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Abstract the graph-model structure because they traverse a stedctur
blind search space. To overcome this problem the idea of
> alll evdit ) AND/OR search spaces was introduced in the past year, and
framework for optimization in graphical models, was shown to vividly display independencies encoded in the
based on AND/OR search spaces. The virtue of the  ngerlying graphical modéDechter and Mateescu, 2004n
AND/OR representation of the search space is that  hjg paper we develoAND/OR Branch-and-Boun@dOBB),

its size may be far smaller than that of a traditional 5 general algorithm for solving COPs, which explores the
OR representation. We develop our work Gon- AND/OR search tree in depth-firstmanner. Its efficiency
straint Optimization Problem&OP) and introduce depends on its guiding heuristic functions. In the past, a
a new generation of depth-first Branch-and-Bound  (jass of partitioning-based heuristic functions, basedhen
algorithms that explore an AND/OR search space  \jini-Bucket approximation and known asatic mini-bucket
and use static and dynamic mini-bucket heuristics  peyristicswas shown to be powerful for optimization prob-
to guide the search. We focus on two optimiza-  |ems[Kask and Dechter, 2001 We take the idea one step
tion problems, solving Weighted CSPs (WCSP)and  frther and introducelynamic mini-bucket heuristicsvhich
finding the Most Probable Explanation (MPE) in be- are computed dynamically at each node of the search tree.
lief networks. We show that the new AND/OR ap- Both schemes are parameterized by the Mini-BuéHegund,
proach improves considerably over the classic OR  \yhich allows for a controllable trade-off between prepsme
space, on a variety of benchmarks including ran- ing and search.

dom and real-world problems. We also demonstrate We apply the AND/OR algorithms to two common opti-
the impact of different lower bounding heuristics on mization problems: solving Weighted CSHBistarelli et al.,

The paper presents and evaluates the power of a new

Branch-and-Bound exploring AND/OR spaces. 1997 and finding the Most Probable Explanation (MPE) in
belief networkdPearl, 1988 We experiment with both ran-
1 Introduction dom models and real-world benchmarks. Our results show

) ) ) conclusively that the new AND/OR Branch-and-Bound algo-
Graphical modelsuch as constraint networks and belief net-rithms improve dramatically over traditional OR ones, espe
works have become a powerful representation framework fogjally when the heuristic estimates are inaccurate andlthe a

reasoning with deterministic and probabilistic infornoati  gorithms rely primarily on search rather than on pruning.
These models use graphs to capture conditional independen-

cies between variables, allowing a concise representafion
the knowledge as well as efficient graph-based query procesg Background
ing algorithms. A finite Constraint Optimization ProbleffCOP) is a six-tuple
Optimization tasks such as finding the most likely state of P = (X', D, F, ®, |}, Z), whereX = {Xi,..., X,,} is a set
belief network or finding a solution that violates the leastm  of variables,D = {D.,...,D,} is a set of finite domains
ber of constraints in a constraint network are all instaraefes and 7 = {f1,..., fmm} IS @ set of constraints. Constraints
Constraint Optimization Problem{€OP). They are typically can be eithesoft(cost functions) ohard (sets of allowed tu-
tackled with eithersearchor inferencealgorithms. Search ples). Without loss of generality we assume that hard con-
methods (e.g. depth-first Branch-and-Bound, best-firsth¢a straints are represented as (bi-valued) cost functionewad
are time exponential in the number of variables and can opeand forbidden tuples have castand co, respectively. The
ate in polynomial space. Inference algorithms (e.g. végiab scope of functionf;, denotedscope(f;) C X, is the set of
elimination, tree-clustering) are time and space expoaént  arguments off;. The operatorsy and| can be defined us-
a topological parameter calldcee width If the tree width  ing the semi-ring frameworkBistarelli et al, 1997, but in
is large, the high space complexity makes the latter methodis paper we assume thad; f; is a combinationoperator,
impractical. ®ifi € {I1, fi.>_, fi} andly f is aneliminationoperator,
In this paper we focus on search. In contrast to in-lly f € {maxs_yf,mins_y f}, whereS is the scope of
ference algorithms, search algorithms are less sensiive tfunctionf andY C X. The scope ofly fisY.



