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Abstract

Most probabilistic inference algorithms are speci-

stantiate a random variable per patient. However this is not
necessary since one can reason about individuals on a gen-
eral level, provided one knows the population size, in order

1

fied and processed on a propositional level. In the
last decade, many proposals for algorithms accept-
ing first-order specifications have been presented,
but in the inference stage they still operate on a
mostly propositional representation levg¢Poole,
2003 presented a method to perform inference di-
rectly on the first-order level, but this method is
limited to special cases. In this paper we present the
first exact inference algorithm that operates directly
on a first-order level, and that can be applied to any
first-order model (specified in a language that gen-
eralizes undirected graphical models). Our exper-
iments show superior performance in comparison
with propositional exact inference.

I ntroduction

to answer that query in a much shorter time.

In such a scenario it would be possible to devise a way of
using the available model to answer the query without censid
ering each individual. However, this would require a manual
devising of a processpecificto the model or query in ques-
tion. What is missing to date is an algorithm that can receive
ageneralfirst-order model andutomaticallyanswer queries
like these without computional waste.

A first step in this direction was given dyoole, 2008
which proposes a generalized version of the variable elimin
tion algorithm {Zhang and Poole, 1994that islifted, that is,
deals with groups of random variables at a first-order level.
The algorithm receives a specification in whighrameter-
izedrandom variables stand for all of their instantiations and
then eliminates them in a way that is equivalent to, but much

cheaper than, eliminating all their instantiations at once

The algorithm in[Poole, 2008 however, works only for a
very particular type of model because its only eliminatipa o

Probabilistic inference algorithms are widely employediin

tificial intelligence. However, most of them do not accept
first-order specifications of models, which can abstract ove” = /. F“ ; e . .
classes of objects, requiring instead propositional orfestw eration is what we calhversion eliminationwhich requires

are longer and redundant because they must be specified va?f-’ec'al Cond't'ons explained later. These sp_ec_|al <_:(1mht|
able by variable. may sometimes be met by carefully chosen elimination order-

In the last decade, many proposals for algorithms accep{'pgs, butin certain cases no such ordering exists and iiorers

ing first-order specifications have been presefidégb and elimination cannot be applied at all steps. This introdubes

Haddawy, 1995; Ng and Subrahmanian, 1992; Jaeger 1999e(_ad for another type of_eIiminationounting elimina_\tion
Kersting and De Raedt, 2000; Friedmeiral, 1999: Pfeffer which can always be applied but costs more. By putting these

et al, 1999: Poole, 1993: Andersai al, 2002; Richardson two operations together we present the first algorithm dapab

and Domingos, 2004; Laskey, 2008ost of which based on of dealing with any first-order probabilistic model that op-

the theoretic framework dHalpern, 1990 However, these erates directly on first-order representations, withosbre
solutions perform inference at a mostly propositional leve ing to a propositional level. We also show that the algorithm

that is, dealing with the random variables instantiateanfro is correct and provide experimental results comparing & to

the first-order, parameterized variables in the first-osgpesc- propositional algorithm.
ification (usually only the relevant random variables wil b

present in the propositional version). In domains with gdar

number of objects this may be both costly and essentially un2 M otivation
necessary. For example, a medical application can be about

a large population of people infected with a certain disease, ,opapilistic model over a set of random variables is de-
and have a model of the probability of death of a persoy( fined by a set of dependencies, each of them on a subset of
person) with that disease. To answer the query “what is thehose variables. In a propositional model, each dependency
probability thatsomeonewill die of this disease?”, an algo- explicitly refers to the variables it affects. For examulen-
rithm that depends on propositionalization would have to in sider a Markov network involving a potential function fac-



tor, such as: the propositional model formed by all possible instantiasi
of its logical variables. FollowinfPoole, 2008 we call these

S 0.7, if epidemic \ sick, parameterized factopsarfactors
¢(epidemic, sick) = 4 0.3, if epidemic A —sick, This semantics immediately provides an inference al-
0.5, otherwise. gorithm for such a representation, namely the one in

