1

The CompsETAIlgorithm for Subset Selection

Yaniv Hamo and Shaul Markovitch
{hamo,shaul@cs.technion.ac.il
Computer Science Department, Technion, Haifa 32000, Israel

Abstract

Subset selection problems are relevant in many do-
mains. Unfortunately, their combinatorial nature
prohibits solving them optimally in most cases. Lo-
cal search algorithms have been applied to subset
selection with varying degrees of success. This
work present€COMPSET, a general algorithm for
subset selection that invokes an existing local
search algorithm from a random subset and its com-
plementary set, exchanging information between
the two runs to help identify wrong moves. Prelimi-
nary results on complex SAT, Max Clique, 0/1 Mul-
tidimensional Knapsack and Vertex Cover prob-
lems show thatCoMPSET improves the efficient
stochastic hill climbing and tabu search algorithms
by up to two orders of magnitudes.

Introduction

function which they try to optimize. It is therefore com-
mon to have modifications to these algorithms that trade be-
ing general for additional domain-specific knowledge. The
SAT domain is full of such variant€Gent and Walsh, 1993;
Hoos and Sitzle, 2003 but they are common in other do-
mains as wel[Khuri and Back, 1994; Evans, 1998

In this paper we present a general modification to known
local search algorithms which improve their performance on
SSPs. The idea behind it is to exploit attributes that are
specific to search spaces of subset selection. Knowing that
it is a subset search space allows us to infer which moves
were likely to be wrong. By reversing these moves and try-
ing again, we start from a new context, and the probability
to repeat the mistake is reduced. In experiments performed
on complex SAT, max clique, 0/1 multidimensional knapsack
and vertex cover problems, the new method has shown to sig-
nificantly improve the underlying search algorithm.

2 The CompPseTAIlgorithm
Subset selection can be expressed as a search in a graph. Each

The subset selection problem (SSP) is simply defined: Givenode (state) in the graph represents a unique subset. Edges

a set of element&’ = {e1, ea, ..

., e, } and a utility function

U : 2% — R, find a subset C E such thatl/(.9) is opti-
mal. Many real-life problems are SSPs, or can be formulateigure shows the search graph for 3 elements.

correspond to adding or removing an element from the subset,
thus there are. = |E| edges to every node. The following

as such. Classic examples include SAT, max clique, indepen- D
dent set, vertex cover, knapsack, set covering, set partitioning, \
feature subset selection (classification) and instance selection e 1) Clel) [118
(for nearest-neighbor classifiers) to name a few. [.“.‘ e | ‘.“.]
Since the search space is exponential in the sizé& of |
finding an optimal subset without relaxing assumptions is in- elele)
tractable. Problems associated with subset selection are typr state.S can be represented by a bit vector whereSit is
ically NP-hard or NP-complete. Local search algorithms arel iff e; € S. Moving to a neighboring state in the graph is
among the common methods for solving hard combinatoriakquivalent to flipping one bit.
optimization problems such as subset selection. Hill climb- Each state is associated with a utility value, which is the
ing, simulated annealinfKirkpatrick et al, 1983 and tabu value of U on the subset it represents. Local search algo-
search[Glover and Laguna, 199dave all been proven to rithms typically start from a random state and make suc-
provide good solutions in a variety of domains. The gen-cessive improvements to it by moving to neighboring states.
eral technique of random restarts is applicable to all of themThey vary from each other mainly in their definition of neigh-
yielding anytime behavior as well as the PAC property (prob-borhood, and their selection method.
ability to find the optimal solution converges to 1 as the run- Using this representation, all local search algorithms are
ning time approaches infinity). also applicable to subset selection. However, being general,
The problem with these local search algorithms is, how-they overlook the specific characteristics of subset selection.
ever, that they aré&oo general. The only heuristic they have CompPsETguides a given local search algorithm using knowl-
about the domain is in a form of a black-box, the utility edge specific to subset selection.

2.1 Characteristics of Subset Selection the above observations to try and identify wrong invocations

In a selection problem af elements, there are operators: of operators. It then cancels them (reverses their effect) and
F = {1, for. .., fa} wheref, is the dperator of toggling the resumes the run towards another local optimum or, hopefully,

d b - X the solution.
membership of elemeritin a set (if it was in the set remove

it , or add it if it was out). Applyingf; is equivalent to flip- procedure CoMPSET(S, LOCALSEARCHALG)
ping theith bit in the bit vector representation. Throughout S, — S S, — 5 agree— false

the following discussion we assume a single optimal subset |010

; . . p until agree

(solution) which we donat&™. _ Ls «— LOCALSEARCHALG(S:)