An optimization task is defined by(Z) = |, fi, OR
whereZ C X. A global optimizationis the task of finding
the best global cost, namelyy = (. For simplicity we will de-
velop our work assuming a COP instance vattmmatiorand
minimizationas combination and elimination operators, and a
global cost function defined b§(X) = minx >~ fi.
Theprimal graphof a COP instance has the variablsas
its nodes and an arc connects any two variables that appear in
the scope of the same function.
In practice, most complete COP solvers followepth-first
Branch-and-Boundtrategy which maintains arpper bound
the best solution cost found so-far, antbever boundon the
optimal extension of the current assignment. Value pruning
occurs as soon as the lower bound exceeds the upper bound. Figure 1: An AND/OR search tree.
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3 AND/OR Search Spaces ure 1(b). Observe that the AND nodB, 0)* roots two inde-

The usual way to do search (i.@R searchis to instantiate ~Pendent subproblems, one represented by varighlg, and
variables in turn, following a static/dynamic linear oragr.  the other by variable$C, D, F'}.

This process defines a search tree (D& treg, whose nodes  THeEorem 1 ([Dechter and Mateescu, 200) Given a COP
represent states in the space of partial assignments. instanceP and a pseudo-tre#, its AND/OR search tre§r

One way to exploit the independencies encoded by thgs sound and complete (contains all and only solutions) &nd i
graphical model is to introduce AND nodes into the searchksize isO(n-eaxp(m)), wherem is the depth of the pseudo-tree.
space, which will decompose the problem into separate sub- Any search algorithm that traverses the AND/OR search
problems. In the past yedDechter and Mateescu, 2004 ee in a depth-first manner is guaranteed to have a time com-

troduced the concept of AND/OR search spaces for constrairﬁfI . 2
networks, belief networks, and for graphical models in genPI€Xity exponentialin the depth of the pseudo-tree and gan o

eral. The AND/OR search space is defined using a back-borﬁate_in linear space. In contrast, the time complexityafd&a
pseudo-tre@rrangement of the primal graph algorithms exploring traditional OR search trees is expene
' tial in the number of variables. The arcs$i are annotated

DEFINITION 1 (pseudo-tree) Given the primal grapl; ofa by appropriatdabelsof the cost functions. The nodes &y
COP instanceP, a pseudo-treés a rooted tree with the same can be associated withvalue accumulating the result of the
set of vertices a&' and has the property that adjacent vertices computation resulted from the subtree below.

from G must be in the same branch of the rooted fiéeuder DEFINITION 3 (label) The label I(X;, (X;,a)) of the arc

and Quinn, 198k from the OR nodeX; to the AND nodéX;, a) is defined as
DEFINITION 2 (AND/OR search tree) Given a COP in- the sum of all the cost functions values for which variakie

stanceP, its primal graphG and a pseudo-tre& of G, the IS contained in their scope and whose scope is fully assigned
associatedAND/OR search tre&r(P) has alternating levels along Paths, ((Xi, a)).

of OR nodes and AND nodes. The OR nodes are lab€led DeriniTION 4 (value) Thevaluewv(n) of a noden € St is

and correspond to the variables. The AND nodes are labeledefined recursively as follows: (i) #f = (X;,a) is a ter-
(X, a) and correspond to value assignments in the domaingninal AND node then(n) = I(X;,(X;,a)); (i) if n =

of the variables. Theootof the AND/OR search tree is an OR (X; 4) is an internal AND node then(n) = (X, (X;, a))+
node, labeled with the root @f. The children of an OR node > e suce(my0(n); (ii)) if n = X; is an internal OR node then
X, are AND nodes labeled with as&gnmeh&, a), consis- v(n) = min, u(n'), wheresuce(n) are the children
tent along the path from the root. The children of an AND nodey¢,“i, Sy n/€suce(n) '

(X, a) are OR nodes labeled with the children of variabig '

in T'. Thepathof a noden € S, denotedPathg, (n), is the _Clearly, the value of each node can be computed recur-
path from the the root o$; to n, and corresponds to a partial - Sively, from leaves to root. We can show that:
value assignment to all variables along the path. PROPOSITIONL Given an AND/OR search tre®- of a COP

A solution subtreeSols, of Sy is an AND/OR subtree i?]stan_cg?? IZ <X7D’I}—J+7miﬁ>' thg valbule function(n) E
such that:(i) it contains the root ofi(ii) if a nonterminal  the minimal cost solution to the subproblem rooted asub-

AND noden € Sy is in Solg, then all of its children are in J€Ct t0 the current variable instantiation along the patorfr
Sols,.(iii) if a nonterminal OR node: € Sy is in Sols,. then root to n. If n is the root ofSy, thenv(n) is the minimal cost
exactly one of its children is ifolg,.. solution toP.