) ) ) ) which we apply any regular propositional inference al-
In fact, this type of potential function will be common gorithm to the propositionalized model, but this would
enough in this paper that we define &fthen3 p”"to mean  pe overkill. For example, in order to solve the query

P(death(john)|sick(john)) it is only necessary to con-

B b ': anp, sider the instantiations folPerson = john, ignoring
¢(Var(a, §)) = 1 —p, ifar=p, other values. One could also consider general queries
0.5, otherwise. such asP(sick(Person)|death(Person)) that do not re-

quire any instantiations at all in order to be solved.
An extreme example of the benefit of directly using the
first-order representation is given by adding the parfactor
“if death(Person) then someDeath” to the model and
considering the query(someDeath|epidemics). The tree
width of the propositionalized graphical model is the popu-
lation size, while the query can in fact be answered in time
if epidemic thensick 0.7 if sick thendeath 0.4 independenfrom the population size (a similar example is
shown in fig. 4). Itis therefore desirable to have an algarith

wherea and are boolean formulas on binary random vari-
ables and/ar(«, () is the set of these random variables. If
p is omitted, it is assumed to be “g p” is the same as
“if T theng p” and “if o theng p elseq” stands for both
“if « theng p” and “if -« theng ¢". So we can write a
model in the more readable fashibn:

In most practical problems, the same factor holds on man - : o :
different sets of variables, requiring propositional misde }‘Jerformmgln‘ted inferencethat is, inference directly on the

repeat that factor several times, modulo the specific viasab first-order level, which instantiates parfactors only wheu-
involved each time. In our example, if we wish to keep track€SsSary- , .

of whether each member of a population is sick (with distinct The languages we mentioned before allow parameterized
variablessick(john), sick(mary), . ..), we would have to specifications of probabilistic models. However, no corre-
write sponding first-order inference algorithm has been proyided
inference is still performed by generating some propasitio

it epidemic thensick(john) 0.7 alized form of the model and using regular propositional in-

if sick(john) thendeath(john) 0.4 ference algorithms on them (although some systems, like
if epidemic thensick(mary) 0.7 SPOOK in[Pfefferet al,, 1999, benefit from the first-order
if sick(mary) thendeath(mary) 0.4 ... structure in some ways). In this paper we present an al-

. L ) gorithm which performs exact lifted inference on first-arde
This renders the model specification unnecessarily compleg, 5 qels.

and redundant. Moreover, an inference algorithm will con- " |t js also useful to allow deterministic constraints on the
sider each of those factors separately, even though there [iggical variables of parfactors. For example,
some structure across them that should be exploited. )
Currently, the most common way of dealing with these sit- if sick(Personl) A roommate(Personl, Person2)
uations is to keep the original model and use it for each sepa- thensick(Person2) 0.8, Personl # Person2 (1)
rate object (in this case, each person) as needed. This kowev
does not help when different instances of the factor need to b diabetes(
used at the same time, as it would be the case to answer the
query P(sick(john) A sick(mary)), for example. In these The constrainPersonl # Person?2 in the first factor states
situations, procedures specific to a given model have to bthat only its instantiations satisfying this condition Mlie
manually tailored, in what is a time consuming solution. considered. In the second factor, the potentiaD ofi for
A natural way around this problem is to specify recurringthe random variabldiabetes(Person) is assigned only for

factors in a parameterized way. This would allow us to ex-nstantiations in whichPerson is distinct from john and
press the same as above in the more succint way mary.

Person) 0.01, Person # john A Person # mary

if epidemic thensick(Person) 0.7 . .
if sick(Person) thendeath(Person) 0.4 3 Language, notation and semantics

where Person (and, in our notation, words starting with a QU language and semantics are essentially the same as

capital) is a typedogical variableassuming any value from those in[Poole, 200 that is, those of a Markov network
; ppecified in a first-order language that allows parameterize

this representation is simply that it should be equivalent t andom variable$, and are also similar to Markov logic
P Py d networks[Richardson and Domingos, 2004 parfactoris
The reason we define the model with this “conditional” poten- a triad (¢, A, C) representing the applications of a potential
tial function rather than with usual conditional probaig is that ~ function ¢ on all instantiations of a tuple of logicatoms
we concern ourselves with Markov networks (undirected f&)de
only in this paper. 2Poole discusses some aspects of directed models, however.



