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Abstract

Usual numerical learning methods are primarily
concerned with finding a good numerical fit to data
and often make predictions that do not correspond
to qualitative laws in the domain of modelling or
expert intuition. In contrast, the idea of Q2 learn-
ing is to induce qualitative constraints from training
data, and use the constraints to guide numerical re-
gression. The resulting numerical predictions are
consistent with a learned qualitative model which
is beneficial in terms of explanation of phenomena
in the modelled domain, and can also improve nu-
merical accuracy. This paper proposes a method for
combining the learning of qualitative constraints
with an arbitrary numerical learner and explores
the accuracy and explanation benefits of learning
monotonic qualitative constraints in a number of
domains. We show that Q2 learning can correct
for errors caused by the bias of the learning algo-
rithm and discuss the potentials of similar hierar-
chical learning schemes.

1 Introduction
Learning understandable models is one of the main goals of
machine learning, but has been recently overshadowed by
methods that mainly concentrate on classification or regres-
sion accuracy. Less effort has been devoted to improving
the explanation strength of machine learning methods. In-
duced models are often too complex and overly detailed to
provide an understandable explanation of phenomena in a
modelled domain. This is particularly notable with methods
that achieve excellent accuracy by constructing ensembles of
classifiers (overview in [Dietterich, 1998]). Another problem,
illustrated and discussed in [Šuc et al., 2004], is that state-of-
the-art numerical machine learning methods often make pre-
dictions that a knowledgeable user finds obviously incorrect
– not so much in numerical, but in qualitative terms. Such
qualitative errors of numerical predictors are undesirable par-
ticularly because they make numerical results difficult to in-
terpret. The underlying mechanism in the domain is usually
best explained in qualitative terms. However, this is obscured
by qualitative errors in numerical predictions.

Qualitatively faithful quantitative learning, called Q2

learning for short, was proposed [Šuc et al., 2004] to rectify
the qualitative problems of numerical learning. Q2 learning
combines qualitative and numerical learning to give numer-
ical predictions that both fit the data well and are consistent
with an induced qualitative model. The qualitative consis-
tency is beneficial in terms of explanation of phenomena in a
modelled domain. Quite surprisingly, a case study with Q2

learning shows that induced qualitative constraints can also
improve numerical accuracy. This paper extends the previous
work in several directions.

One contribution of this paper is a Q2 learning scheme that
combines learning of monotonic qualitative constraints with
an arbitrary numerical learner and enables us to study accu-
racy benefits of the induced constraints. Qualitative learning
has been previously used in a number of applications that are
mainly tied to dynamic systems and control. In these applica-
tions, advantages in terms of explanation and in terms of the
control performance of the induced qualitative models were
observed. Since these models define only constraints on a
class variable, a direct assessment of their accuracy benefits
was previously not possible. The second contribution is an
empirical evaluation in a number of domains and a demon-
stration that such regression, guided by induced qualitative
constraints, often increases numerical accuracy.

We analyze the reasons for these accuracy improvements
and show that Q2 learning corrects for errors caused by the
bias of a learner. In this respect Q2 learning is similar to
ensembles of classifiers, in particular approaches that com-
bine classifiers constructed by different learning algorithms,
e.g. combining instance and model-based learning [Quin-
lan, 1993] or stacking and its variations [Wolpert, 1992;
Gama and Brazdil, 2000; Todorovski and Džeroski, 2003 ].
An important distinction of Q2 learning is the (qualitative)
consistency of models at different levels of abstraction. We
discuss advantages of similar hierarchical learning schemes
and we demonstrate that explanation improvements do not
necessarily come at the price of lower accuracy.

In Section 2 we describe the Q2 learning scheme proposed
in this paper. The elements and the details of Q2 learning
are described in Section 3. Then we give experimental results
in various domains and study accuracy improvements using
bias-variance decomposition. Section 5 discusses results and
benefits of Q2 learning, and gives directions for future work.



2 Q2 Learning with QUIN and Qfilter
The idea of Q2 learning is to combine qualitative and numer-
ical learning to find a regression function that fits the data
well and is consistent with an induced qualitative model. In
this paper, Q2 learning consists of two stages:

1. Program QUIN 1 (described in Section 3.1) induces a
qualitative tree from numerical training examples. Qual-
itative trees are similar to decision trees, but have mono-
tonic qualitative constraints in their leaves.