We make the following observations about subset search: Lz «— LOCALSEARCHALG(S2)
Observation 1. Let S’ be an arbitrary state (subset). From C«—oa(S,Ls)No(S, Lg)
any stateS, there exists a subset of the operaterg$, ') C if C is empty then
F, that when applied t& results inS’. el:‘gree— true
Proof. SinceS’, asS, is ann bits long vector, there are at S1 < C(Ls) Il apply all operators in C orLs
mostn bits of S that do not agree witts and need to be S2 — C(Lg)

return the better betweels and L
end

flipped using an operator. O

Observation 2. Let S be the complementary state $fi.e.,

the state derived from§ by flipping all its bits. The subset of Gjven a start stateS, COMPSET initiates two runs of
operatorso (S, S*) leading fromS to the solutionS™, is the the given local search algorithm, one frofhand one from
complementary subset @fS, 5*) in F. Thatis,o(S,5*)U its complementarys. Once two local optima are achieved,
o(S,5%) = Fando(S, S*)Na(S,S*) = 0. the series of operators that has led to each one is examined.
) Every operator that appears in both series must be wrong
Proof. We need to_show, that for everic I either f; € iy one of them. We do not know which of the runs went
o(5,8%)or fi € 0(S,5%). If Sy = Spythenf; € 0(S,5%) wrong, so we reverse the effect of such operators in both
(it does not need to be flipped). Moreoversif; = S;, then local optima. Once all obviously wrong operators are

necessarilySy; # S since inS all bits are flipped. Thus, Undone, the local search is continued. The process repeats

. = upon encountering the next pair of local optima. When no
fi ¢ 0(5,5%) — fi € o3, 57). The same goes for the other . qicting operators exist, and the optimal solution was not

possible case, in which;) = S;. 0 found,CompsETends and returns the better of the two local
optima in hand.

The inherent problem in finding (S5, S™) using local The rational behindCompPsETis illustrated here:

search, is that operators are applied successively and their ef-
fect is not necessarily of monotonic improvement due to in- I (5,8
terdependencies between elements. Such non-monotonic be- ,\Q ° i 5,
havior of U confuses local search algorithms and often makes ‘
them trapped in local optima. In such a case, there are two
options: either the search is progressing on the correct path
to the solution (but the algorithm does not see a way of con-
tlnumg)., or it is (_)ff the correct path altogether. It vyould be The solutionS*
beneficial to distinguish between these two scenarios.
Consider two independent hill climbing runs, one frém
and one fromS. Given that the optimal solution is not found,
the two runs have stopped in local optinia; and L respec-
tively. We consider the subsets of operators leading ffom . : .
to Ls and fromS to Lz. By observation 2, it is not possible i often necessary for its overall convgrgegc_e to the solution.
that an operatof; appears in both operator subsets if they arePVE'Sion occurs if an operator from(S, 5”) is applied to
both on the path t&*. If we do observe the same operator in 5 OF @n operator fromr (S, 5*) is appliedS. The problemis,
both, it is a clear sign that one of them is wrong. This is thethat since we do not know(S, S*) or (S, S*), it is difficult

is reachable by applying all operators from

a(S,8*) to S (in any order), and by applying all operators

from o (S, S*) to S. The underlying search algorithm frogh

is in a correct path if it is using only operators fraems, S*).
However, a search can easily divert from this path, and it

idea behindCoMPSET, which is described next. to detect such diversions. However, what we do know, is that
the solutionS* conforms tos (5, S*) N o (S,S5*) = 0. We
2.2 Description of theCompPsETAIgorithm can use this fact to try and identify diversions.

Interdependencies between elements are distracting whenOnce stopped in local optimag from S and L from S,
searching for good solutions. Had all elements been indewe checko (S, Ls) N (S, L). If the intersection is not
pendent, a simple linear search, which adds element aft@fmpty then by definition eitheks or Lz are off the path.
element as long as the utility value improves, would sufﬁce.Note, that if the intersection is empty, the local optima might

Local optima are an example where such interdependency;: :
brings the search to a full stop. It is likely that by applyingcytIII be off path, because either(S, Ls) uses an operator

the operators in a different order, or eliminating some, thd"om o (S, 8%), or o(S, L) uses an operator from(s, 5*).
local optimum would have been avoidedCOMPSETuses However,o(S, Ls) N o(S, Lg) # 0 means thafor sureat

least one of the local optima is off path. resented by a conjunction of clauses (CNR)A ... A Cp,.

In general it is possible that the search algorithm would SAT is a classic SSP since we look for a subset of variables
continue applying operators and finally return to the path, butthat when assigned a true value, makes the entire formula
being in a local optimum means that it has essentially "giventrue. The utility function is the number of unsatisfied clauses
up”. Elimination of all conflicting operators from both sides when assigning true to all variables$h
brings us toS; andS,, Ls — S; andLg — S,. Since all _ . .
common operators were eliminated,S, S1) N (S, S5) = U(8) = [{C:|Ciis false undef, 0 < ¢ < m}|
(0 and thusS; and S, are on a possibly correct path. It is The global minimum forJ is 0, for satisfied formulas. A
still possible thatr (S, S1) contains operators from(S, S*) search algorithm using this utility function will attempt to
or thato (S, S2) contains operators from(S, 5*) thus still maximize the number of satisfied clauses, which is a general-
being an obstacle for reaching the solution. ization of SAT called MAX-SAT. Problem instances for SAT