Therefore, we can traverse the AND/OR search tree in a

Example 1 Consider the graphical modelin Figure 1(a) (top) genth-first manner to compute the value of the root. This

describing a graph coloring problem over domaifs1}. An
AND/OR search tree based on the pseudo-tree in Figure 1(a) !In the figure we only denote the valugB, 0) is written ag0]
(bottom), and a highlighted solution subtree are given ig-Fi  child of B.



approach would require linear space, storing only the cur-
rent partial solution subtree. The algorithm expands iadter [of
ing levels of OR and AND nodes, periodically evaluating the
value function of the nodes along the current path. It termi-
nates when the root node is evaluated with the optimal cost.

4 AND/OR Branch and Bound

If each noden at the search frontier is assignedeuristic
lower-bound estimat&(n) of v(n), then we can calculate the
most promising extension of the current partial solutiob-su
tree and prune the portion of the search space that becomes
irrelevant, as part of a Branch-and-Bound scheme. We call
h(n) astaticheuristic function.

4.1 Lower Bounds on Partial Solution Trees Example 2 For the active partial subtree rooted & in Fig-
ure 2(b), the lower bound, (B) onwv(B) is computed recur-

At any stage of the search, the current partial solution is g; . i
partial solution subtreedenotedPS7. By the nature of the %clv(?% Zﬁ;ﬂ'%ﬁ{gé@ B)T?Fg(?éB%;{i%gj’)lQ} \(Ng)ef
search process?S7 must be connected, must contain theh?F))’ SiTniIarIy fh(-é) z n:umc(’h(E) (B 13)) _

root node and will have &ontier containing all those nodes . : _ ’
that were generated but not yet expanded. The leavBsSaf maz(h(E), h({E,1))), sincef,((E,1)) = h((E,1)).
are calledip nodes. In this section we will definedynamic
heuristic function of a node relative to the currenPST,

(b)

Figure 2: A partial solution subtree.

4.2 The Branch-and-Bound Procedure

which yields a more accurate lower boundu@n) thanh(n). In the AND/OR search space, we can calculal@ser bound
For that we introduce the notions a€tive pathitsinsideand  on v(n) of a noden on the active path, by using,(n). In
outside contextand theactive partial subtree addition, we can compute arpper boundn v(n), based on

DEFINITION 5 Given the currentPS7, the active path the portion of the search space belﬁvtha}t has already bgen
AP(t) is the path of assignments from the root/R87 to  €xplored. The upper bound(n) onw(n) is the current min-
the current tip node. Theinside contextn(AP) of AP(t)  imum cost solution subtree of the subproblem rooted at
contains all nodes that were fully evaluated and are chitdre  In Figure 2(b), the upper bound on(B) is ub(B) =

of nodes onAP(t). Theoutside contexbut(AP) of AP(t),  min(oco,v((B,0))) = v((B,0)), and it represents the cur-
contains all nodes that were generated but not yet expandei@nt best cost solution rooted & The lower boundf,(B)

and are children of the nodes oAP(t). Theactive partial On v(B) is calculated as seen in the previous example. If
subtreeAP7 (n) rooted at a noder € AP(t) contains the  fn(B) = ub(B), then searching below= (E, 1) of the ac-

sub-path between and ¢, and all OR children of the AND tive path is guaranteed not to reduge B) and therefore, the
nodes on it. subtree rooted g, 1) can be pruned.

For illustration consider the partial solution subtree ig-F  proposiTION2 (pruning rule) Given the active path
ure 2(b) based on the pseudo-tree in Figure 2(a). The activap(t) of a current PST, for any noden on AP(t), if
pathAP(t) has tip node = (E, 1), namelyitis(A = 1,8 =, (n) > ub(n) then pruning the subtree belaws safe.