2. Algorithm Qfilter (described in Section 3.2) uses the in-
duced qualitative tree, plus training examples, plus class
predictions of an arbitrary numerical learner, to alter the
predictions to respect the induced qualitative tree. Qfil-
ter is an optimization procedure that finds the minimal
quadratic changes in class values that achieve consis-
tency with the qualitative tree. In our experiments, the
numerical learners, also called base-learners, are regres-
sion trees, model trees and locally weighted regression.

In this paper, a Q2 learner consists of a qualitative con-
straints learner and a numerical base-learner, and can be de-
noted by Q2(qual-learner, base-learner). We abbreviate the
common case Q2(QUIN, base-learner) simply as Q2base-
learner. This learning scheme is particulary interesting be-
cause base-learner’s predictions are changed optimally in the
sense of squared error. Therefore, the differences between
base-learner’s predictions and Q2 predictions come just from
induced qualitative constraints.

3 Elements of Q2 Learning

3.1 Monotonic Qualitative Constraints,
Qualitative Trees and QUIN

Monotonic qualitative constraints (MQCs) are a kind of
monotonicity constraints that are widely used in the field
of qualitative reasoning and are a generalization of mono-
tonic function constraint used in QSIM [Kuipers, 1994]. A
simple example of an MQC is: Y = M +(X). This says
that Y is monotonically increasing in its dependance on X ,
i.e. whenever X increases, Y also increases. In general,
MQCs can have more than one argument. For example,
Z = M+,−(X, Y ) says that Z is monotonically increasing
in X and monotonically decreasing in Y . If both X and Y
increase, then according to this constraint, Z may increase,
decrease or stay unchanged. In such a case, an MQC cannot
make an unambiguous prediction of the qualitative change in
Z .

Qualitative trees are similar to decision trees, but have
monotonic qualitative constraints in the leaves. Figure 1 gives
an example of a simple qualitative tree. This qualitative tree
is a qualitative model of the function Y = L sin(Φ), where
0 ≤ Φ ≤ π and L > 0. It describes how Y qualitatively de-
pends on attributes Φ and L. The tree partitions the attribute
space into two regions that correspond to the two leaves of

1QUIN with a graphical user interface, Qfilter and lo-
cally weighted regression as a base-learner are available at
http://ai.fri.uni-lj.si/dorian/q2/quin.htm.
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Figure 1: A qualitative tree induced from examples for the
function Y = L sin(Φ), where 0 ≤ Φ ≤ π and L > 0. The
right leaf, which applies when Φ > π/2, says that Y is mono-
tonically decreasing in Φ and monotonically increasing in L.
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Figure 2: Achieving consistency with MQC C = M +(A):
class values ci (denoted by circles) are changed into c i + di

(denoted by crosses) by minimizing the sum of squared
changes di. The arrows denote the class changes di.

the tree. Note that a simple qualitative tree can describe a rel-
atively complicated nonlinear function. Such qualitative trees
are induced from numerical data by learning program QUIN
[Šuc, 2003].

QUIN constructs a qualitative tree in a top-down greedy
fashion, similar to decision or regression tree learning algo-
rithms. The split selection criterion is based on the minimum
description length principle and takes into account the encod-
ing complexity of the subtrees, the consistency of the MQCs
in the subtrees with the corresponding data, and the “ambi-
guity” of the MQCs with respect to the data (the more unam-
biguous qualitative predictions the MQC can make, the bet-
ter).

3.2 Qfilter Algorithm
Qfilter handles each leaf of a qualitative tree separately. It
first splits the examples according to the qualitative tree and
then changes class values to achieve consistency with MQCs
in corresponding leaves.

Let us first observe a simple example in Figure 2. We have
eight examples (ai, ci), i=0, 1, ..., 7. Class C has values ci

and attribute A has values ai=i. The examples are not con-
sistent with the given MQC C = M+(A), because the MQC
requires that ci+1 > ci which is violated at i = 1 and i = 4.

