
Concurrent Hierarchical Reinforcement Learning

Bhaskara Marthi, Stuart Russell, David Latham
Computer Science Division

University of California
Berkeley, CA 94720

{bhaskara,russell,latham}@cs.berkeley.edu

Carlos Guestrin
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
guestrin@cs.cmu.edu

Abstract

We consider applying hierarchical reinforcement
learning techniques to problems in which an agent
has several effectors to control simultaneously. We
argue that the kind of prior knowledge one typically
has about such problems is best expressed using
a multithreaded partial program, and present con-
current ALisp, a language for specifying such par-
tial programs. We describe algorithms for learning
and acting with concurrent ALisp that can be effi-
cient even when there are exponentially many joint
choices at each decision point. Finally, we show re-
sults of applying these methods to a complex com-
puter game domain.

1 Introduction
Hierarchical reinforcement learning (HRL) is an emerging
subdiscipline in which reinforcement learning methods are
augmented with prior knowledge about the high-level struc-
ture of behaviour. Various formalisms for expressing this
prior knowledge exist, including HAMs [Parr and Russell,
1997], MAXQ [Dietterich, 2000], options [Precup and Sut-
ton, 1998], and ALisp [Andre and Russell, 2002]. The idea is
that the prior knowledge should enormously accelerate the
search for good policies. By representing the hierarchical
structure of behaviour, these methods may also expose ad-
ditive structure in the value function [Dietterich, 2000].

All of these HRL formalisms can be viewed as express-
ing constraints on the behavior of a single agent with a sin-
gle thread of control; for example, ALisp extends the Lisp
language with nondeterministic constructs to create a single-
threaded partial programming language (see Section 2). Ex-
perience with programming languages in robotics suggests,
however, that the behaviour of complex physical agents in
real domains is best described in terms of concurrent activi-
ties. Such agents often have several effectors, so that the total
action space available to the agent is the Cartesian product of
the action spaces for each effector.

Consider, for example, the Resource domain shown in Fig-
ure 1. This is a subproblem of the much larger Stratagus do-
main (see stratagus.sourceforge.net). Each peasant in the Re-
source domain can be viewed as an effector, part of a multi-
body agent. Controlling all the peasants with a single control

forest

base

peasants

gold mine

Figure 1: A resource-gathering subgame within Stratagus. Peasants
can move one step in the N, S, E, W directions, or remain stationary
(all transitions are deterministic). They can pick up wood or gold if
they are at a forest or goldmine and drop these resources at the base.
A reward of 1 is received whenever a unit of a resource is brought
back to the base. A cost of 1 is paid per timestep, and an additional
cost of 5 is paid when peasants collide. The game ends when the
player’s reserves of gold and wood reach a predefined threshold.

thread is difficult. First, different peasants may be involved in
different activities and may be at different stages within those
activities; thus, the thread has to do complex bookkeeping
that essentially implements multiple control stacks. Second,
withN peasants, there are 8N possible joint actions, so action
selection is combinatorially nontrivial even when exact value
functions are given. Finally, there are interactions among all
the peasants’ actions—they may collide with each other and
may compete for access to the mines and forests.

To handle all of these issues, we introduce concurrent AL-
isp, a language for HRL in multieffector problems. The
language extends ALisp to allow multithreaded partial pro-
grams, where each thread corresponds to a “task”. Threads
can be created and destroyed over time as new tasks are ini-
tiated and terminated. At each point in time, each effector is
controlled by some thread, but this mapping can change over
time. Prior knowledge about coordination between threads
can be included in the partial program, but even if it is not,
the threads will coordinate their choices at runtime to maxi-
mize the global utility function.

