
contribution is low and so motivated the additional features
listed in Table 4.

Feature Description Origin
Missing signal argu-
ment (E1,E2)

[new]

Signal class [mod. from [Allen, 1991]]
Link signal surface
form

[Hindle and Rooth, 1993]

Link signal argument
(E1,E2)

[new]

Link signal class [mod. from [Allen, 1991]]
Parsing direction
(left,right)

standard

Table 4: Signal Chaining Features and their Origin

Results
Each classifier was built using the LIBSVM 1 implementa-
tion of Support Vector Machines, with the radial basis kernel,
���������
	���
���������� , and included performing a grid search to
find the best model parameters. Measurements were taken
by randomizing the annotated sentences and evaluating each
tenth of the data by training on the other 90% (10-fold cross-
validation). The results measure the performance of the mod-
ule as a whole. Measuring individual decisions of the clas-
sifiers are not instructive due to the dominance of NoSignal
decisions during disambiguation and Skip decisions during

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/



attachment parsing.

Task F-measure
Signal detection 71.4%
Attachment 49.1%

Table 5: Automated Detection Results

The attachment results are affected negatively by parsed
chunk boundaries not matching the temporal event text seg-
ment marked by the annotator, which results in an annotated
attachment being scored as incorrect. An attachment will also
score as incorrect if it is not the correct argument of the signal,
or if the signal was not classified correctly. No partial credit
is given. In the current data set 41.8% of the attachment an-
notations fail to align with a chunk boundary. This indicates
that temporal event boundaries should not always rely on the
parse chunk boundaries. An attachment will also score as in-
correct if it is not the correct argument of the signal, or if the
signal was not classified correctly. The scoring program is
strict in that a temporally ordered event is correct only when
the signal has been classified correctly and both event argu-
ments have been detected and assigned in the proper order.
Based on the results of our experiments reported in Table 5,
with 1300 sentences from the TREC corpus, it seems ap-
parent that more training data is needed. In order to ver-
ify that, the method and algorithm used for the current im-
plementation is sound and scalable, another experiment was
conducted using the same methodology over half the corpus
(650 sentences). The results of that experiment posted an F-
measure of 52.7% for signal detection and 36.1% for attach-
ment. Comparing that to the original results it is clear that the
technique outlined in this section scales well and will benefit
from the ongoing effort to annotate more training data.

6 A Knowledge Representation with
Temporal Context

The output of the Temporal Event Detection, described in
section 4, is transferred to the SUMO enhanced logical form
module. The function of this module is to translate the natu-
ral language candidate sentences, marked up with time event
chunks, to a temporally enhanced first order logic assertion.
The input time event chunks are labeled with the class of the
signal from the list in Table 2, along with the parsed chunks
identified as the time event arguments to the signal.

The Knowledge Representation for the temporally en-
hanced logic form is layered on top of the Logical Repre-
sentation proposed in [Rus and Moldovan, 2002], where the
first order logic structure is derived from the syntactic parse
of the text and each token in the text is converted to a pred-
icate. From this structure temporally related SUMO predi-
cates are generated based on hand coded interpretation rules
for the signal classes. The purpose of the interpretation rules
is to define an algorithm for assigning a signal word to a
SUMO predicate and defining the manner in which the slots
for the predicate are determined. Table 6 enumerates the sig-
nal classes, and the SUMO predicate corresponding to the
interpretation rule.

Signal Class SUMO Logic
�

S sequence, E1, E2 � earlier(E1,E2)�
S contain, E1, E2 � during(E1,E2)�
S overlap, E1, E2 � overlapsTemporally(E1,E2)�
S open right, E1, E2 � meetsTemporally(E1,E2)�
S open left, E1, E2 � meetsTemporally(E2,E1)�
S closed, E1, E2 � duration(E1,E2)

Table 6: Signal Class to SUMO Mapping

Once the SUMO predicate is chosen, the arguments to the
predicate are the event argument ids from the heads of the
chunks passed as attachments to the signal expression. Since
all temporal SUMO predicates operate on time intervals, ab-
solute times stated in the text are translated into a pair of time
point predicates to specify the begin and end of the interval.
A detailed example follows for the text: That compares with
about 531,000 arrests in 1993 before Operation Gatekeeper
started.