A according to assignments to the logical variables in
these atoms that satisfy a constraint formadla At this
point, we restrict ourselves to constraints with a finite
number of solutions so as to have finite models only (this
prevents us from using function symbols — more on this in
section 6). For example, (1) is represented by the parfactg
(¢, A, C), whereg is the appropriate potential functiod, is
{sick(Personl),roommate(Person2), sick(Person2)}
andC'is Personl # Person2.

PROCEDURB-OVEG, Q)

@ a set of parfactorsy a set of random variables (the query).
. If RV(G) = Q, returnG.

. G — SHATTERG, Q) (figure 2).

. E — FIND-ELIMINABLEG, Q).

. Gg — {g € G: RV(g9)andRV (E) intersect.

.Gz — G\ GE.

. ¢’ — ELIMINATEGE, E).

G —{g'}UGg.

. ReturnFOVE(G', Q).

_1
ONOUTAWN R

Note that we are in no way committed to the “if ...then”"
construction used, which is simply a notation for a specifig
type of potential function. Any potential function is alled),
and random variables can be multivalued rather than binar
only.

Just as with regular undirected graphical models, here th
joint probability distribution is determined by the produdé

PROCEDUREFIND-ELIMINABLEG, Q)

G a set of parfactors) C RV (G), G shattered againg}.
1. Choose: from Ag \ Q.

Y 2. G. — {g € G: RV(g) andRV (e) intersec}.

3. If LV (e) = LV(G.) ({e} is inversion-eliminable)
return{e}.

4. ReturnFIND-COUNT-ELIMINABLEG, Q, {e}).

e

all potential functions given an assignment to all randoniva
ables (which are instantiations of atoms in parfactors, an
thereforeground atoms). The only difference is that in a
first-order model this product involves all instantiatiarisll
parfactors. Given a set of parfactars the joint distribution
defined by it is

P(RV(G)) H H $q(Ag)

geG 0€od,

(@)

jPROCEDUREELIMINATE(G, E)
G a set of parfactorsy C RV (G).
1. A — Ag \ E.
2 ‘@G‘/‘(')g‘ / H H
-9 (Ilec %o ,A’, Cq) (fusion, section 4.4).
3. If LV(E) = LV (g) (¥ is inversion-eliminable)
return parfactofy__ ¢4(A'0,¢), A’, Cy).
4. Return
(X, X, Nilo o Nul TTF g (vi, AV, A, T)
(as detailed in section 4.3).

where RV (G) is the set of all random variables (ground
atoms) involved in all instantiations of all its parfactog,
is the set of all assignments, or substitutions, to the klgic
variables ofg that satisfy its constraint (thgolutionsto the
constraint),¢, is the potential function iy, A, is the tuple

PROCEDURE-IND-COUNT-ELIMINABLEG, @, E)
G a set of parfactors) C RV (G), E C Ac \ Q.
1. If Ag; \ Eis ground § is counting-eliminable)
returnE.
2. Choose a non-ground atane Ag \ E.
3. ReturnFIND-COUNT-ELIMINABLEG, Q, E U {e}).

of atoms ing and 4,4 is the instantiation of this tuple given
an assignmertt to logical variables.

Further notation include, for a parfactprC, for the con-
straint ing and, for a set of parfactols, Aq for the atoms
in G, C¢ for the total constrain,t\gec C, andO¢ for the set
of solutions ofC¢;. For any objecty, LV (a) andRV («) are
the sets of logical and random variablesdnrespectively.
Finally, all sets of parfactors are implicitly assumed to be
standardized apartthat is, logical variables are renamed if

Figure 1: First-order variable elimination algorithm.

the variable elimination (VEZhang and Poole, 1994algo-
rithm which calculates the total marginal by dividing itant
smaller partial marginalizations, each on a single vaeabl
The main contribution of this paper is a first-order versibn o
VE, FOVE, which is shown in Figure 1 and works in a simi-

necessary so that no logical variable is used in more than ongy way by eliminating one (but maybe more) atoms and their

parfactor in the set.