We begin by briefly describing ALisp (Section 2) and its
theoretical foundations in semi-Markov decision processes
(SMDPs). Section 3 defines the syntax of concurrent AL-
isp and its semantics—i.e., how the combination of a concur-

rent ALisp program and a physical environment defines an
SMDP. We obtain a result analogous to that for ALisp: the op-
timal solution to the SMDP is the optimal policy for the orig-
inal environment that is consistent with the partial program.
Section 4 describes the methods used to handle the very
large SMDPs that we face: we use linear function approxi-
mators combined with relational feature templates [Guestrin
et al., 2003], and for action selection, we use coordination
graphs [Guestrin et al., 2002]. We also define a suitable
SMDP Q-learning method. In Section 5, we show experi-
mentally that a suitable concurrent ALisp program allows the
agent to control a large number of peasants in the resource-
gathering domain; we also describe a much larger Stratagus
subgame in which very complex concurrent, hierarchical ac-
tivities are learned effectively. Finally, in Section 6, we show
how the additive reward decomposition results of Russell and
Zimdars [2003] may be used to recover the three-part Q-
decomposition results for single-threaded ALisp within the
more complex concurrent setting.

2 Background
ALisp [Andre and Russell, 2002] is a language for writing
partial programs. It is a superset of common Lisp, and ALisp
programs may therefore use all the standard Lisp constructs
including loops, arrays, hash tables, etc. ALisp also adds the
following new operations :
• (choose choices) picks one of the forms from the

list choices and executes it. If choices is empty, it does
nothing.

• (action a) performs action a in the environment.
• (call f args) calls subroutine f with argument list

args.
• (get-state) returns the current environment state.
Figure 2 is a simple ALisp program for the Resource do-

main of Figure 1 in the single-peasant case. The agent ex-
ecutes this program as it acts in the environment. Let ω =
(s, θ) be the joint state, which consists of the environment
state s and the machine state θ, which in turn consists of
the program counter, call stack, and global memory of the
partial program. When the partial program reaches a choice
state, i.e., a joint state in which the program counter is at a
choose statement, the agent must pick one of the choices to
execute, and the learning task is to find the optimal choice at
each choice point as a function of ω. More formally, an AL-
isp partial program coupled with an environment results in
a semi-Markov decision process (a Markov decision process
where actions take a random amount of time) over the joint
choice states, and finding the optimal policy in this SMDP
is equivalent to finding the optimal completion of the partial
program in the original MDP [Andre, 2003].

3 Concurrent ALisp
Now consider the Resource domain with more than one peas-
ant and suppose the prior knowledge we want to incorpo-
rate is that each individual peasant behaves as in the single-
peasant case, i.e., it picks a resource and a location, navi-
gates to that location, gets the resource, returns to the base
and drops it off, and repeats the process.

(defun single-peasant-top ()
(loop do

(choose
’((call get-gold) (call get-wood)))))

(defun get-wood ()
(call nav (choose *forests*))
(action ’get-wood)
(call nav *home-base-loc*)
(action ’dropoff))

(defun get-gold ()
(call nav (choose *goldmines*))
(action ’get-gold)
(call nav *home-base-loc*)
(action ’dropoff))

(defun nav (l)
(loop until (at-pos l) do

(action (choose ’(N S E W Rest)))))

Figure 2: ALisp program for Resource domain with a single peasant.

(defun multi-peasant-top ()
(loop do

(loop until (my-effectors) do
(choose ’()))

(setf p (first (my-effectors)))
(choose
(spawn p #’get-gold () (list p))
(spawn p #’get-wood () (list p)))))

Figure 3: New top level of a concurrent ALisp program for Resource
domain with any number of peasants. The rest of the program is
identical to Figure 2.

To incorporate such prior knowledge, we have developed a
concurrent extension of ALisp that allows multithreaded par-
tial programs. For the multiple-peasant Resource domain, the
concurrent ALisp partial program is identical to the one in
Figure 2, except that the top-level function is replaced by the
version in Figure 3. The new top level waits for an unassigned
peasant and then chooses whether it should get gold or wood
and spawns off a thread for the chosen task. The peasant will
complete its assigned task, then its thread will die and it will
be sent back to the top level for reassignment. The overall
program is not much longer than the earlier ALisp program
and doesn’t mention coordination between peasants. Never-
theless, when executing this partial program, the peasants will
automatically coordinate their decisions and the Q-function
will refer to joint choices of all the peasants. So, for example,
they will learn not to collide with each other while navigat-
ing. The joint decisions will be made efficiently despite the
exponentially large number of joint choices. We now describe
how all this happens.