The temporal event recognizer disambiguates in and
before as temporal signals, and classifies (1) in as a contain
interval signal, and (2) before as a sequence interval signal.
The Local Attachment and Signal Chaining algorithms then
determine the time event arguments for each signal. The
output triples are (S1:contain=in, E1=arrests, E2=1993)
and (S2:before=before, E1=arrests, E2=started). Once
the mapping for the temporally ordered events and the
absolute time events are complete, the SUMO predicates are
generated. Predicates that were derived from signal words
replace the signals in the logical form.
... 531 000 NN(x2) & arrest NN(x2) & 1993 NN(x3) & Op-
eration NN(x4) & Gatekeeper NN(x5) & nn NNC(x6,x4,x5)
& start VB(e2,x6,x10) & earlier(WhenFn(x2),
WhenFn(e2)) & Time(BeginFn(x11), 1993, 1, 1, 0, 0,
0) & Time(EndFn(x11), 1993, 12, 31, 23, 59, 59) &
during(WhenFn(x3), x11) & during(WhenFn(x2), x3)

7 Temporally Enhanced Inference
The temporal context resolution module employs a first or-
der logic resolution style theorem prover adapted for natural
language text processing [Moldovan et al, 2003]. The Set of
Support (SOS) is the search strategy employed by the prover
to partition the axioms into those that have support and those
that are considered auxiliary [Wos, 1988]. This strategy re-
stricts the search such that a new clause is inferred if and only
if one of its parent clauses come from the SOS. The infer-
ence rule sets are based on hypperresolution, paramdodula-
tion, and demodulation. Hyperresolution is an inference rule
that does multiple steps in one, paramodulation introduces
the notion of equality substitution for the demodulators re-
quired on the temporal axioms. Since temporal reasoning is
intensive and may require long proofs, hyperresolution and
paramodulation inference rules are necessary as they allow
for a more compact and efficient proof by condensing multi-
ple steps into one.

The inputs to the context resolution module include:
(1) The context relevant pieces of the natural language ques-
tions and candidate answers converted to a SUMO enhanced



first order logical form [Rus and Moldovan, 2002]. The ques-
tion predicates are negated to invoke a proof by contradiction
(2) A set of empirically derived world knowledge axioms. Ex:
EVIDENCE IS SUPPORT FOR A CLAIM
evidence NN(x2) - � support NN(x2) & for IN(x2,x3) &
claim NN(x3)
(3) Linguistic transformation rules derived from the input
parse of the question and its candidate answers.
Ex: THE LEADER OF X, LEADS X.
human NE(x1) & leader NN(x1) & of IN(x1,x2) � - �

lead VB(e1,x1,x2)
(4) WordNet derived axioms such as lexical chains[Moldovan
and Novischi, 2002] and glosses. Ex: TO START SOME-
THING IS SEMANTICALLY RELATED TO ESTABLISHING
SOMETHING
start VB(e1,x1,x2) - � establish VB(e1,x1,x2)
(5) A SUMO Knowledge Base of temporal reasoning axioms
that consists of axioms for a representation of time points and
time intervals, Allen primitives, and temporal functions.
Ex: DURING IS A TRANSITIVE ALLEN PRIMITIVE
during(TIME1, TIME2) & during(TIME2, TIME3) - � dur-
ing(TIME1, TIME3)

Axioms in set (1) are loaded into the Set of Support. The
predicates representing the temporally relevant information
in the question are anded together, negated, and universally
quantified, so as to invoke a proof by contradiction. The tem-
poral predicates for the candidate answer are also anded to-
gether, existentially quantified and loaded into the SOS. The
axioms in sets (2) - (3) are loaded into the Usable list to assist
in the inference process between the question and the answer.

The output of the temporal context module comprises fil-
tered and re-ranked answers that are scored based on their se-
mantic and temporal similarity to the question. The inference
engine will continue seeking a proof until any of the TIME
predicates are unsatisfied. Partial satisfiability is permitted
for other predicates in the question via a backoff algorithm
integrated in the inference engine [Moldovan et al, 2003].

The following example illustrates how a temporal context
resolution module is used to verify the temporal constraints
of a question over a candidate answer:
Question: What country controlled Syria in 1930?
Question Logical Form:
country AT(x2) & control VB(e1,x2,x1) &

Syria NN(x1) & overlapsTemporally CTMP(e1,x3)
& Time CTMP(BeginFn(x3),1930,1,1,0,0,0) &
Time CTMP(EndFn(x3),1930,12,31,23,59,59)
Question Axiom:
-(exists e1 x1 x2 x3 ( country AT(x2) & control VB(e1,x2,x1)
& Syria NN(x1) & overlapsTemporally CTMP(e1,x3)
& Time CTMP(BeginFn(x3),1930,1,1,0,0,0) &
Time CTMP(EndFn(x3),1930,12,31,23,59,59)))
Candidate Answer 5:
France has a different relationship with Syria, partly because
it was once a French-mandated territory, from 1920-1946
Answer Logical Form:
France NN(x1) & country NE(x1) & have VB(e1,x1,x2)
& different JJ(x2) & relationship NN(x2) & with IN(x2,x6)
& Syria NN(x6) & partly RB(e1) & because IN(e1,e3) &
once RB(e3) & French NN(x5) & mandate VB(e3,x5,x6)