To achieve consistency with C = M +(A), class values
should be changed into ci + di, where the unknown param-
eter di denotes the change in the i-th class value. Class
changes di are constrained by MQC-imposed inequalities:
ci+1 + di+1 > ci + di where i = 0, 1, ..., 6. These inequal-
ities can be formulated in matrix notation as A d > b, where
d is a vector of unknown parameters di, vector b has ele-



ments bi = ci − ci+i, and matrix A has elements ai,i = −1,
ai,i+1 = 1 and zeros elsewhere. In general, b and A depend
on the MQC-imposed inequalities, which in turn depend on
the MQC and on the ordering of attributes’ values.

Therefore, finding minimal quadratic changes in class val-
ues that achieve consistency with a given MQC can be posed
as the quadratic programming optimization problem: find
vector d that minimizes the criterion function dT H d such that
A d > b. In the above formulation matrix H is the identity
matrix. In general H can be changed to differently penalize
the changes in class values as described in Section 3.3.

Since the criterion function with diagonal matrix H is a
convex function, and because the linear constraints A d > b
define a convex hull, a local minimum of the criterion func-
tion is a globally optimal solution. A more elaborate descrip-
tion of Qfilter, defining also the appropriate ordering of class
values when more than one attributes are used in an MQC,
is given in [Šuc and Bratko, 2003]. In previous work Qfilter
was used with qualitative trees derived manually from domain
knowledge. Here we use it in a different and a more challeng-
ing context, where qualitative trees are induced from data.

3.3 Qfilter for Q2 Learning
Qfilter is supplied with a qualitative tree, training exam-
ples with their class values and test examples with the base-
learner’s class predictions. Qfilter then adjusts the class val-
ues of the training and the test examples to achieve consis-
tency with the qualitative tree.

One improvement of Qfilter is to use the base-learner’s
confidence estimates in its predictions. In this case, Qfilter
makes smaller adjustments to the class values with higher
confidences at the expense of larger changes of class val-
ues that have lower confidences. This is achieved by chang-
ing the quadratic programming criterion function. Namely,
matrix H is changed from the identity to a diagonal matrix
with elements hi,i = wi. Weight wi is computed from the
base-learner’s confidence estimate in the i-th class value. Of
course, the computation of weight wi depends on a type and
a scale of confidence estimates, but would generally be larger
if a numerical predictor is more confident in the i-th class
prediction.

Based on this idea, we used a heuristic weighting function:

wi = 1+sign(µ−ci)(1−exp (−(ci−µ)2

2σ )), where ci denotes
base-learner’s confidence in the class prediction of the i-th
test example, and µ and σ denote the mean and the standard
deviation of base-learner’s confidences over all test examples.
Therefore, the weight of a test example is between zero and
two. The weight of all training examples is set to two. In
experiments with locally weighted regression, confidence es-
timates ci were set to the sizes of confidence intervals. Model
and regression trees do not provide similar confidence esti-
mates. For this reason, confidence estimates of all test exam-
ples were set to one.

4 Empirical Evaluation
4.1 Experimental Details
Here we evaluate accuracy benefits of Q2 learning with var-
ious numerical base-learners. Given a set of training exam-

Figure 3: A planar two-link, two-joint robot arm. The first
link is extendible with length L1 ranging from 2 to 10.

ples, a base-learner is used to predict class values of test ex-
amples. The same training examples are used for QUIN to
induce a qualitative tree. The qualitative tree, the training
and the test examples with base-learner’s class predictions
are then used by Qfilter to give predictions that are consis-
tent with the qualitative tree. This procedure is then repeated
(for example, ten times with ten-fold cross-validation) with
different training and test examples.

In the experiments we compare root relative squared er-
rors (RREs for short) of the base-learner and the Q2 learner.
Here, the RRE is the root mean squared error normalized by
the root mean squared error of average class value. The base-
learners in our study are regression and model trees [Breiman
et al., 1984; Quinlan, 1993], and locally weighted regres-
sion [Atkeson et al., 1997]. The first two base-learners were
chosen because they are well-established numerical learners
that provide a symbolical model. Locally weighted regres-
sion (LWR for short) does not provide a model explaining
a studied domain, but often gives more accurate predictions
than model or regression trees. With such base-learners, the
explanation benefits of Q2 learning are even more obvious.
In experiments we used our implementations of these base-
learners. Our regression and model trees use cost-complexity
pruning [Breiman et al., 1984] and smoothing. LWR uses
Gaussian weighting function with local optimization to set
the kernel size at each prediction point. We also give RREs of
M5 model trees [Quinlan, 1993] and its Weka implementation
called M5Prime [Witten and Wang, 1997] to show that we are
not comparing Q2 to base-learners that perform poorly. With
all learners, default values of their parameters were used.