3.1 Syntax
Concurrent ALisp includes all of standard Lisp. The choose
and call statements have the same syntax as in ALisp.

Threads and effectors are referred to using unique IDs. At
any point during execution, there is a set of threads and
each thread is assigned some (possibly empty) subset of
the effectors. So the action statement now looks like
(action e1 a1 . . . en an) which means that each effector
ei must do ai. In the special case of a thread with exactly one
effector assigned to it, the ei can be omitted. Thus, a legal
program for single-threaded ALisp is also legal for concur-
rent ALisp.

The following operations deal with threads and effectors.

• (spawn thread-id fn args effector-list) creates a
new thread with the given id which starts by calling fn
with arguments args, with the given effectors.

• (reassign effector-list thread-id) reassigns the
given effectors (which must be currently assigned to the
calling thread) to thread-id.

• (my-effectors) returns the set of effectors as-
signed to the calling thread.

Interthread communication is done through condition vari-
ables, using the following operations :

• (wait cv-name) waits on the given condition vari-
able (which is created if it doesn’t exist).

• (notify cv-name) wakes up all threads waiting on
this condition variable.

Every concurrent ALisp program should contain a desig-
nated top level function where execution will begin. In some
domains, the set of effectors changes over time. For exam-
ple, in Stratagus, existing units may be destroyed and new
ones trained. A program for such a domain should include a
function assign-effectors which will be called at the
beginning of each timestep to assign new effectors to threads.

3.2 Semantics
We now describe the state space, initial state, and transition
function that obtain when running a concurrent ALisp pro-
gram in an environment. These will be used to construct an
SMDP, analogous to the ALisp case; actions in the SMDP
will correspond to joint choices in the partial program.

The joint state space is Ω = {ω = (s, θ)} where s is an
environment state and θ is a machine state. The machine state
consists of a global memory state µ, a list Ψ of threads, and
for each ψ ∈ Ψ, a unique identifier ι, the set E of effectors
assigned to it, its program counter ρ, and its call stack σ. We
say a thread is holding if it is at a choose, action, or
wait statement. A thread is called a choice thread if it is at
a choose statement. Note that statements can be nested, so
for example in the last line of Figure 2, a thread could either
be about to execute the choose, in which case it is a choice
thread, or it could have finished making the choice and be
about to execute the action, in which case it is not.

In the initial machine state, global memory is empty and
there is a single thread starting at the top level function with
all the effectors assigned to it.

There are three cases for the transition distribution. In the
first case, known as an internal state, at least one thread is
not holding. We need to pick a nonholding thread to execute
next, and assume there is an external scheduler that makes
this choice. For example, our current implementation is built

on Allegro Lisp and uses its scheduler. However, our seman-
tics will be seen below to be independent of the choice of
scheduler, so long as the scheduler is fair (i.e., any nonholding
thread will eventually be chosen). Let ψ be the thread chosen
by the scheduler. If the next statement in ψ does not use any
concurrent ALisp operations, its effect is the same as in stan-
dard Lisp. The call statement does a function call and up-
dates the stack; the spawn, reassign, my-effectors,
wait, and notify operations work as described in Sec-
tion 3.1. After executing this statement, we increment ψ’s
program counter and, if we have reached the end of a func-
tion call, pop the call stack repeatedly until this is not the
case. If the stack becomes empty, the initial function of the
thread has terminated, ψ is removed from Ψ, and its effectors
are reassigned to the thread that spawned it.

For example, suppose the partial program in Figure 3 is be-
ing run with three peasants, with corresponding threads ψ1,
ψ2, and ψ3, and let ψ0 be the initial thread. Consider a sit-
uation where ψ0 is at the dummy choose statement, ψ1 is
at the third line of get-wood, ψ2 is at the call in the first
line of get-gold, and ψ3 is at the last line of get-gold.
This is an internal state, and the set of nonholding threads is
{ψ1, ψ2}. Suppose the scheduler picks ψ1. The call state-
ment will then be executed, the stack appropriately updated,
and ψ1 will now be at the top of the nav subroutine.