1,E = 1). The shaded nodes at the left dfP(¢) are in

in(AP) and their corresponding subtrees have already been A depth-firstAND/OR Branch-and-Boun(hOBB) algo-
explored.out(AP) includes the nodeSC, F'}, which are also  rithm that implements this pruning rule is described in Fig-
in the search frontier. The active partial subtiéP7 (B) is  ure 3. A list called OPEN simulates the recursion stack. The
highlighted. It contains the nodds3, (B,1), E, (E,1)} on  list PATH maintains the current assignment (i.e. the active
AP(t), the OR nodeD from in(AP) and the OR nodd”  path). Parent(n) refers to the predecessor ofin PATH,
from out(AP). which is also the parentin the AND/OR tree,cc denotes the
DEFINITION 6 (dynamic lower bound) Given an active par-  S€t Of successors of a node in the AND/OR tree ang(X;)

tial tree APT (n), thedynamic heuristic evaluation function denotes thi childr_er;of variabl; i%T' Pfrocedure LB¢)
of n, fu(n), is defined recursively as follows: (i) AP7 (n)  COMPUteS the static heuristic estim (@) of v(n).

consists only of a single node and ifn € in(AP) then Step (3) is where the search goes forward and expa_nds alter-
fu(n) = v(n) else fa(n) = h(n); (i) if n = (X;,a) is nating levels of OR and AND nodes. Upon the expansion of
an AND node, having OR childrev'nl T thenfhlén) _ the algorithm successively updates therer bound function

fr(m) for every ancestom of n along the active path, and

maz(h(n), (X;, (X;,a)) + Zf: fr(my)); (i) if n = X; : : -
is an OR node, having an AI{ID childh, then f,(n) — discontinues search belawif, for somem, fj,(m) > ub(m).

maz(h(n), fu(m)) Step (4) is where the value functions are propagated back-
’ ) _ _ ward. This is triggered when a node has an empty set of suc-
We can prove thafy,(n) is alower boundon the optimal  cessors and it typically happens when the node’s descendant
solution cost to the subproblem rootedratnamelyf,(n) < are all evaluated or when it is a dead-end. Clearly,
v(n), and also by definitiorf, (n) > h(n), indicating that the
dynamic lower bound is superior to the static one. THEOREM2 AOBB is sound and complete for COP.



ALGORITHM : AOBB(P, T)
Input: ACOPP = (X,D, F,+, min), pseudo-tred’, root X.
Output: Minimal cost solution toP.
(1) Initialize OPEN by adding OR nod¥, to it; PATH «— ¢;
(2) if (OPEN ==¢)
return v(Xp);
Remove the first node in OPEN; Addn to PATH;
(3)  Tryto prune the subtree below
foreachm € PAT H, wherem is an ancestor of
it (Fn(m) > ub(m))
v(n) « oo; (dead-end)
gotostep (4);
Expandn generating all its successors as follows:
succ(n) «— ¢;
if (n is OR node, denote = X;)
v(n) «— oo;
foreachvaluea € D;
h((X:,a)) — LB(X;, a);
suce(n) «— suce(n) U {(X;,a)};
else(n is AND node, denote: = (X, a))

v(n) « 0; U(Xi, (X;,a)) — Z
foreachvariableY € chr(X;)
h(Y) « LB(Y);
succ(n) — {Y};
Add succ(n) on top of OPEN;
(4)  while succ(n) ==
if (n is OR node)
v(Parent(n)) < v(Parent(n)) + v(n);
else(n is AND node)
v(n) — v(n) + U(X;, (X;,a));

A G

succ(Parent(n)) «— succ(Parent(n)) — {n};
PATH « PATH—{n};
n «— Last(PATH);

(5) gotostep (2);

A — {c; | (Xi € var(c;)) A (var(cj) C PATH)},

v(Parent(n)) «— min(v(Parent(n)), v(n));

Figure 3: AND/OR Branch-and-Bound search (AOBB).

While the time complexity of algorithm AOBB is bounded
by O(n - exp(m)), the size of the AND/OR search space, the giantiation. Specifically;
pruning rule is designed to yield a far better complexity.

5 Specific Lower Bound Heuristics

In this section we describe briefly two general schemes fo
generating static heuristic estimafeg3:), based on the Mini-
Bucket approximation. These schemes are parameterized
the Mini-Bucketi-bound, thus allowing for a controllable
trade-off between heuristic strength and its overhead. [¥¢e a
mention a third scheme which is based on the notioahrefc-
tional arc-consistencgnd is specific to the WCSP model.