An important point to notice, is thaf; andS, are notnec- were obtained from the SATLIBHoos and Sitzle, 2000
essarily states that the algorithm has visited before. Groups ofepository of random 3-SAT. We use problems from the sol-
operators are simultaneously eliminated, an operation whichybility phase transition regidriCheesemast al., 1991.
interdependencies would prohibit had the operators were SUg- Max Clique - another classic SSP, where the goal is to

cessively eliminated CoMPSET effectively switches to an- fing the maximum subset of vertices that forms a clique in
other context which is mostly correct, in which the eliminated graph. Given a grapi = (V, F) and a subse$ C V, we

operators can be tried again. define the following utility function:
3 Empirical Evaluation U(s) = VI —15] Sis aclique
L WIS+ VIS (ST = 1) — [Es| else

The following algorithms were considered:

e Stochastic Hill ClimbindSHC) - starts from a random sub- A clique should be maximized but our implementation al-
set, iteratively picks a neighboring subset (differs in exactly ways minimizedJ, therefore we us@/| — |S|. Incomplete
one element) in random and moves there if it has a better ogolutions are penalized by the number of additional edges
equal utility value. The simplicity of SHC often misleads; they require for being a cliquéq| - (|S| — 1) — | Es|), plus
several workgMitchell et al., 1994; Baluja, 199bshowed a fixed valug V| that is used to separate them from the legal
that SHC does not fall from the complex GA mechanism. solutions. By striving to minimizé/, the search algorithm
In the SAT domain such stochastic local search (SLS) meth{inds feasible solutions first, and then continues by minimiz-
ods have been shown to be comparable with state-of-the-aiing their size. The global minimum &f corresponds to the
domain-specific algorithmigHoos and Sitzle, 2005. maximum clique. Problem instances were obtained from the

e Tabu Search{TS) [Glover and Laguna, 1993 examines DIMACS [1999 benchmark for maximum clique.

the neighborhood of the current state for the best replace- 0/1 Multidimensional KnapsacMKP) - the problem of
ment. It moves to the chosen state even if it does not improvdilling m knapsacks with: objects. Each object is either
the current state, which might result in cycles. To avoid cy- placed in allm knapsacks, or in none of them (hence "0/1").
cles, TS introduces the notion oftabu listthat stores the The knapsacks have capacitiescgfcs, . . ., ¢,,. Each ob-
lastt (tabu tenurg operators used. TS is prevented from us- ject is associated with a profit andm different weights,
ing operators from the tabu list when it generates the neigh-one for each knapsack. Objecweighsw;; when put into
borhood to be examined, unless certain conditions cakbed knapsackj. The goal is to find a subset of objects yielding
piration criteria are met. In this paper we use a common the maximum profit without overfilling any of the knapsacks.
aspiration criterion that allows operators which lead to betterknapsack; is overfilled in stateS iff S S wig > ¢y

state than the best obtained so far. Let k£ be the number of overfilled knapsacks. We define:
¢ Simulated AnnealingSA) [Kirkpatrick et al, 1983 - be- " Suopi k=0
gins at hightemperaturavhich enables it to move to arbitrary Uu(s) = {k i=0 2] " Pi k_> 0

neighboring states, including those which are worse than the
current one. As the temperature declines, the search is leshe utility of feasible subsets is simply their profit (with

likely to choose a non-improving state, until it settles in a minus sign for minimization purposes). Infeasible solu-
state which is a local minimum from which it cannot escape tions are penalized for each knapsack they overfill. Prob-
in low temperatures. lem instances for MKP were obtained from the OR-library

To test the effectiveness @fompPsSETwWe have applied it to [Beasley, 1991
SHC and TSCoMmPSETis not applicable to SA since SA be- e Vertex Cover- the goal is to find the smallest subset of
gins with a high temperature at which it randomly moves far vertices in a graph that covers all edges. Given a graph
from the initial state. The concept @oMPSETIsto setnew G = (V, E), we define:
start points for the underlying algorithm and by randomly
moving away from them SA defeats its purpose. U(s) = {

The algorithms were tested in the following domains:

e Propositional Satisfiability (SAF)the problem of finding a 'Random 3-SAT problem with 4.26 clauses per variable that are
truth assignment that satisfies a given boolean formula rephe hardest to solve using local search.

|S] S covers all edges
|S|+|V|+ |E\Es| else

For legal vertex coverd/ takes values less than or equal to CoMPSETSHC. The average success ratiotGMPSETTS

|[V|. Incomplete solutions are penalized by the number ofs 85% and ofCoMPSETSHC is 76%. For comparison, the
edges they do not cover, plus a fixed valuéthat is used to success ratios for SA, TS and SHC are 37%, 23% and 28%
separate them from the legal solutions. The global minimumrespectively. The speedup factor gained by uSdaMPSET

of U corresponds to the optimal vertex cover. is as large as 462 for SHC (instance uf50-011) and as large
The complementary graphs of the instances from the origina®s 156 for TS (instance uf75-013). Note that these are lower
DIMACS benchmark were taken, so that the known maxi-bounds since SHC and TS were terminated because of re-
mum clique sizes could be translated to corresponding minisource limit for some of the runs.

mum vertex covers The best performing algorithms in the Max Clique do-

main are CoMpSETSHC and SHC with average success
3.1 Experimental Methodology ratios of 94% and 80% respectively. The speed up fac-
We have tested five algorithms: SHC, TS, SA (with— tor of CoMPSETSHC over SHC is as large as 14 (instnace