The second case, known as a choice state, is when all
threads are holding, and there exists a thread which has ef-
fectors assigned to it and is not at an action statement. The
agent must then pick a joint choice for all the choice threads1

given the environment and machine state. The program coun-
ters of the choice threads are then updated based on this joint
choice. The choices made by the agent in this case can be
viewed as a completion of the partial program. Formally, a
completion is a mapping from choice states to joint choices.
In the example, suppose ψ0 is at the dummy choose state-
ment as before, ψ1 and ψ3 are at the choose in nav, and
ψ2 is at the dropoff action in get-wood. This is a choice
state with choice threads {ψ0, ψ1, ψ3}. Suppose the agent
has learnt a completion of the partial program which makes it
choose {(),N,Rest} here. The program counter of ψ0 will
then move to the top of the loop, and the program counters
of ψ1 and ψ3 will move to the action statement in nav.

The third case, known as an action state, is when all
threads are holding, and every thread that has effectors as-
signed to it is at an action statement. Thus, a full
joint action is determined. This action is performed in
the environment and the action threads are stepped for-
ward. If any effectors have been added in the new envi-
ronment state, the assign-new-effectors function is
called to decide which threads to assign them to. Contin-
uing where we left off in the example, suppose ψ0 executes
the my-effectors statement and gets back to the choose
statement. We are now at an action state and the joint action
{N,dropoff,Rest} will be done in the environment. ψ1

and ψ3 will return to the until in the loop and ψ2 will die,
releasing its effector to top.

1If there are no choice threads, the program has deadlocked. We
leave it up to the programmer to write programs that avoid deadlock.

Let Γ be a partial program and S a scheduler, and consider
the following random process. Given a choice state ω and
joint choice u, repeatedly step the partial program forward as
described above until reaching another choice state ω′, and
let N be the number of joint actions that happen while doing
this. ω′ andN are random variables because the environment
is stochastic. Let PΓ,S(ω′, N |ω, u) be their joint distribution
given ω and u.

We say Γ is good if PΓ,S is the same for any fair S.2 In this
case, we can define a corresponding SMDP over Ωc, the set
of choice states. The set of “actions” possible in the SMDP
at ω is the set of joint choices at ω. The transition distribution
is PΓ,S for any fair S. The reward functionR(ω, u) is the ex-
pected discounted reward received until the next choice state.
The next theorem shows that acting in this SMDP is equiva-
lent to following the partial program in the original MDP.

Theorem 1 Given a good partial program Γ, there is a bijec-
tive correspondence between completions of Γ and policies
for the SMDP which preserves the value function. In particu-
lar, the optimal completion of Γ corresponds to the optimal
policy for the SMDP.

Here are some of the design decisions implicit in our se-
mantics. First, threads correspond to tasks and may have
multiple effectors assigned to them. This helps in incor-
porating prior knowledge about tasks that require multiple
effectors to work together. It also allows for “coordina-
tion threads” that don’t directly control any effectors. Sec-
ond, threads wait for each other at action statements, and
all effectors act simultaneously. This prevents the joint be-
haviour from depending on the speed of execution of the
different threads. Third, choices are made jointly, rather
than sequentially with each thread’s choice depending on the
threads that chose before it. This is based on the intuition
that a Q-function for such a joint choice Q(u1, . . . , un) will
be easier to represent and learn than a set of Q-functions
Q1(u1), Q2(u2|u1), . . . , Qn(un|u1, . . . un−1). However,
making joint choices presents computational difficulties, and
we will address these in the following section.

4 Implementation
In this section, we describe our function approximation ar-
chitecture and algorithms for making joint choices and learn-
ing the Q-function. The use of linear function approximation
turns out to be crucial to the efficiency of the algorithms.