5.1 The Mini-Bucket Heuristics

B(F):  [f(F.A) [f(F.C)]

B(D): [f(D.B)], [f(D.C)]

B(C): [f(C.A)] [f(C,B) [14°(C), 47(C)]

B(E): [f(E.B)], [f(E.A)]

B(B): [f(B.A) || 45(B), 4°(B), 45(B)]

B(A): [ II45(A), A7(A), 2%(A), 25(A)]
(b)

Figure 4: Schematic execution of MBE(2).

tree. In this paper we extend the idea to AND/OR search
spaces as well. For that, assume that a COP instBne#h
pseudo-tred’ is being solved by AOBB search, where the
active path ends with some OR nodg. Consider also the
augmenteducket structurg B(X,), ..., B(X,,)} of P, con-
structed along the ordering resulted from a DFS traversal of
For each possible value assignméfjt= x;, thestatic mini-
bucket heuristic estimatk(z;) of the minimal cost solution
rooted atX; can be computed as the sum of the original func-
tions in bucketB(X ;) and the intermediate functiond that
were generated in buckei X} ), whereX}, is a descendant
of X; in T (more details ifKask and Dechter, 20Q)L

Dynamic Mini-Bucket Heuristics This idea can be pushed
one step further. Rather than pre-compiling the mini-bucke
heuristic information, it is possible to generate it dyneafiy,
during search. Therefore, thdynamic mini-bucket heuris-
tic computes a lower bound by the Mini-Bucket algorithm
MBE(:), at each node in the search space, restricted to the
subproblem rooted at and subject to the current partial in-
(z;) is calculated as the sum of the
original and\* functions residing in buckeB(X;), where
A\F’s are computed in bucke®B(X},) of X;'s descendants in
T, conditioned on the current assignment of the active path.

Example 3 Figure 4(b) shows the augmented bucket struc-
ure generated by MBE£2) for the binary COP instance dis-
ayed in Figure 4(a), along the orderingd, B, E,C, D, F);
square brackets denote the choice of partitioning. Assiaie t
during search, the active path of the current partial sauti
subtree is(A = a, B = b) and the tip node is the OR node
C. The static mini-bucket heuristic estimaiéC' = ¢) =
fle,a) + f(e,b) + M (a) + A (c) + AP (c) + AP (b). The dy-
namic mini-bucket heuristic estimat¢C = c), involves the

Mini-Bucket Elimination(MBE) [Dechter and Rish, 2003s
an approximation algorithm designed to avoid the high tim
and space complexity ducket Elimination(BE) [Dechter,
1999, by partitioning large buckets into smaller subsets,
calledmini bucketseach containing at mos{calledi-bound) 52 Directional Arc-Consistency Heuristics

distinct variables. The mini-buckets are then processpd-se
' -~ _We also adapted for the AND/OR search space two other suc-
rately. The algorithm outputs not only a bound on the optlmalCeSSful heur?stics generatoreyersible DACpcountsRDAC)
solution cost, but also the collection of augmented bu(;kets{Mese ueet al, 1999 andmaintaining full DAC(MFDAC)
which form the basis for the heuristics generated. The Com[Larrosga and Schiex 2003which prO\?ed powerful for solv-

lexity is time and spac® ). : . ; : -
P Sta);ic Mini—Bucké)t He(lfr:icggé)s) In the past,[Kask and ing binary Weighted CSPs (details omitted for space regsons

Dechter, 200]L showed that the intermediate functions gen- .

erated by the Mini-Bucket algorithm MBE)(can be used to 6 Experiments

compute a heuristic function, that underestimates themahi  In this section we evaluate empirically the performancewf o
extension of the current assignment in a regular OR searchew AND/OR Branch-and-Bound approach on two classes of

same)\ functions generated in buckelB{ ') and B(D), only
&hat the \'s are now computed dynamically, conditioned on
the current partial assignmetid = a, B = b).