We analyze the reasons for the Q2 accuracy improvements
using bias-variance decomposition [Geman et al., 1992] and
draw some interesting conclusions.

4.2 Robot Arm Domain
Here we describe experiments in the domain of a planar two-
link, two-joint robot arm depicted in Figure 3. The angle in
the shoulder joint is denoted by Φ1 and the angle in the elbow
joint is denoted by Φ2. Angle Φ1 is between zero and π,
while Φ2 is between −π/2 and π/2. The first link, i.e. the
link from the shoulder to the elbow joint, is extendible with
length L1 ranging from 2 to 10. The second link has fixed
length 5. Y-coordinates of the first and the second link ends
are denoted by Y1 and Y2 respectively. We experimented with
four learning problems that differ in class variable (Y1 or Y2)
and the attributes used for learning. These learning problems
were defined to pose increasingly more difficult problems to
Q2 learning.



Figure 4: Comparing RREs of base-learners and Q2 learners in learning problems A, B, C and D with 0%, 5% and 10% noise.

Table 1: RREs of LWR, model (Mt) and regression trees (Rt)
and the corresponding Q2 learners with no noise. The last
column gives RREs of M5Prime.

LWR Q2LWR Mt Q2Mt Rt Q2Rt M5Pr
A 0.187 0.145 0.264 0.238 0.327 0.293 0.512
B 0.196 0.139 0.159 0.146 0.318 0.263 0.462
C 0.327 0.300 0.336 0.324 0.434 0.378 0.489
D 0.403 0.362 0.366 0.363 0.542 0.448 0.553

The easiest learning problem, called problem A, is to pre-
dict the y-coordinate of the first link end given its length and
angle, i.e. learning Y1 = f(L1, Φ1). Other learning problems
require predicting the y-coordinate of the second link end us-
ing different attributes. In learning problems B and C we
helped the learners with a derived attribute Φsum = Φ1+Φ2,
i.e. the deflection of the second link from the horizontal.
Problem C is to learn Y2 = f(L1, Φ1, Φ2, Φsum), while in
problem B we also used Y1 as an attribute. Problem D re-
quires learning Y2 = f(L1, Φ1, Φ2). These problems pose
increasingly more difficult problems to Q2 learning. The eas-
iest is problem A, because a correct qualitative model is a
simple qualitative tree, given also in Figure 1. Learning prob-
lem D is the most difficult for Q2, since a correct qualitative
model cannot be expressed by a qualitative tree.

To compare accuracy of different base-learners and Q 2

learning we generated examples where angles Φ1 and Φ2

and link length L1 were randomly generated from a uniform
distribution. We experimented with different percentages of
Gaussian noise in the class variable. Noise percentage p%
means that the standard deviation of noise is p × dc/100,
where dc denotes the difference between maximal and min-
imal class value. We used 100 training examples and mea-
sured accuracy on separate test sets of 200 examples with-
out noise. All results are averages on 20 randomly generated
training and test sets.

Table 1 gives RREs of LWR, model and regression trees
and Q2 learning that uses these base-learners. For compar-
ison RREs of M5Prime model trees are also given. Results
with zero, 5%, and 10% noise are given in Figure 4. In all of
the learning problems and with all noise levels, Q2 improves
the average RREs of all base-learners. These improvements
in accuracy depend on the base-learner and the learning prob-
lem. Generally, the improvements are the greatest with re-
gression trees and the smallest with model trees. It is notable

that in general our base-learners are much more accurate than
M5Prime on these learning problems. Although we are here
not interested in comparison of different base-learners, it is
good to know that with Q2 we are not improving the base-
learners that perform poorly.