4.1 Linear function approximation
We represent the SMDP policy for a partial program implic-
itly, using a Q-function, where Q(ω, u) represents the total
expected discounted reward of taking joint choice u in ω and
acting optimally thereafter. We use the linear approximation
Q̂(ω, u; ~w) =

∑K

k=1
wkfk(ω, u), where each fk is a feature

that maps (ω, u) pairs to real numbers. In the resource do-
main, we might have a feature fgold(ω, u) that returns the
amount of gold reserves in state ω. We might also have a
set of features fcoll,i,j(ω, u) which returns 1 if the navigation

2This is analogous to the requirement that a standard multi-
threaded program contain no race conditions.

choices in u will result in a collision between peasants i and
j and 0 otherwise.

Now, with N peasants, there will be O(N 2) collision fea-
tures, each with a corresponding weight to learn. Intuitively, a
collision between peasants i and j should have the same effect
for any i and j. Guestrin et al. [2003] proposed using a rela-
tional value-function approximation, in which the weights for
all these features are all tied together to have a single value
wcoll. This is mathematically equivalent to having a single
“feature template” which is the sum of the individual colli-
sion features, but keeping the features separate exposes more
structure in the Q-function, which will be critical to efficient
execution as shown in the next section.

4.2 Choice selection
Suppose we have a partial program and set of features, and
have somehow found the optimal set of weights ~w. We can
now run the partial program, and whenever we reach a choice
state ω, we need to pick the u maximizing Q(ω, u). In the
multieffector case, this maximization is not straightforward.
For example, in the Resource domain, if all the peasants are
at navigation choices, there will be 5N joint choices.

An advantage of using a linear approximation to the Q-
function is that this maximization can often be done effi-
ciently. When we reach a choice state ω, we form the coordi-
nation graph [Guestrin et al., 2002]. This is a graph contain-
ing a node for each choosing thread in ω. For every feature
f , there is a clique in the graph among the choosing threads
that f depends on. The maximizing joint choice can then be
found in time exponential in the treewidth of this graph using
cost network dynamic programming [Dechter, 1999].

In a naive implementation, the treewidth of the coordina-
tion graph might be too large. For example, in the Resource
domain, there is a collision feature for each pair of peasants,
so the treewidth can equal N . However, in a typical situa-
tion, most pairs of peasants will be too far apart to have any
chance of colliding. To make use of this kind of “context-
specificity”, we implement a feature template as a function
that takes in a joint state ω and returns only the component
features that are active in ω—the inactive features are equal
to 0 regardless of the value of u. For example, the collision
feature template Fcoll(ω) would return one collision feature
for each pair of peasants who are sufficiently close to each
other to have some chance of colliding on the next step. This
significantly reduces the treewidth.

4.3 Learning
Thanks to Theorem 1, learning the optimal completion of a
partial program is equivalent to learning the Q-function in
an SMDP. We use a Q-learning algorithm, in which we run
the partial program in the environment, and when we reach a
choice state, we pick a joint choice according to a GLIE ex-
ploration policy. We keep track of the accumulated reward
and number of environment steps that take place between
each pair of choice states. This results in a stream of samples
of the form (ω, u, r, ω′, N). We maintain a running estimate
of ~w, and upon receiving a sample, we perform the update

~w ← ~w+α
(

r + γN max
u′

Q(ω′, u′; ~w)−Q(ω, u; ~w)
)

~f(ω, u)

0 20 40 60 80 100 120 140 160 180
−400

−350

−300

−250

−200

−150

−100

−50

0

steps of learning (x1000)

T
ot

al
 r

ew
ar

d
of

 p
ol

ic
y

Concurrent hierarchical Q−learning
Flat concurrent Q−learning

Figure 4: Learning curves for the 3x3 Resource domain with 4 peas-
ants, in which the goal was to collect 20 resources. Curves averaged
over 5 learning runs. Policies were evaluated by running until 200

steps or termination. No shaping was used.