Network s-AOMB s-AOMB s-AOMB s-AOMB AORDAC Network (n,d,c,w*,h) BBMFDAC AOMFDAC
(nd,ct) s-BBMB s-BBMB s-BBMB s-BBMB BBRDAC time (sec) nodes [time (sec) nodes
[w*,h] d-AOMB d-AOMB d-AOMB d-AOMB AOMFDAC CELAR6-SUBO| (16,44,57,7,10) 2.78 1,871 1.98 435
connectivity d-BBMB d-BBMB d-BBMB d-BBMB BBMFDAC CELARG6-SUB1| (14,44,75,9,11)| 2420.93 364,986 981.98 180,784
i=2 i=4 i=6 i=8 CELAR6-SUB2| (16,44,89,10,13) 8801.12 19,544,1821138.87 175,377
time nodeq time nodeg time node§ time nodeg time nodeg CELAR6-SUB3|(18,44,106,10,13)38889.20 91,168,8964028.59 846,986
(20,5,100,0.7 2.4M (11557 2.5M| 15.49 408K 6.91 126K| 21.70 441K CELARG6-SUB4| (22,44,131,11,16)84478.40 6,955,039 47115.40 4,643,229
[12,15] 6.3M [179.34 7.6M|127.77 6.5M| 45.76 2.2M| 24.74 1.3M
medium 7443 90K | 51.19 6.9K[104.08 751(169.30 101| 9.99 20K
124.45 523K| 80.79 34K|140.10 3.3K|176.33 537| 8.75 21.3K . H
(30,5,90,0.7), 2.8M [105.77 2.2M| 9.84 262K| 2.71 28K | 78.50 1.3M Table 2 ReSUItS on CELAR6 SUbInStanceS
[11,16] 6M [180.00 7.5M| 68.90 3.3M| 5.64 230K| 78.24 4.2M
low 7294 82K| 31.85 4.3K| 63.07 548 94.95 111|10.72 22.2K
104.15 348K| 69.49 22K| 90.70 1.7K[123.42 265| 8.79 31.4K] each C|ass of algonthmsy denoted her@{BBM B’ d-BBM B’
(50,5,80,0.7)| 67.53 1.4M| 1.80 57K| 0.12 26K| 0.62 356[ 28.90 691K .
[8,16] 5M |145.39 4.3M| 24.47 804K 1.58 36K |155.58 3.9M BBRDAC and BBMFDAC, respectively.
sparse 7.91 186Kl 1.17 430| 0.95 87 | 2.31 60 | 1.48 85K
63.50 295K| 1.83 1K | 094 112 2.34 69 | 1.49 14K Random Blnary Networks

Our random binary WCSP class is characterized by a five
parameter mode{n, d, c, t,w) [Larrosa and Schiex, 2003
wheren is the number of variableg, the domain sizeg the

Lo g umber of constraints, artdhe constraintightnesslefined as
optimization problems. Weighted CSP. (WC.SP) and the Mosphe ratio of forbidden tuples. The costs of inconsistentesip
ProbabLe depla%atlon (I\/lllPE) pl)roblem in belief nen(;v&rkﬁ are uniformly randomly distributed between 1 and

Weighted CSHKBistarelli et al, 1997; Larrosa and Schiex, ; :
2009 extends the classic CSP formalism with so-cabedt Table 1 shows results for experiments with three problem

traintswhich . tive int s o forbidd classes containing instances with medium, low and very low
constraintSwnich assign positive Integer CoslS 1o T0rbItden ¢,y pactivity, We chose a maximum penalty cosvf 10 and

tuples (allowed tuples have cost 0). The goalis to find a COMzet the constraint tightness to 70% in order to obtain over-

plete assignment W.'th minimum agg_regated cost. The rnOOI‘?jonstrained problems. For each problem class we generated
has numerous applications in domains suckeasurce allo- 50 jnstances and the time limit was set to 180 seconds. The
cation combinatorial auctionsr blOl_nformat|cs . columns are indexed by thiebound of the mini-bucket heuris-
Belief NetworkdPearl, 198Bprovide a formalism for rea- e~ \when comparing AND/OR versus OR algorithms we
soning under conditions of uncertainty. A belief networkre  hice 4 considerable improvement in terms of CPU time and
resents a joint probability distribution over the variablef ., mper of nodes visited, especially for problems with lowt an
interest. A f‘_J_”C“C?” (_)f the graph|qal model e_ncocdmd|-_ very low connectivity. This observation verifies the thebey
tional probability Q|str|but|omf avanab[e givenits parentsin .. e a relatively sparse problem is likely to produce a shal
the graph (also viewed as a cost function were each tuple 3, pseudo-tree, which in turn enhances the performance of
associated a real cost between 0 and 1). The MPE problegie AND/OR algorithms. In terms of the quality of the heuris-

is the task of finding a complete assignment with maximumjes  \ve also observe that the static mini-buckets with a rel
probability that is consistent with the evidence. It appear  ely largei-bound represent the best choice. However, if