100, a = 0.95), COMPSETover SHC ancCompsETover TS, Sanr2000.7). _ _ o
TS was used with = 5 for all domains other than SAT, and In the Knapsack domain, the best performing algorithm is
t — 9 for SAT. Each run was limited to0” U evaluations. ComPSETSHC with an average success ratio of 89%. For
All algorithms use random restart to escape from locacomparison, the success ratios for TS, $XYMPSETSHC
optima when they have still not exhausted their evaluation@nd SHC are 50%, 25%, 19% and 17% respectively. The
quota. They use random restart also when there is no imsP€edup factor gained by usi@PpMPSETIs as large as 127
provement over the lagtsteps. We usé = 10 for domains for TS (instance WEISHO7) and as large as 3.8 for SHC (in-
other than SAT, ané = 20 for SAT. SAT is characterized by Stance WEISH04). . _
wide and frequent platealiEranket al, 1997 therefore we The best performing algorithms in the Vertex Cover do-
chose higher values ofandk for it. main areComMPseTSHC and SHC with average success ra-
100 runs of each algorithm were performed on each probtios of 94% and 77% respectively. SA is relatively close with
lem in the test sets. Each run started from a random state, thaL% but TS is far behind with 23%, improved BOMPSET
was common to all algorithms. We measured the number of© 28%. The speedup factor gained by usBQVPSETis as
U evaluations needed to obtain the optimal solution in eacfigrge as 310 for TS (instance hamming6-2) and as large as 10

run, as well as the time taken. for SHC (instance sanr200.7).
Another interesting statistics is the number of random
3.2 Results restarts required by the underlying search algorithm and

The results are summarized in Tables 1, 2, 3 and 4. Fotﬁ:?]MPSEnI rr?]S dW[f” oanipghEeT nnudmhbev(/ r(r)1f r(])perat;)rt ?“Tr"”a'
brevity, we did not include the timing information in these ons performed byC a 0 any operators they

tables. The considered algorithms do not introduce a signif-SPanned' We have collected this data throughout 100 runs on

icant overhead, so the execution time is a linear function ot.he phat1000-1 vertex cover problem, a graph of 1000 ver-

the number ofU evaluations. The tables show the charac-'c€>: SHC required 517.37 random restarts on average (in

teristics of the problem instance, followed by the number ofS3ch run), whilcCompserrequired only 3.13. COMPSET
successful runs (columns titlek) and the average number has performed 20.52 operator eliminations, reversing the ef-

of U evaluations for each algorithm. A successful run is afect of 2.97 operators each time.

run in which the algorithm has found the optimal solution)
within the limit. We tested the statistical significance of the4 Conclusions and Future Work

improvement introduced b€oMpPSET using the Wilcoxon : . - . i
matched-pairs signed-ranks test with the extension by Etziorlln this paper, we have provided useful insights into the do

e ; w2 main of subset selection. We have realized that using lo-
?hnedsgZé%m[r}qaggettsv%%%eg{_'fg %?%Sg’&iigitgﬁ' (;- insé?cnaltr;s cal search, paths from complementary subsets to the solution

. . e must be distinct in terms of the operators used. This has led
that CompseTimproved SHC withp < 0.05. A ™" sign in- . . .
dicates that SHC performed better withe 0.05. A "2” sign us to conclude that if the paths contain common operators, it

indicates that the difference is not significant. Whenever it i mu?g 3\%‘{&%%32;2%&??;0; ﬁer;v"sﬁlé?r'] Tootltiacs t %ﬁﬁ::g}lec'
not possible to draw definitive conclusions since there is to ' ' 9 g policy

Search algorithms in the context of SSP. The results show a
much censored data/a appears. The same holds for thg N .
column between TS andoMPSETTS. significant improvement over both TS and SHC by up to two

The superiority ofComPSETover the other algorithms is Or(aséscafrrrgﬁgmﬁ?ﬁ: rocess of runni@PMPSETON other
striking, both in the number of evaluations, and the num- y P

ber and difficulty of instances solved. In the SAT do- subset selection domains, progressing towards a better under-

main. the best performing alaorithms aEeMPSETTS and standing of its behavior. One interesting direction is to re-
' P 9ag search for ways to incorporate knowledge of the entire search

2Note that while it is possible to take the complementary graphPaths, instead of only the local minima at their end. In ad-
solve the Max Clique problem, and then translate back to Vertexdition, it is beneficial to find out how characteristics of a
Cover, none of the algorithms in this paper has done so. specific problem affect its performance. Overall, the general

3The information about runs in which the solution was not foundidea of incorporating such SSP specific insights seems to be
within the given bound is calletiuncatedor censored a promising lead to better subset selection algorithms.