4 Inference

respective constraints at each step. The advantag©vE
is that, by eliminating an atom with its associated constsai
we are effectively eliminating all of its groundings irdited

The inference problem is, given a set of random variable¥'a: with a cost that is sometimes independent of the number

(ground atoms}) representing a query, to calculate the mar-
ginal probability of@Q given a model= (queries involving a
condition can be issued by adding parfactors represeritiag
condition toG). This is

DBRC(e)

P(Q) x
RV(G\Q

t

whered_ zy )\ o IS @ summation over all assignments to ran-
dom variables not if) and¢(G) is a shorthand notation for
the right-hand side of equation (2).

Calculating this summation by brute force is intractable,

but one can use independencies in the model to do it more

efficiently. In propositional models, one way of doing ttss i

of groundings.

4.1 FOVE correctness

We now show thaFOVE s correct. The algorithm works in
the following way: suppose we want to eliminate the atoms
in a setFE at a given step of it. Then we can write

> #(G)

RV(G\Q

P(Q) o

> #(Gr)b(Gr)

RV(G)\Q\RV (E) RV (E)

> ¢(Gg) Y #(Gr)

RV(G)\Q\RV (E) RV (E)



whereRV (E) is the set of random variables resulting from (because of shattering)

all instantiations oft in G, G is the subset of parfactors in

G depending oV (E), andG; is G \ Gg. (Z ¢g(Ag01)) . (Z gzsg(AgOn))
efq ey,

If we can representy_ ., ) ¢(Gg) as the potential

of a single parfactorg’, (defined such thats(g’) = = I D_os(As) = ] D ¢e(A'0,¢0)
]_[96@5 ¢g(Ag0)), we can reduce the original marginal 0€6y <f 0€0, b
> rv(ao ¢(G) to amarginal on a model’ = Gz U {¢'} = I D_#s(A%6,¢) (by renaming)
which involves fewer random variables: 00y e
= I ¢ =olg)
P@o Y 9(G)= Y 6Gs) Y 4(Gs) reo
RV(GN\Q RV(G\Q\RV(E) RV(E) for ¢’ a new parfactof¢’, A’, Cy) whereA’ is a tuple of the
= > (G p)b(g) atoms distinct frome in Ay, ¢'(A'0) = >, ¢4(A40), and

Cy is the constraint formula gf.
, , Note that the initial sum of products becomes a product of
Z #(GpU{g}) = Z ¢(G) sums, hence the naniversion elimination Also note that

RV(G\Q\RV(E) RV(GN\Q the sum providingy’ is over the assignments on tharame-
terizedrandom variables. Therefore this elimination method
does not depend on the number of groundings, but on the
number of assignments to the parameterized random variable
which is much smaller.

The conditionLV (e) = LV (g) is essential for this method
to work because it guarantees that the random variableg bein
dlimmed out have a one-to-one correspondence to the instan-
tiations ofg. This is a condition not taken into account by
[Poole, 2008 whose method eliminates all random variables
not in the query by inversion elimination, one by one. How-
ever, the proof above should make it clear that this is not al-
ways possible. A numerical contradiction can be found by
trying to answer the query for p(X) A ¢(Y) A r 0.8, with

In the two next subsections, we assume tHathas been type of X being{a} and type ofY” being{b, ¢}, since neither
replaced by an equivalent parfactorThis operationis called p(X) or p(Y") is suitable for inversion elimination. The cor-
fusionand is explained in section 4.4. We are thus left withrect answer isz 0.78, but eliminatingp(X) and theng(Y")
the problem of expressing, .y () ¢(9) as a parfactor. by inversion produces 0.75.

RV(G)\Q\RV (E)

There are two ways, described below, of calculating a par:
factor g’ such thatp(g') = >_ gy (5 ¢(Ge): (1) inversion
eliminationor (2) counting elimination (1) is the preferable
one because it does not depend on the number of objects
the domain or, in other words, the size RV (E). However,
this method requires certain conditionsBriexplained later)
that may be impossible to satisfy for ahyin the atoms of=.