The significance of the Q2 accuracy improvements for each
learning problem was tested using the resampled paired t test.
Four learning problems × three base-learners × three noise
levels gives 36 comparisons of RRE of a base-learner and a
corresponding Q2 learner. At 5% significance level, the Q2

learners are significantly better in 33 comparisons and about
the same in only three comparisons. The comparisons where
differences in RRE are not significant correspond to model
trees on learning problem D with all three noise levels.

Bias-Variance Decomposition
To understand the reasons for the Q2 accuracy improvements
we used bias-variance decomposition [Geman et al., 1992;
Domingos, 2000], which has proved to be a very useful
tool for understanding machine learning algorithms. Bias-
variance decomposition in regression states that the expected
squared error of a learner on test example x is the sum of the
irreducible noise N(x), the bias B(x) and the variance V (x).
The bias B(x) of the learner on an example x is the squared
difference between the true value and the mean prediction on
x over all possible training sets. Here defined bias B(x) is in
the literature called also squared bias, but we use the notation
from [Domingos, 2000] and call it bias. The variance V (x) is
the expected value of the squared difference between the true
value and the mean prediction on x. The bias measures the
systematic error incurred by a learner, and the variance mea-
sures the error incurred by its fluctuations around the central
tendency in response to different training sets. Irreducible
noise is the error of the optimal (Bayes) model and is in gen-
eral very difficult to estimate. However, we are here using an
artificial learning problem and can therefore measure the bias
and variance by directly simulating the definitions.

We used 100 training sets of size 100, generated as in the
previous experiment and measured the average bias and aver-
age variance on a test set of 810 equidistant data points. We
refer to these averages over different training sets and differ-
ent test examples simply as bias and variance. Comparing the
base-learners we noticed that regression trees have the highest
variance. This is in accordance with their complexity – they
usually had more than 20 leaves. Model trees are smaller and
have the smallest variance when no noise, but with increas-



Table 2: Description of data sets and average 10-fold cross-validation root relative squared errors (RREs) of base-learners and
the corresponding Q2 learners. The last column gives RREs of M5 where this is available, and M5Prime otherwise.

Data set Cases Attributes LWR Q2LWR Mod.tr. Q2Mod.tr. Reg.tr. Q2Reg.tr. M5
AutoMpg 398 5/8 0.361 0.380 0.374 0.386 0.459 0.405 0.383
AutoPrice 159 16/16 0.380 0.346 0.523 0.364 0.435 0.381 0.402
Housing 506 12/13 0.373 0.363 0.422 0.358 0.532 0.454 0.431

MachineCpu 209 6/6 0.353 0.317 0.370 0.334 0.460 0.377 0.414
Servo 167 2/4 0.478 0.457 0.588 0.584 0.508 0.504 0.536

CraneSkill1 354 3/3 0.142 0.065 0.194 0.086 0.091 0.049 0.247
CraneSkill2 618 3/3 0.249 0.169 0.190 0.159 0.191 0.165 0.215
AntiSway 200 4/4 0.414 0.157 0.319 0.250 0.193 0.165 0.412

ing noise the variance increases most notably. Comparing Q 2

learners to the corresponding base-learners we noticed that
Q2 always notably reduces the bias of the base-learners. This
happens in all four learning problems, with all three base-
learners and different noise levels. For example, in problem
D with no noise, Q2 reduces bias and variance of LWR from
3.85 and 2.57 to 2.13 and 1.99, respectively. Q 2 always no-
tably decreases the variance of regression trees, but some-
times increases the variance of LWR and model trees. The
base-learners, used here, have a bias towards linear models. It
seems that Q2, with less restrictive monotonicity constraints,
reduces their bias, but does not considerably increase the vari-
ance.

Q2 learning combines hypotheses of two different learning
algorithms, i.e. a qualitative learner and a numerical learner.
In this respect it is similar to ensembles of classifiers and in
particular approaches that combine classifiers constructed by
different learning algorithms, as for example stacking and its
variations. Such methods improve accuracy mainly by reduc-
ing the error due to the bias of a learner. This is the conse-
quence of combining hypotheses that make uncorrelated er-
rors [Dietterich, 1998]. We believe that such uncorrelated
errors lead to bias reductions also in the case of Q2 learning.
It should be noted that, although Q2 predictions are consis-
tent with an induced qualitative model, they combine both
the base-learner’s predictions, and the qualitative model.