applications such apeech recognitionr medical diagnosis 5146 i-hounds are not possible, dynamic mini-buckets with
The pseudo-treavas created as suggested@ayardo and  sma|li-bounds are preferred, especially for sparse problems.
Miranker, 199%, by a DFS traversal of the induced graph. The o medium and low connected problems, MFDAC proves to

latter was computed using then-fill heuristic. Allcompeting  pe cost effective with respect to the other heuristics g&nes.
algorithms were restricted to a static variable orderisglted

from a DFS traversal of the pseudo-tree. We report the ageragRadio Link Frequency Assignment Problem (RLFAP)
effort, as CPU time (in seconds) and number of visited nodeRLFAP is a communication problem where the goal is to as-
(AND nodes only for the AND/OR algorithms), required for sign frequencies to a set of radio links in such a way that all
proving optimality of the solution. For all test instances w links may operate together without noticeable interfeesnc
record the number of variables (n), domain size (d), numbefCabonet al, 1999. It can be naturally casted as a binary
of functions (c), induced width (w*) and height of the pseudo WCSP where each forbidden tuple has an associated penalty
tree (h). A"-" indicates that a time limit was exceeded by thecost. Table 2 compares algorithms BBMFDAC and AOMF-
respective algorithm. The best results are highlighted. DAC for solving 5 publicly available RLFAP subinstances
called CELAR6- SUB; (i = 0,...,4). We can see that the
6.1 Weighted CSP AND/OR approach is beneficial for this domain as well. In

For this domain we experimented with random binary WCSPCELARG- SUB,, the hardest instance, AOMFDAC causes a

problems as well as real-world benchmarks. We considef-PY speed up of 1.8, whereas@ELARG- SUB; the speed
four classes of AND/OR Branch-and-Bound (AOBB) algo- UP IS @s much as 9.6. We also compared AOMFDAC against

rithms, each using a specific heuristics generator, asiiello BTD; a recent algorithm introduced {Jegou and Terrioux,
Classess-AOMB/d-AOMB are guided by static/dynamic 2004. BTD solves the MAX-CSP version G@ELAR6- SUB,
mini-bucket heuristics, AORDAC uses RDAC based heuris(I-€: 0/1 penalty costs) in about 123,000 sec., whereas AOMF
tics, and AOMFDAC maintains full DAC. For comparison, DAC proves optimality in only 2,574 sec. The performance of

we include results obtained with the classic OR version of€ Mini-bucket based algorithms was quite poor on this do-
main, due to the very low quality of the heuristic estimates

2All our experiments were done on a 2.4GHz Pentium IV with resulted from approximating subproblems with very large do
1GB of RAM, running Windows XP mains (up to 44 values).

Table 1: Results on random binary WCSP instances.



Network s-AOMB s-AOMB s-AOMB s-AOMB . H
(ndw-h) | oBBMB | oBBMB | SBBMB | S.BBMB Related Work:  AOBB is related to the Branch-and-Bound
d-AOMB | d-AOMB | d-AOMB | d-AOMB method proposed bjKanal and Kumar, 1948for acyclic
d-BBMB d-BBMB d-BBMB d-BBMB
=2 i3 4 s AND/OR graphs and game trees. More recer{ﬂwrosa_et
| lme nodeg tme nodey time nodey ime _node al., 2003 extended pseudo-tree seaf¢imeuder and Quinn,
(35100,4,15)| -  26M |233.86 6.9M| 0.47 497q 0.81 4,944 1989 to optimization tasks in order to boost the Russian Doll
86.38 15K| 34.45 1,424 1.69 35302 35 i i 1mi i
o6 83K atos 5110 198 368|915 365 search for s_olvmg Weighted (_ZSPS. The optimization method
Barley ~85M| - 7.6M|46.22 807K 0.56 9.6K developed in[Jegou and Terrioux, 2004an also be inter-
(48,67,7,17) - 16M - 18M - 17™M - 14M H HE
T 7ok l135.97 23k| 1255 o6y|asos sor preted_ as an AND/OR _search graph algorithm, however it is
- 22M| - 1K |34608 76K| - 86K not a linear space algorithm.
Muninl 57.36 1.2M| 12.08 260K| 7.20 172K| 1.66 43K
(189,21,11,24 - 8.5M - 9.2M - 9.9M - 8.3K
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