[3-SAT Instances i SHC I [COMPSETSHC || TS [[COMPSETTS || SA |
| name T vars] clauses|| #ok [evals | sg.| #0k | evals || #0k] evals | sg.| #0k| evals [#0k] evals |

uf20-011 20 91][100 211] + [100 167 | 100 309 ? [100 2751 8271 1,800,168
uf20-012 20 91 || 100 115 ? | 100 102 || 100 190 | ? | 100 201 | 100 197
uf20-013 20 91 || 100 576 | ? | 100 655 || 100 1,089 ? | 100 940 || 57 | 4,300,196
uf20-014 20 91 || 100 590 | ? | 100 596 || 100 872 | ? | 100 863 | 72| 2,800,287
uf20-015 20 91 || 100 243 | ? | 100 256 || 100 421 ? | 100 361 98 201,003
uf50-011 50 2181 7415,920,013] + [100 12,792|| 100 | 160,575| + | 100 17,250]] 11 8,900,193
uf50-012 50 218 || 100 | 1,162,273| + | 100 10,624 || 100 36,955| ? | 100 35,072 22| 7,800,249
uf50-013 50 218 100 | 1,682,981 + | 100 3,803 || 100 45,616 + | 100 9,275|| 65| 3,501,795
uf50-014 50 218 || 100 | 1,995,884| + | 100 6,704 || 100 66,185| + | 100 14,317 40 | 6,001,598
uf50-015 50 218 || 991,005,804 + | 100 2,547 || 100 33,894 + | 100 7,335|| 68 3,201,009
uf75-011 75 325 0 - |+] 100 80,928 16| 9,137,745] + | 100| 142,969] 37 | 6,306,563
uf75-012 75 325 0 -| + | 100| 409,036 12| 9,375,096] + | 100 | 579,683 5| 9,500,223
uf75-013 75 325 0 -| + | 100 9,700|| 63| 5,890,614 + | 100 37,587 | 56 | 4,404,356
uf75-014 75 325 0 -| + | 100 22,677| 50| 7,364,576| + | 100 77,866| 41| 5,904,975
uf75-015 75 325 0 - | + [100 89,098|| 27| 8,595,672 + | 100 | 179,802| 53 | 4,762,145
uf100-011| 100 430 0 -] + [1I00] 289,359 0 -] + [100] 450,070]] 16 | 8,404,825
uf100-012| 100 430 0 -| + | 100| 130,835 0 -| + | 100 | 309,667| 37| 6,321,626
uf100-013| 100 430 0 -| + | 100| 158,180 0 -| + | 100| 376,166| 40| 6,011,208
uf100-014| 100 430 0 -| + | 100| 872275 0 -| + | 100 | 966,083| 41| 6,175,183
uf100-015| 100 430 0 - | + | 100]| 283,024 0 -| + | 100]| 361,632|| 19| 8,110,739
uf125-011] 125 538 0 -] + [100] 544,188 0 -+ [1I00] 496,277]] 28| 7,211,118
uf125-012| 125 538 0 -| + | 100| 786,882 0 -| + | 100 | 1,048,369| 21 | 7,908,011
uf125-013| 125 538 0 - | nfa| 52| 7,202,045 0 -+ 87 | 4,471,437|| 11| 8,906,967
uf125-014| 125 538 0 - | nfa| 46| 7,653,790 0 - | na| 67| 6,388,535 419,601,212
uf125-015| 125 538 0 - | + | 100] 1,574,893 0 - | + | 100] 1,597,965|| 10| 9,001,632
uf150-011| 150 645 0 -] +] 100 1,129,916 0 -] + [1I00] 650,899]] 66 | 3,458,095
uf150-012| 150 645 0 - | nfa 7 | 9,525,999 0 - | nfa| 48] 6,722,510| 17 | 8,332,034
uf150-013| 150 645 0 -+ 82 | 4,429,762 0 -| + | 100 | 1,037,124|| 64 | 3,750,319
uf150-014| 150 645 0 - | nfa| 49| 6,748,236 0 -+ 97 | 3,384,813|| 15| 8,507,697
uf150-015| 150 645 0 - | nfa] 119,373,759 0 - | nfa| 48| 7,193,000 15| 8,517,484
uf200-011 200 860 0 - [n/a 29,811,767 0 - [n/a 7 19,703,756[10| 9,013,804
uf200-012| 200 860 0 - | nla 0 - 0 - | nfa| 24| 8,434,746| 14 | 8,642,899
uf200-013| 200 860 0 - | nfa 7 | 9,506,131 0 - | nfa| 39| 7,769,246| 15| 8,546,974
uf200-014| 200 860 0 - | nla 2 | 9,857,446 0 - | n/a| 41| 6,907,585| 40| 6,121,901
uf200-015| 200 860 0 - | na 19,900,146 0 - | na 3 | 9,766,815 419,648,972