(2) is less favorable as it depends on the sizRUT E) (it is
still better than propositionalization, though), but ieilsvays
possible to find a2 on which it can be applied.

Finally, we assume that the parfactors and query have beeh3 Counting elimination

shatteredas explained in section 4.5. The main property ofyyhen we cannot find an atorin G satisfying the conditions
shattered parfactors and query is that any two atoms in thefgy inversion elimination, we can resort tmunting elimina-
have groundings which are either identical or completedy di tjon, which is based on counting arguments.
joint. Why this matters will be explained as inversion and  coynting elimination can be done on a set of atdirgich
counting elimination are explained. that the remaining atoms i (and consequentlg ) are all
ground. We can always find such &hin G, since the set of
non-ground atoms i is such a set. We however try to find
4.2 Inversion €imination the smallest sucl since the cost of the method depends on
the size of RV (E). Note that counting elimination is only
justified for| E| > 1 since|E| = 1 implies thatE is inversion
Inversion elimination assumes thétis a unary se{e} such ~ €liminable.

thatLV (e) = LV (g), whereLV (a) is the set of logical vari- ~ Once we have a propét, let A’ be the remaining atoms in
ables ino. Let#, .. .6, be an enumeration @,. Then g. Then, becausd’ is ground,
@)=Y [ ¢.(E0,4)
PIIOEI DN | KHCH) e et
RV (e) RV (e) 0€0, = Z H ¢q(EH, A"
=375 ha(Aghh) . bg(Agbi) RV(5)0€0,
o o The last term above defines a potential functiéron A’.
= Be(Ag01) -y dg(Aghn) The result obtained from counting elimination is a new par-

e, ebn factorg’ = (¢, A', T).



In order to calculate this term, we present a counting arguasE;6 or not, otherwise we would not know whether to have

ment. Given an assignment &V (E),

k
IT ¢80, 4) = T 04 (v, )™

0c0,

by grouping all applications af, with the samey;, where
vy, ..., v are the different assignments k¥ andV; is the
set of differentZ§'s assigned;.

Now assume for a moment thatis in fact just one atom
e. This means that the;’s are the possible values for in-
stances ofe. Note that[]" ¢,(v;)/V*! is a function ofv,
and|V;], but not of V;. In other words, it only matters how
manyinstances ot are assignea; by a given assignment
on RV (e), but notwhichof them. Different assignments will
induce different vector§Vi, ..., Vi), but if they induce the
same vecto(|V1],...,|V,|) (denotedN), that product will
be the same. Also, given a vectdr, the number of assign-
ments inducing it isV!, the multinomial coefficient oNV 2 (in
the particular case whereis a binary variable, this becomes
(IR\{(e)\) _ (\R‘{(e)l

N() N N1
according taV and write

PRIOEDS

RV (E) 5

k
NI ¢ (i, AN

Let us now consider the case wheke contains multi-
ple atoms. LetEy,...,FE, be an enumeration off and
Ry, ..
sume that for any two atoms,,, £; in E, their groundings
R,,, R; are identical or disjoint. This condition is satisfied

one less option fronk; (for the cases wher#),,0 # E;6)

or not to have to make a choice at all (in those cases where
E,.0 = E;0 and the choice has already been madeffg®

and therefore foF;#). This information is available since
E,, andE; must be either identical or not unifiable, as stated
above. From this reasoning,

POEDS

RV (E) ~

k
3TN N (i, A
Nu i

with

Vil = TT(NoGal = 1{m s m < j, Bu # Ej, Rin = Rj}),

J

wheres(j) is such thaS,(;) = R;, N, is the vector corre-
sponding to the counting of assigments$y;) = R;, with