4.4 Shaping
Potential-based shaping [Ng et al., 1999] is a way of modi-
fying the reward function R of an MDP to speed up learning
without affecting the final learned policy. Given a potential
function Φ on the state space, we use the new reward func-
tion R̃(s, a, s′) = R(s, a, s′) + γΦ(s′) − Φ(s). As pointed
out in [Andre and Russell, 2002], shaping extends naturally
to hierarchical RL, and the potential function can now depend
on the machine state of the partial program as well. In the Re-
source domain, for example, we could let Φ(ω) be the sum of
the distances from each peasant to his current navigation goal
together with a term depending on how much gold and wood
has already been gathered.

5 Experiments
We now describe learning experiments, first with the Re-
source domain, then with a more complex strategic domain.
Full details of these domains and the partial programs and
function approximation architectures used will be presented
in a forthcoming technical report.

5.1 Running example
We begin with a 4-peasant, 3x3 Resource domain. Though
this world seems quite small, it has over 106 states and 84

joint actions in each state, so tabular learning is infeasi-
ble. We compared flat coordinated Q-learning [Guestrin et
al., 2002] and the hierarchical Q-learning algorithm of Sec-
tion 4.3. Figure 4 shows the learning curves. Within the first
100 steps, hierarchical learning usually reaches a “reason-
able” policy (one that moves peasants towards their current
goal while avoiding collisions). The remaining gains are due
to improved allocation of peasants to mines and forests to
minimize congestion. A “human expert” in this domain had
an average total reward around−50, so we believe the learnt
hierarchical policy is near-optimal, despite the constraints in
the partial program. After 100 steps, flat learning usually
learns to avoid collisions, but still has not learnt that pick-
ing up resources is a good idea. After about 75000 steps, it

0 50 100 150 200 250
−2500

−2000

−1500

−1000

−500

0

steps of learning (x1000)

T
ot

al
 r

ew
ar

d
of

 p
ol

ic
y

Concurrent hierarchical Q−learning
Flat concurrent Q−learning

Figure 5: Learning curves for the 15x15 Resource domain with 20

peasants, in which the goal was to collect 100 resources. The shap-
ing function from Section 4.4 was used.

Allocate Gold

Allocate for barracks, peasants
or footmen

Train Footmen (Barracks)

Train Peasants (Town Hall)

Allocate Peasants

Send idle peasants to gather
gold or build barracks

Gather Gold
(Peasant)

Build Barracks
(Peasant)

Tactical Decision

Decide when to use
new footmen to attack

Attack (Footmen)

Controls a set of footmen who
are jointly attacking the
enemy.

New
footmen

New
peasants

Shared variables for
resource allocation

ROOT

Thread
(Effector)

spawns

Legend

Figure 6: Structure of the partial program for the strategic domain

makes this discovery and reaches a near-optimal policy.

Our next test was on a 15x15 world with 20 peasants, with
learning curves shown in Figure 5. Because of the large map
size, we used the shaping function from Section 4.4 in the hi-
erarchical learning. In flat learning, this shaping function can-
not be used because the destination of the peasant is not part
of the environment state. To write such a shaping function,
the programmer would have to figure out in advance which
destination each peasant should be allocated to as a function
of the environment state. For similar reasons, it is difficult to
find a good set of features for function approximation in the
flat case, and we were not able to get flat learning to learn
any kind of reasonable policy. Hierarchical learning learnt a
reasonable policy in the sense defined earlier. The final learnt
allocation of peasants to resource areas is not yet optimal as
its average reward was about −200 whereas the human ex-
pert was able to get a total reward of −140. We are working
to implement the techniques of Section 6, which we believe
will further speed convergence in situations with a large num-
ber of effectors.

5.2 Larger Stratagus domain
We next considered a larger Stratagus domain, in which the
agent starts off with a single town hall, and must defeat a sin-
gle powerful enemy as quickly as possible. An experienced
human would first use the townhall to train a few peasants,
and as the peasants are built, use them to gather resources.
After enough resources are collected, she would then assign
a peasant to construct barracks (and reassign the peasant to
resource-gathering after the barracks are completed). The
barracks can then be used to train footmen. Footmen are not
very strong, so multiple footmen will be needed to defeat the
enemy. Furthermore, the dynamics of the game are such that
it is usually advantageous to attack with groups of footmen
rather than send each footman to attack the enemy as soon
as he is trained. The above activities happen in parallel. For
example, a group of footmen might be attacking the enemy
while a peasant is in the process of gathering resources to
train more footmen.