Table 1: SAT: average over all 100 runs, including censored data

[Graphs i SHC I [COMPSETSHC || TS I [COMPSETTS | SA

\ name [[VI] opt [#0k] evals | sg. | #0k| evals [#ok] evals | sg.|#ok [evals || #k] evals |
brock2001 200 21 41| 7,953,200 + 98 | 2,485,541 0 - nfa 0 - 24| 8,880,969
hamming6-2 64 | 32| 100 659 | ? | 100 633 | 80| 2,984,249| + | 100 14,163|| 100 1,129
hamming6-4 64 4 || 100 302 | ? | 100 275 || 100 1,794 | ? | 100 1,807 || 100 517
hamming8-2 256 | 128 || 100 4,317| ? | 100 4,519 6 | 9,402,266| n/a| 14| 8,612,975|| 100 6,486
hamming8-4 256 | 16 || 100 8,924 | + | 100 6,609| 45| 5514,223| nla| 54| 4,619,182| 100 18,546
hamming10-2 | 1024 | 512 || 100 36,837 ? | 100 38,312 6 | 9,438,856| n/a 6 | 9,438,856/ 100 54,520
hamming10-4 | 1024 | 40 62 | 6,716,761 nla| 70 | 6,336,176 0 - | nfa 0 - 36 | 7,956,686
ohnson8-2-4 28 4 || 100 81| ? | 100 90 || 100 299 | ? | 100 305 || 100 204
ohnson8-4-4 70| 14| 100 1,208| + | 100 898 45 | 5,575,650 + 97 | 1,005,066| 100 2,802
ohnson16-2-4) 120 8 || 100 740 | ? | 100 631 || 100 6,470| ? | 100 6,305 || 100 745
ohnson32-2-4| 496 | 16 || 100 4,661| ? | 100 4,661| 83| 1,798,068 + 85 | 1,600,804|| 100 4,843
p_hat700-1 700| 11| 38| 8,029,518| + 92 | 3,471,758 1| 9,902,542| n/a 1| 9,902,542 6 | 9,658,510
p_hat700-2 700 | 44| 100 | 361,250 + | 100 92,712 1| 9,902,564| n/a 1 9,902,564| 100 | 639,270
p-hat700-3 700 | 62| 100 912,534 + | 100 224,936 0 - | nfa 0 - || 100 | 1,513,576
p-hat1000-1 1000| 10 92| 3,764,601| + | 100 891,693 4 | 9,619,971 n/a 4| 9,619,971|| 69 | 6,161,992
p-hat1000-2 1000| 46 || 100 | 1,177,655| + | 100 211,710 0 - | nla 0 - || 100 | 1,645,523
p-hat1000-3 1000 | 68 43| 7,490,258| + | 100 | 1,253,011 0 - | nfa 0 - 31| 8,610,929
p-hatl500-1 | 1500 | 12 0 - | nfa 3| 9,926,760 0 - | nla 0 - 0 -
p-hat1500-2 | 1500 | 65| 99| 2,215,890 + | 100 | 369,480 0 - | nla 0 - 98 | 2,629,112
p-hat1500-3 | 1500 | 94 || 86 | 4,982,543| + | 100 | 1,943,943 0 - | nla 0 - 73 | 5,884,335
sanr2000.7 200| 18 || 100 | 2,189,803| + | 100 | 151,344 0 - | nla 1 9,900,505| 91 | 3,530,091
sanr2000.9 200| 42| 96| 2,871,830| + | 100| 530,846 0 - | nla 0 - 73 | 5,535,066
sanr4000.5 400 | 13 26 | 8,561,953| + 86 | 4,167,521 0 - | nfa 0 - 7 | 9,683,128
sanr4000.7 400 | 21 37| 8,029,818| + 95 | 3,493,629 0 - | nla 0 - 11 | 9,252,956

Table 2: Maximum Clique: average over all 100 runs, including censored data

References [DIMACS, 1999 DIMACS. Challenge problems for maxi-
mum clique, dimacs.rutgers.edu., 1993.

[Etzioni and Etzioni, 1994 O. Etzioni and R. Etzioni. Statis-
tical methods for analyzing speedup learning experiments.
Machine Learning14(1):333-347, 1994.

) _ i [Evans, 1998 Isaac K. Evans. Evolutionary algorithms for
[Beasley, 1991 J. E. Beasley. OR-library: a collectionof test ~ yertex cover. In V. W. Porto, N. Saravanan, D. Waagen,
data sets. Technical report, Management School, Imperial ang A. E. Eiben, editorEvolutionary Programming VJI
College, London, 1997. pages 377-386, 1998.

[Cheesemast al, 19911 P. Cheeseman, B. Kanefsky, and [Franket al, 1997 J. Frank, P. Cheeseman, and J. Stutz.
W. M. Taylor. Where the really hard problems are. In When gravity fails: Local search topologyournal of Ar-
Proceedings of IJCAI-Qlpages 331-336, 1991. tificial Intelligence Researcgty:249-281, 1997.

[Baluja, 199% S. Baluja. An empirical comparison of seven
iterative and evolutionary function optimization heuristics.
Technical Report CMU-CS-95-193, School of Computer
Science, CMU, 1995.