Ns(j)_,i being the number of random variables/in assigned
vi,j-

)). We can therefore group assignments ~ Finally, we consider the case where the condition that for

any two atomsk,,, E; in E, LV (E,,) N LV(E;) = 0 is

not satisfied. We can reduce this case to the previous one
by multiplying away the logical variables violating the eon
dition. To multiply a logical variable vectar away from a
parfactorh, we calculate a new parfactaf = (¢', A',C")
where A’ is the same asl;, but for the removal of the logi-

cal variables inZ, C" = Cy )z and, for anyd € Oy,

¢ (A0) = He,ec‘z on(An0'0), whereC\yy,, therestriction

of C to a vector of logical variabled’, is defined as the con-

., R,, be their respective groundings. Let us also asStraint3VC for V = LV(C) \ W. This is simply the for-

mula describing the solutions @f restricted to variables in
W (for equational formulas without function symbols this can

by shattered sets of parfactors, as discussed in 4.5. Mereov be simplified to an equational formula without quantifiers).

we also assume that any two atomsHrare either identical
or not unifiable at all, according t6,. This is also granted

Multiplying away is an expensive operation that depends
directly on the domain size. We are currently working on

for shattered sets of parfactors. For now, we also demand th&hore sophisticated counting arguments that minimize is us

for any two atoms,,,, E; in E, LV(E,,) N LV(E;) = 0,
leaving the case where this is false for later.

Let Sq,...,S, be an enumeration dir; : 1 < j < n},
that is, a sequence of unique;’s. We can consider each
assignment as a composition of assignments on Saeimd
write

ZHQSQ(U%A,)‘V”

Su 1

> o =3

RV (E)

As before|V;| is the number oF¢'s assigned;, butv; is
atupleassignment td6. |V;| can be calculated by choosing,
for each component; ;, how many random variables iR;
can be assigned, ; (this choice can be made in this fashion
because atoms ik’ do not share logical variables). This is
simply |R;|, the number of random variables ®;, unless
some other component ,,, with m < j, E,, # E; and
R,, = Rj, has already committed a random variaﬁle‘ﬁp
for itself. For this reason, it is important to know from the
beginning whethe,,, 0 is either the same random variable

—

Nl = (Ni++Np)!

Nyl...Np!

*Defined asN'! = (N, .,

4.4 Fusion

We now explain how a set of parfactakscan be replaced by
a single, equivalent parfactgis(G) = (¢, Ag, Cq), with
¢'(A) =[] eq 0q(Ay0)191/19¢] for anyd € O¢.

$(G) = [T TI ¢¢(As6) = [T T #o(As0)® 10!

geEG €D, geG 0EB G
— H H¢9(Aga)\99\/\@c\
0€Og geG
= I ¢'(4a0) = 6(£5(@))
[dSSSTe]

The crucial step is the one in which we replace each origi-
nal set of constraint solutiort3, by the global constraint so-
lution set© . When this happens, each original instantiation
of a parfactor is now instantiate®|/|©,| many times more
than before, but the powé®,|/|O¢| preserves the original
potential value.



45 Shattering
The elimination of atoms requires certain conditions goara

teed by the fact that the set of parfactors having been shat-

tered against the query. This is based on discussifdole,
20043.

A set of parfactors ishatteredf, for every pair of atoms
(p, ¢) in G, two conditions hold: (1), their groundindgd/ (p)
and RV (¢) are either identical or disjoint, and (2), in a con-
dition needed by counting elimination, every pair of atoms i

PROCEDURESHATTERG,Q)
G a set of parfactors) a set of atoms.
1. If there exist improper atom pait g in Ac U Q
(a) Foreach € {p,q}
If » comes from parfactay
i. ¢ < NORMALIZE¢,, Ay,Cy A MGU (p, q)).
ii. g < NORMALIZE¢,, Ay, Cyg A=MGU (p,q)).
ii. G (G\{g})Ulg g"}.
(b) ReturnSHATTERG, Q).
2. ReturnG.

each parfactor must be either identical or never be instant
ated to the same random variable by a single logical variabl
assignment. We call pairs of atoms satisfying these two corj
ditions proper pairs A set of parfactors ishattered against

PROCEDURBNORMALIZEg)

By a parfactor.

- 1. If there exists a pair of atoms ¢ in A4 unified inCy
replaceg by pin g.

a set of ground atom@ if the same conditions hold when the

2. ReturnNORMALIZHg).

atoms in@ are included.