4.3 UCI and Dynamic Domains
To explore the potentials of learning similar constraints with
a wider range of learning problems we describe experiments
with eight data sets. The first five are the smallest regres-
sion data sets from the UCI repository [Blake and Merz,
1998] with the majority of continuous attributes. A reason
for choosing these data sets is also that Quinlan [1993] gives
results of M5 and several other regression methods on these
data sets, which enables a better comparison of Q2 to other
methods. These data sets are AutoMpg, AutoPrice, Housing,
MachineCpu and Servo.

The other three data sets are from dynamic domains where
QUIN has typically been applied so far [Šuc, 2003; Šuc and
Bratko, 2002]. It should be noted that in these domains the
primary objective was to explain the underlying control skill
and to use the induced qualitative models to control a dy-
namic system. Until now, it was not possible to measure their
numerical accuracy or compare it to other learning methods.
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Figure 5: Qualitative trees induced from data sets Servo and
AutoPrice. MQCs in leaves of each qualitative tree give
monotonic constraints on the class variable.

Data sets CraneSkill1 and CraneSkill2 are the logged data of
two experienced human operators controlling a crane simula-
tor. Such control traces are typically used to reconstruct the
underlying operator’s control skill. The learning task is to
predict the velocity of a crane trolley given the position of the
trolley, rope angle and its velocity. Data set AntiSway was
used in reverse-engineering an industrial gantry crane con-
troller. This so-called anti-sway crane is used in metallurgi-
cal companies to reduce the swing of the load and increase
the productivity of transportation of slabs. The learning task
is to learn the control force applied to the trolley, given the
desired and the current trolley velocity and the position and
velocity of the load relative to the trolley.

In all experiments, qualitative trees were considerably sim-
pler than other induced models. Figure 5 gives examples of
qualitative trees induced in data sets Servo and AutoPrice.
These qualitative trees are considerably simpler than model
trees. In Servo, M5Prime induces a model tree with eleven
leaves, with all four attributes appearing in all eleven linear
models. In AutoPrice, M5Prime induces a model tree with
ten leaves, with at least ten attributes in each linear model.

Ten-fold cross-validation results are given Table 2. For



Figure 6: Comparison of RREs of base-learners and corresponding Q 2 learners. Disjoint columns give RREs of M5 model trees
where available, and M5Prime otherwise.

each data set we give, respectively, the numbers of cases,
numbers of continuous and all attributes, RREs of base-
learners and RREs of corresponding Q2 learners. The last
column gives published RREs of M5 model trees [Quinlan,
1993] on UCI data sets, and RREs of M5Prime for others.
These results are presented also in Figure 6.

A general observation is that Q2 improves RREs of all three
base-learners in seven out of eight data sets. Q2 is worse just
in AutoMpg with LWR and model trees. Smaller root rel-
ative squared errors in the last three data sets do not imply
that these learning problems are easier, but are just the con-
sequence of the normalization of RREs with large class vari-
ances.

The significance of the Q2 accuracy improvements was
tested using the 10-fold cross-validated paired t test. Eight
data sets × three base-learners gives 24 comparisons of RRE
of a base-learner and the corresponding Q2 learner. At 5%
significance level, the Q2 learners are significantly better in
18 comparisons and about the same in six comparisons. The
differences are not significant in AutoMPG with all three
base-learners and with one base-learner in AutoPrice, Hous-
ing and CraneSkill2. Q2 is never significantly worse.

5 Discussion and Conclusions
The goal of this paper is to explore the accuracy and expla-
nation benefits of Q2 learning that were observed also in pre-
vious work [Šuc et al., 2004]. We extend the empirical eval-
uation to a number of domains and analyze the results. The
proposed Q2 learning scheme, makes it possible to combine
learning of qualitative constraints with an arbitrary numerical
learner. It uses algorithm Qfilter, which is particulary interest-
ing since the base-learner predictions are optimally changed
(in the sense of squared error) to be consistent with an in-
duced qualitative tree. Therefore, the accuracy improvements
of Q2 with respect to a base-learner are only due to the in-
duced qualitative trees.