[Problems i SHC I [COMPSETSHC]| TS [COMPSETTS || SA |
[name [n[m] opt [#0k| evals | sg. [#ok | evals [[#ok [evals | sg. | #ok] evals |[#k] evals |
HP1 28] 4 3418 80 [4,911,555] n/a] 56 [6,544,038[] 100 719,239| - 98 | 1,968,905|| 96 | 3,404,960
HP2 35| 4 3186 || 13| 9,252,758 n/a 7 | 9,594,786|| 53 | 6,704,029 n/a| 65 | 6,402,176| 17 | 9,235,896
PB1 27| 4 3090 || 96| 3,072,586| - 87 | 3,952,437|| 100 | 670,184| - | 100 | 1,200,320| 100 | 1,982,159
PB2 34| 4 3186 | 16 | 9,158,395| n/a 8| 9,670,627|| 61| 5895593 n/a| 76 | 5,213,605 31 | 8,258,914
PB4 29| 2| 95168| 12| 9,400,912| n/a| 14| 9,278,001|| 100 | 141,267| - | 100 | 186,156 2| 9,958,448
PB5 20| 10 2139 || 100| 352,913 ? | 100| 299,587 100 80,253| - | 100| 735,297|| 100| 318,187
PB6 40 | 30 776 74 | 5,420,914| n/a| 74| 5,318,641|| 30| 7,715,915 + | 100 17,418| 25| 8,949,831
PB7 37|30 1035 0 - | na 29,866,520 44| 7,526,288/ + | 100 | 168,889| 40 | 7,654,095
SENTO1 | 60 | 30 7772 0 - | nla 0 - 11 9,900,037| + | 100 167,722 0 -
SENTO2 | 60 | 30 8722 0 - | nla 0 - 0 -+ 93| 3,742,251 0 -
WEING1 | 28| 2| 141278 1| 9,951,662 n/a 1 9,967,393|| 100 430,212 ? | 100 295,032 19,913,058
WEING2 | 28 | 2 | 130883 1| 9,988,929| n/a 11 9920,886| 86 | 4,325,976| ? 90 | 4,249,753 0 -
WEING3 | 28| 2| 95677 7 | 9,669,592| n/a 3]9,851,757|| 37| 8,002,117| n/a| 38| 7,917,398 119,922,652
WEING4 | 28 | 2| 119337|| 45| 7,854,172| n/a| 39 | 8,067,189| 100 352,464| + | 100 122,820| 19 | 8,968,454
WEINGS5 | 28| 2| 98796 9 | 9,355,108| n/a 7 19,720,010 79| 4,962,961 n/a| 80 | 4,560,088 3| 9,894,039
WEING6 | 28 | 2 | 130623 2| 9,896,760| n/a 1 9,961,823|| 100 | 2,190,253| ? 99 | 2,263,775 1 9,950,248
WEISHO1| 30| 5 4554 0 - | nla 8 | 9,627,601 100 142,532 + | 100 6,808| 56 | 6,542,273
WEISHO02 | 30| 5 4536 15| 9,256,801| n/a| 19 | 9,029,940|| 100 203,812 + | 100 4,981 96| 3,118,697
WEISHO3 | 30| 5 4115| 13| 9,367,427 n/a| 44| 7,691,588| 100 | 133,341| + | 100 15,052| 92 | 4,043,836
WEISHO04 | 30| 5 4561 | 50 | 7,207,287| + | 100 | 1,860,648| 100 27,689 + | 100 1,944 100 | 1,645,413
WEISHO5 | 30| 5 4514 || 93| 3,749,094| + | 100 | 1,856,242| 100 45,793| + | 100 3,300| 96 | 2,753,007
WEISHO6 | 40| 5 5557 0 - | na 0 - 34| 7,450,036 + | 100 | 237,437 59,752,363
WEISHO7 | 40| 5 5567 0 - | na 2] 9,904,913|| 41| 7,047,862 + | 100 55,207|| 16 | 9,189,652
WEISHO08 | 40| 5 5605 0 - | na 11 9,993,609|| 15| 9,186,377 + 99 | 1,988,697 5| 9,797,464
WEISH09 | 40| 5 5246 0 - | na 1 9,965165| 51| 6,243,931| + | 100 62,502 119,981,328
WEISH10| 50 | 5 6339 0 - | nla 0 - 12 | 9,041,645 + | 100 185,651 0 -
WEISH11| 50| 5 5643 0 - | nla 0 - 719,393,532 nfa| 79| 4,126,644 0 -
WEISH12 | 50 | 5 6339 0 - | nla 0 - 12 | 8,933,081| + | 100 287,267 0 -
WEISH13 | 50 | 5 6159 0 - | nla 0 - 11| 9,123,859 + 99 | 1,041,062 0 -
WEISH14| 60| 5 6954 0 - | nla 0 - 119,901,672 + 94 | 2,668,066 0 -
WEISH15| 60| 5 7486 0 - | nla 0 - 11 | 9,008,543| + | 100 729,395 0 -
WEISH16 | 60 | 5 7289 0 - | nla 0 - 0 - | nfa| 49| 6,847,342 0 -
WEISH17| 60| 5 8633 0 - | nla 0 - 119,906,889 + | 100 | 1,344,074 2| 9,844,304
WEISH18 | 70| 5 9580 0 - | nla 0 - 21 9,843,393| nfa| 49| 7,382,229 0 -
WEISH19 | 70| 5 7698 0 - | nla 0 - 0 - | nla 4| 9,705,819 0 -
WEISH20 | 70| 5 9450 0 - | na 0 - 119935892 + 83 | 4,260,796 0 -