For example, parfactors (¢1,p(X,a), T) and
(¢2,p(b,Y),Y # d) are not shattered becauB® (p(X, a))
andRV (p(b,Y")) overlap but are not identical, violating (1).
In another example, parfactdp, (p(X),p(Y)), T) is not
shattered because, even thoul®i (p(X)) = RV (p(Y)),
p(X) and p(Y) are instantiated to the same random vari-
able by some logical variable assignments (those in whicl
X =Y), violating (2).

The algorithm in figure 2 shatters a set of parfactors against
a query. It works by repeatedly identifying pairs of imprope
pairs andbreakingparfactors into equivalent sets of parfac-
tors whose sets of instantiations are the same as the drigin

ones, but i”d“Ci.”g proper pai(S_. This is done by, thrOUQh ,uniif sick(X) thendeath 0.55}, which requires inversion elimination
fication, determining the conditions for the groundingsofi  on1y. (11) Average run time for answering ques(r) from

proper pairs to coincide or not, and breaking the parfactorg(x)Ap(y)Ar 0.51, X # Y, which requires counting elimination.
along these conditions. After this, unified atoms are reemit
so that they will be identical.

For example, if we have parfactqi,p(b,Y),Y #
d) and queryp(b,c), p(b,Y) and p(b,c) are an improper
pair. Their most general unifier (MGU) i8 = ¢, so we
can break the parfactor int@pe,p(b,Y),Y # dAY =
¢) and (¢2,p(b,Y),Y # dANY # c¢) which can be
rewritten as(¢2,p(b,Y),Y = ¢) = (¢2,p(b,c), T) and
(¢2,p(b,Y),Y # dANY # ¢). In another example, par-
factor (¢, (p(X),p(Y)),X # a) contains improper pair
p(X),p(Y). Their unification yieldsX = Y, so the par-
factor is broken inta ¢, (p(X),p(Y)),X #a AN X =Y)
and(¢, (p(X),p(Y)),X # a AN X #Y), the first one being
rewritten as(¢, (p(X), p(X)), X # a).

Figure 2: Shattering algorithm.

{l) Inversion elimination {I) Counting elimination
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Figure 3: (1) Average run time for answering quedy(death)
om {epidemic 0.55, if epidemic thensick(X) 0.7 else0.01,

and uses counting elimination only. In both cases proposi-
tional inference starts taking very long before any notidea
variation in lifted inference run times.

6 Discussion

We presented and showed the correctness of a lifted first-
order probabilistic inference algorithm, the first one ta ou
knowledge that covers all cases in its intended languags. Th
allows expressive representations whose inference is made
much cheaper by abstracting away from specific instances of
random variables and dealing instead with whole classes of
them at once. We believe this type of algorithm will be essen-
tial to the development of large and expressive probaiailist
systems, especially when the particular model is not knowni
We use the implementation available at advance and a general and automatic approach is necessary.
http://12r.cs.uiuc.edu/"cogcomp to  compare We presented two ways of eliminating variables: inversion
average run times between lifted and propositional infegen and counting elimination. Counting elimination is potetyi
(which produce the exact same results) for two differentimodmuch more expensive than inversion elimination, but we ex-
els while increasing the number of objects in the domain. Thegect its occurrence in practical problems to be low; in any
first one, (l) in figure 3, answers the queR(death) from  case, we believe that much better counting arguments exist.
{epidemic 0.55, if epidemic thensick(X) 0.7 else0.01, Investigating them is an interesting line for further resba

if sick(X) thendeath 0.55} and uses inversion elimination ~ Many other interesting directions remain to be taken. A
only. Figure 4 shows that this model can have a very largeery natural extension would be to allow non-ground queries
tree width when propositionalized but can be treated as ¢hat produce not only probabilities but also bindings fay-lo
linear graph by lifted inference. The second one, (ll) infegu ical variables. Also, the algorithm can be adapted, in a
3, answers query(r) fromp(X) Ap(Y)Ar 051, X #Y  way similar to[Pfeffer and Koller, 200D in order to work