Q2 learning as a hierarchical learning scheme
Q2 learning, as presented in this paper, can be seen as a hi-
erarchical learning scheme, where a learner at a higher level
induces a hypothesis hn that guides the learner at a lower
level. At higher levels of the scheme more abstract concepts
(or more general constraints) are learned. In this way, hn pro-

vides inductive bias for learning of hypothesis hn−1. In the
case of Q2 learning, h1 is a qualitative tree induced by QUIN
and h0 are numerical predictions found by Qfilter. Similar
hierarchical learning schemes were proposed either to im-
prove the generalization of a single learning task, for example
Stacked Generalization [Wolpert, 1992] and Cascade Gener-
alization [Gama and Brazdil, 2000], or to facilitate the learn-
ing of several tasks in a hierarchy [Stone and Veloso, 2000].
Q2 learning has two distinctive properties. First, the hypothe-
ses in the hierarchy are consistent and described at different
levels of abstraction. This is important for the explanation
of the phenomena in the modelled domain. Second, the hy-
potheses are learned in the general-to-specific order, which
can reduce the search space, and can consequently improve
also the generalization properties.

Explanation and Accuracy Benefits of Q2 Learning
Q2 predictions are consistent with a qualitative model that
provides an explanation at a higher level of abstraction. In
this respect Q2 learning is different than other methods for
combining classifiers. Qualitative consistency enables Q2

to improve numerical accuracy by combining hypotheses in-
duced by different learners, but retain a simple explanation.

Benefits of qualitative learning in terms of providing sim-
ple and understandable explanations in various domains, in-
cluding CraneSkill1, CraneSkill2 and AntiSway are discussed
in [Šuc, 2003; Šuc and Bratko, 2002]. For example, qualita-
tive trees induced in CraneSkill1 and CraneSkill2 have only
a few leaves and were, because of their simplicity, preferred
over the previous approaches for skill reconstruction, which
typically learned regression or model trees with more than
twenty leaves. Although the induced qualitative trees are
simple, they reveal some surprising and nontrivial aspect of
the human skill. Simple and understandable models were in-
duced also in other domains studied in this paper. For exam-
ple, in robot arm domain (problems A, B and C) QUIN usu-
ally induced qualitative trees that are very close to the correct
qualitative models even with high percentage of noise. Sim-
ple qualitative trees were induced also from UCI data sets (see
Figure 5).

In the presented experiments, Q2 typically improved ac-
curacy of the three base-learners. We compared root rela-
tive squared errors, but similar improvements were observed
also with mean absolute errors. We experimented also with



k-nearest-neighbor algorithm as a base-learner. It generally
performed worse than the other three base-learners and the
accuracy improvements of Q2 learning were even more obvi-
ous.

Bias-variance decomposition in the robot arm domain
shows that the accuracy improvements stem mainly from cor-
recting for errors caused by the bias of a base-learner. Experi-
ments in the previous section suggest that combining “mono-
tonic regularities” inductive bias with inductive bias of other
learners is beneficial in a wide range of domains, also in do-
mains when this might be less expected. As noted in Sec-
tion 4.2, Q2 learning is similar to ensembles of classifiers,
in particular approaches that combine classifiers constructed
by different learning algorithms. Although, the accuracy im-
provements of Q2 are not comparable to those achieved by
ensembles of classifiers, Q2 has advantages in terms of ex-
planation.

Limitations and Future Work
Limitations of Q2 learning presented in this paper are mainly
tied to the current implementation of QUIN. Because of its
complexity it is difficult to apply it to very large data sets.
Incorporating sampling techniques with qualitative learning
might be beneficial. Another idea for future work is to assess
and use the quality of the induced MQCs in leaves, for exam-
ple on a separate set of examples. The error of a Q2 learner
could be used to prune a qualitative tree. This might be use-
ful also in data sets such as AutoMpg, where Q2 otherwise
has problems. By considering only leaves where MQCs sig-
nificantly improves a base-learner, a qualitative tree could be
transformed into a set of qualitative association rules.

An interesting direction for future work is to explore the
possibilities of the proposed hierarchical learning scheme
with several layers of constrains, describing hypotheses at
different levels of abstraction. Experimental results with Q2

learning suggest that such scheme can be used to combine
classifiers and improve accuracy, and, at the same time pro-
vide an understandable explanation of the phenomena in a
modelled domain.
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