Table 3: Knapsack: average over all 100 runs, including censored data

I Graphs i SHC | [COMPSETSHC || TS I [COMPSETTS | SA |
| name [[VI] opt [[#ok | evals | sg.| #ok| evals [[#ok| evals | sg.|[#k] evals [[#0k| evals |
brock20Q1 200| 179 441 7,703,031 + 97 | 2,407,132 0 -] nla 0 - 24| 8,706,894
hamming6-2 64 32 || 100 705| ? | 100 663 74| 3,241,435 + | 100 10,444 || 100 1,258
hamming6-4 64 60 || 100 325| ? | 100 299 || 100 1,813| ? | 100 1,790 || 100 535
hamming8-2 256 | 128 | 100 4,442| ? | 100 4,642 11 | 8,903,987| nfa| 27| 7,320,998| 100 6,176
hamming8-4 256 | 240 100 9,399| + | 100 6,287 39 | 6,112,570| n/a| 49 | 5,117,786| 100 18,168
hamming10-2 | 1024 | 512 || 100 44,727 + | 100 38,674 5| 9,535,915| n/a 7 | 9,353,124|| 100 59,437
hamming10-4 | 1024 | 984 58 | 6,412,744| nla| 71| 5,645,469 0 - | nla 0 - 37| 7,811,420
ohnson8-2-4 28 24 || 100 75| ? | 100 75 || 100 292 | ? | 100 292 || 100 201
ohnson8-4-4 70 56 || 100 1,122 ? | 100 962 52 | 4,911,854 + 98 632,835|| 100 2,889
ohnson16-2-4/ 120 | 112 | 100 618 | ? | 100 618 99 106,329 ? | 100 6,423 || 100 742
ohnson32-2-4/ 496 | 480 || 100 4,564 | ? | 100 4,564 79 | 2,192,741| nfa| 79| 2,192,741| 100 4,339
p-hat700-1 700 | 689 24 | 8,778,686 + 96 | 3,214,600 1| 9,902,454| nla 11| 9,902,454|| 10 | 9,588,452
p-hat700-2 700 | 656 | 100 461,639 + | 100 102,745 0 - | nla 0 - || 100 630,340
p-hat700-3 700 | 638 | 100 | 1,189,058| + | 100 210,935 0 - | nla 0 - || 100 | 1,507,522
p-hat1000-1 1000 | 990 86 | 3,917,288| + | 100 829,765 1| 9,905,190 n/a 1| 9,905,190|| 60 | 6,770,941
p-hat1000-2 1000| 954 | 100 | 1,562,316| + | 100 195,142 1| 9,904,961| n/a 1| 9,904,961|| 100 | 2,048,317
p-hat1000-3 1000 | 932 32| 8,093,992| + | 100 | 1,163,768 0 - | nla 0 - 22 | 8,633,648
p-hat1500-1 1500 | 1488 0 - | nfa 2 | 9,958,079 0 - | nla 0 - 0 -
p-hat1500-2 1500 | 1435 99 | 2,210,577| + | 100 408,447 0 - | nla 0 - 96 | 2,669,373
p-hat1500-3 1500 | 1406 75| 5,533,569| + | 100 | 2,070,512 0 - | nla 0 - 74 | 5,381,934
sanr2000.7 200 | 182 99 | 1,922,341 + | 100 181,238 0 - | nla 0 - 85 | 4,625,237
sanr2000.9 200 | 158 98 | 3,074,483| + | 100 551,969 0 - | nla 11| 9,900,390|| 78 | 5,005,884
sanr4000.5 400 | 387 15| 9,083,301| + 87 | 4,860,526 0 - | nla 0 - 8 | 9,662,423
sanr4000.7 400 | 379 27 | 8,500,584| + 96 | 2,838,407 0 - | nla 0 - 9 | 9,543,268

Table 4: Vertex cover: average over all 100 runs, including censored data

[Gent and Walsh, 1993lan P. Gent and Toby Walsh. To- plications Morgan Kaufman Publishers, 2005.

wards an understanding of hill-climbing procedures for[Khuri and Back, 1994 S. Khuri and T. Bick. An evolution-
SAT. InNational Conference on Apages 28-33, 1993. ary heuristic for the minimum vertex cover problem. In

[Glover and Laguna, 1993F. Glover and M. Laguna. Tabu Genetic Algorithms within the Framework of Evolutionary
search. In C. Reeves, editdpdern Heuristic Techniques ~ Computationpages 86-90, 1994.
for Combinatorial Problems1993. [Kirkpatrick et al, 1983 S. Kirkpatrick, C. D. Gelatt, and

[Hoos and Sitzle, 2000 Holger H. Hoos and Thomas M. P. Vecchi. Optimization by simulated annealin§ci-
Stiitzle. SATLIB: An Online Resource for Research on _ence 220, 4598'671_680_' 1983.
SAT. In SAT20000: Highlights of Satisfiability Research [Mitchell et al, 1994 M. Mitchell, J. H. Holland, and
in the year 200Ppages 283-292. 2000. S. Forrest. When will a genetic algorithm outperform hill

climbing. In Advances in NIPSvolume 6, pages 51-58,
[Hoos and Sitzle, 2005 Holger H. Hoos and Thomas 1gg4.

Stiitzle. Stochastic Local Search - Foundations and Ap-