Our partial program is based on the informal description
above. Figure 6 shows the thread structure of the partial pro-
gram. The choices to be made are about how to allocate re-
sources, e.g., whether to train a peasant next or build a bar-
racks, and when to launch the next attack. The initial pol-
icy performed quite poorly—it built only one peasant, which
means it took a long time to accumulate resources, and sent
footmen to attack as soon as they were trained. The final
learned policy, on the other hand, built several peasants to en-
sure a constant stream of resources, sent footmen in groups
so they did more damage, and pipelined all the construction,
training, and fighting activities in intricate and balanced ways.
We have put videos of the policies at various stages of learn-
ing on the web.3

6 Concurrent learning
Our results so far have focused on the use of concurrent par-
tial programs to provide a concise description of multieffec-
tor behaviour, and on associated mechanisms for efficient ac-
tion selection. The learning mechanism, however, is not yet
concurrent—learning does not take place at the level of indi-
vidual threads. Furthermore, the Q-function representation
does not take advantage of the temporal Q-decomposition
introduced by Dietterich [2000] for MAXQ and extended
by Andre and Russell [2002] for ALisp. Temporal Q-
decomposition divides the complete sequence of rewards that
defines a Q-value into subsequences, each of which is asso-
ciated with actions taken within a given subroutine. This is
very important for efficient learning because, typically, the
sum of rewards associated with a particular subroutine usu-
ally depends on only a small subset of state variables—those
that are specifically relevant to decisions within the subrou-
tine. For example, the sum of rewards (step costs) obtained
while a lone peasant navigates to a particular mine depends
only on the peasant’s location, and not on the amount of gold
and wood at the base.

We can see immediately why this idea cannot be applied
directly to concurrent HRL methods: with multiple peasants,

3http://www.cs.berkeley.edu/∼bhaskara/ijcai05-videos

there is no natural way to cut up the reward sequence, because
rewards are not associated formally with particular peasants
and because at any point in time different peasants may be at
different stages of different activities. It is as if, every time
some gold is delivered to base, all the peasants jump for joy
and feel smug—even those who are wandering aimlessly to-
wards a depleted forest square.

We sketch the solution to this problem in the resource do-
main example. Implementing it in the general case is on-
going work. The idea is to make use of the kind of func-
tional reward decomposition proposed by Russell and Zim-
dars [2003], in which the global reward function is written as
R(s, a) = R1(s, a)+ . . .+RN (s, a). Each sub-reward func-
tion Rj is associated with a different functional sub-agent—
for example, in the Resource domain, Rj might reflect deliv-
eries of gold and wood by peasant j, steps taken by j, and
collisions involving peasant j. Since there is one thread per
peasant, we can write R(s, a) =

∑

ψ∈Ψ
Rψ(s, a) where Ψ is

a fixed set of threads. This gives a thread-based decomposi-
tion of the Q-function Q(ω, u) =

∑

ψ∈Ψ
Qψ(ω, u). That is,

Qψ refers to the total discounted reward gained in thread ψ.
Russell and Zimdars [2003] derived a decomposed SARSA

algorithm for additively decomposed Q-functions of this
form that converges to globally optimal behavior. The same
algorithm can be applied to concurrent ALisp: each thread re-
ceives its own reward stream and learns its component of the
Q-function, and global decisions are taken so as to maximize
the sum of the component Q-values. Having localized re-
wards to threads, it becomes possible to restore the temporal
Q-decomposition used in MAXQ and ALisp. Thus, we ob-
tain fully concurrent reinforcement learning within the con-
current HRL framework, with both functional and temporal
decomposition of the Q-function representation.