5 Empirical results



[Friedmaret al, 1999 N. Friedman, L. Getoor, D. Koller, and
A. Pfeffer. Learning probabilistic relational models. IFCAI,

o ot
() 2L ®) o 0 pages 1300-1309, 1999.

sicH(p,)  sick(p,) .. Sok(P; 0000 sich(X) [Halpern, 199D J. Y. Halpern. An analysis of first-order logics of

| probability. InProceedings of IJCAI-89, 11th International Joint

death death Conference on Artificial Intelligencgages 1375-1381, Detroit,

UsS, 1990.
Figure 4: Computing an answer to quef(death) from the epi-  [Jaeger, 1997 M. Jaeger. Relational Bayesian networks. In Mor-
demic model and a million people is expensive for the praosl gan Kaufmann, editorProceedings of the 13th Conference on
grounded model (a) as it has a large tree width, but cheaphtor t  Uncertainty in Artificial Intelligencepages 266—-273, 1997.

lited model (b) since itis a linear graph. [Kersting and De Raedt, 20pK. Kersting and L. De Raedt.

with infinite models, allowing for richer constraint langyes Bayesian logic programs. In J. Cussens and A. Frisch, editor

where constraints may have infinite solutions, as for exam- Foceedings of the Work-in-Progress Track at the 10th hrater
tional Conference on Inductive Logic Programmipgges 138—

ple those with function symbols. This is also related to Con- 1z " 559

straint Logic Programmingvan Hentenryck, 1989 Given ' ' ) ) ) )

the complexity of the language, approximation schemes will-askey; 2005 K. B. Laskey. First-order Bayesian logic. Technical

be very important for practical applications; countingreti report, Ge%r%e Maﬁon UF:nversnthzeopgétment of Systems-Engi

nation seems a particularly good place to start given ies rel neering an perfal fons esearch, ' .

tively high cost but also regularity. Techniques from thesor [N and Subrahmanian, 199R. T. Ng and V. S. Subrahmanian.

proving will be particularly useful when models with a large Probaplllstlc logic programmingnformation and Computatign

number of parfactors are necessary and one has to apply them101(2):150-201, 1992.

wisely. A complexity study is also necessary for, amongothe[Ngo and Haddawy, 1995L. Ngo and P. Haddawy. Probabilistic

things, guiding the choice of efficient elimination ordeysn logic programming and Bayesian networks Asian Computing
Much of the gain in performance from a lifted algorithm  S¢ience Conferencpages 286-300, 1995.

comes from the presence of a large number of indistinguishiPfeffer and Koller, 200D A. Pfeffer and D. Koller. Semantics and

able objects in the domain, that is, objects about which inference for recursive probability models. ARAI/IAAI pages

we have exactly the same knowledge. It has been argued 538-544, 2000.

([Chaviraet al., 2004) that this does not occur often in practi- [Pfefferetal, 1999 A. Pfeffer, D. Koller, B. Milch, and

cal applications. However, the current work simply progide ~ Takusagawa. K. T. SPOOK: A system for probabilistic object

a base for extensions with other important benefits. In an oriented knowledge representation. Rmoceedings of the 14th

approximate inference setting, for example, the notiomef i gggufégcgonference on Uncertainty in Al (UAI-99)ages 541~

distinguishable objects is replaced by that of objects aibou ' :

which there is approximately the same knowledge (accordin@DOde, 1998 D: PQO|€. Pr_obabilistic Horn abduction and Bayesian

to the current approximation factor), a much more practical networks.Artificial Intelligence 64(1):81-129, 1993.

situation. For non-ground queries, a problem of great pract [Poole, 2008 D. Poole. First-order probabilistic inference. Fno-

cal interest, lifted inference is much more suitable, sithee ceedings of the 8th International Joint Conference on Aifi

answers to such queries may be lifted themselves. Intelligence pages 985-991, 2003.

[Richardson and Domingos, 2d041. Richardson and P. Domin-
gos. Markov logic networks. Technical report, Departmet o
Computer Science, University of Washington, 2004.
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