& territory NN(x6) & during CTMP(x6,x9)
& Time CTMP(BeginFn(x9),1920,1,1,0,0,0) &
Time CTMP(EndFn(x9),1946,12,31,23,59,59)
Answer Axiom:
exists e1 e2 x1 x2 x3 x4 x6 x7 x8 x9 (France NN(x1)
& country NE(x1) & have VB(e1,x1,x2) & differ-
ent JJ(x2) & relationship NN(x2) & with IN(x2,x6) &
Syria NN(x6) & partly RB(e1) & because IN(e1,e3) &
once RB(e3) & French NN(x5) & mandate VB(e3,x5,x6)
& territory NN(x6) & during CTMP(x6,x9)
& Time CTMP(BeginFn(x9),1920,1,1,0,0,0) &
Time CTMP(EndFn(x9),1946,12,31,23,59,59))
Linguistic Axiom:
all x1 (French NN(x1) � France NN(x1))
Lexical Chain Axiom:
all e1 x1 x2 (mandate VB(e1,x1,x2) � control VB(e1,x1,x2))
SUMO Axioms:
Two time intervals overlapsTemporally if and only if each
one is a temporalPart of the other:
all I1 I2 (ISA(I1, TimeInterval) & ISA(I2, TimeInterval)
& overlapsTemporally CTMP(I1, I2) � (exists I3 (ISA(I3,
TimeInterval) & temporalPart CTMP(I3, I1) & temporal-
Part CTMP(I3, I2))))
Interval1 is temporalPart of Interval2 if Interval1 is
during Interval2:
all T1 T2 (ISA(T1, TimeInterval) & ISA(T2, TimeInterval)
& during CTMP(T1, T2) � temporalPart CTMP(T1, T2)).
Interval1 is during Interval2 if Interval1 starts after
Interval2 and Interval1 ends before Interval2:
all I1 I2 ((before CTMP(EndFn(I1), EndFn(I2)) &
before CTMP(BeginFn(I2), BeginFn(I1))) � dur-
ing CTMP(I1,I2)).
A mapping of question predicates to the inferred answer
predicates is provided in Table 7:

Question Predicates Answer Predicates
country AT(x2) French NN(x5) �

France NN(x5)
control VB(e1,x2,x1) mandate VB(e3,x5,x6)
Syria NN(x1) Syria NN(x6)
overlapsTemporally CTMP(e1,
x3) &
Time CTMP(BeginFn(x3),
1930, 1, 1, 0, 0, 0) &
Time CTMP(EndFn(x3),
1930, 12, 31, 23, 59, 59)

during CTMP(x6, x9) &
Time CTMP(BeginFn(x9),
1920, 1, 1, 0, 0, 0) &
Time CTMP(EndFn(x9),
1946, 12, 31, 23, 59, 59)

Table 7: Question to Answer Predicate Resolution

Proofs for answers which do not have the correct context
will fail, resulting in the candidate answer being pruned from
the answer list. This in turn promotes all candidates below.
As an example, the context resolution module will fail to find
a proof for the first candidate answer returned by the answer
processing module (without temporal reasoning), whose doc-
ument date is 1998:
The United States did not punish Israel when it occupied ter-
ritories of some Arab countries such as Palestine and Syria,
and refused to comply with relevant U.N.resolutions on the
Middle East issues.



Since the document date of the candidate does not meet the
temporal constraints of the question, the incorrect answer is
filtered from the list and correct answer, candidate 5 is rightly
promoted to position 1.

8 Question Answering Results
A set of 200 time dependent questions was used as a bench-
mark for measuring the contribution of temporal context to
a state of the art question answering system. The benchmark
was created primarily of questions that required temporal rea-
soning and so were previously unanswerable. Further, they
were derived from a 300 MB sub-collection of the TREC cor-
pus that included a sample of XIN, APW, and NYT articles.
Table 8 summarizes the results of the system at the exact and
sentence answer level with and without temporal context. The
first two columns list QA results for the percent of correct
answers in the first position and the Mean Reciprocal Rank,
without temporal context. The second two columns list the
corresponding results for temporally enhanced QA. The final
column gives the percent increase for answers in the first po-
sition.

answer no context context increase in
type first MRR first MRR first
exact 16.4% .191 20.0% .259 22.0%

sentence 29.1% .328 37.1% .381 30.0%

Table 8: QA Results

9 Discussion
A means to represent and reason about context is crucial for
the performance of a question answering system over a time
sensitive corpus. Advantages include: retrieving answer pas-
sages with relative or underspecified dates, discarding tempo-
rally inaccurate answers, and capturing the ordering of events
via signal words. Temporal inference is expensive, however,
and should be ameliorated by development of a special pur-
pose reasoner. Further, the performance of signal and event
detection should be improved by the ongoing effort to an-
notate training data, as demonstrated by the scaling experi-
ments. Despite this, the results presented in this paper have
shown that significant improvement in open domain question
answering can in fact be achieved by integrating temporal
context reasoning.
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