7 Related work
There are several HRL formalisms as mentioned above, but
most are single-threaded. The closest related work is by Ma-
hadevan’s group [Makar et al., 2001], who have extended the
MAXQ approach to concurrent activities (for many of the
same reasons we have given). Their approach uses a fixed
set of identical single-agent MAXQ programs, rather than
a flexible, state-dependent concurrent decomposition of the
overall task. However, they do not provide a semantics for
the interleaved execution of multiple coordinating threads.
Furthermore, the designer must stipulate a fixed level in the
MAXQ hierarchy, above which coordination occurs and be-
low which agents act independently and greedily. The intent
is to avoid frequent and expensive coordinated decisions for
low-level actions that seldom conflict, but the result must be
that agents have to choose completely nonoverlapping high-
level tasks since they cannot coexist safely at the low level. In
our approach, the state-dependent coordination graph (Sec-
tion 4.2) reduces the cost of coordination and applies it only
when needed, regardless of the task level.

The issue of concurrently executing several high-level ac-
tions of varying duration is discussed in [Rohanimanesh and
Mahadevan, 2003]. They discuss several schemes for when to
make decisions. Our semantics is similar to their “continue”

scheme, in which a thread that has completed a high-level ac-
tion picks a new one immediately and the other threads con-
tinue executing.

8 Conclusions and Further Work
We have described a concurrent partial programming lan-
guage for hierarchical reinforcement learning and suggested,
by example, that it provides a natural way to specify behav-
ior for multieffector systems. Because of concurrent AL-
isp’s built-in mechanisms for reinforcement learning and op-
timal, yet distributed, action selection, such specifications
need not descend to the level of managing interactions among
effectors—these are learned automatically. Our experimen-
tal results illustrate the potential for scaling to large num-
bers of concurrent threads. We showed effective learning in a
Stratagus domain that seems to be beyond the scope of single-
threaded and nonhierarchical methods; the learned behaviors
exhibit an impressive level of coordination and complexity.

To develop a better understanding of how temporal and
functional hierarchies interact to yield concise distributed
value function representations, we will need to investigate a
much wider variety of domains than that considered here. To
achieve faster learning, we will need to explore model-based
methods that allow for lookahead to improve decision quality
and extract much more juice from each experience.

References
[Andre and Russell, 2002] D. Andre and S. Russell. State abstrac-

tion for programmable reinforcement learning agents. In AAAI,
2002.

[Andre, 2003] D. Andre. Programmable Reinforcement Learning
Agents. PhD thesis, UC Berkeley, 2003.

[Dechter, 1999] R. Dechter. Bucket elimination : a unifying frame-
work for reasoning. Artificial Intelligence, 113:41–85, 1999.

[Dietterich, 2000] T. Dietterich. Hierarchical reinforcement learn-
ing with the maxq value function decomposition. JAIR, 13:227–
303, 2000.

[Guestrin et al., 2002] C. Guestrin, M. Lagoudakis, and R. Parr.
Coordinated reinforcement learning. In ICML, 2002.

[Guestrin et al., 2003] C. Guestrin, D. Koller, C. Gearhart, and
N. Kanodia. Generalizing plans to new environments in rela-
tional MDPs. In IJCAI, 2003.

[Makar et al., 2001] R. Makar, S. Mahadevan, and
M. Ghavamzadeh. Hierarchical multi-agent reinforcement
learning. In ICRA, 2001.

[Ng et al., 1999] A. Ng, D. Harada, and S. Russell. Policy invari-
ance under reward transformations : theory and application to
reward shaping. In ICML, 1999.

[Parr and Russell, 1997] R. Parr and S. Russell. Reinforcement
learning with hierarchies of machines. In Advances in Neural
Information Processing Systems 9, 1997.

[Precup and Sutton, 1998] D. Precup and R. Sutton. Multi-time
models for temporally abstract planning. In Advances in Neu-
ral Information Processing Systems 10, 1998.

[Rohanimanesh and Mahadevan, 2003] K. Rohanimanesh and
S. Mahadevan. Learning to take concurrent actions. In NIPS.
2003.

[Russell and Zimdars, 2003] S. Russell and A. Zimdars. Q-
decomposition for reinforcement learning agents. In ICML, 2003.

