
The COMPSETAlgorithm for Subset Selection

Yaniv Hamo and Shaul Markovitch
{hamo,shaulm}@cs.technion.ac.il

Computer Science Department, Technion, Haifa 32000, Israel

Abstract

Subset selection problems are relevant in many do-
mains. Unfortunately, their combinatorial nature
prohibits solving them optimally in most cases. Lo-
cal search algorithms have been applied to subset
selection with varying degrees of success. This
work presentsCOMPSET, a general algorithm for
subset selection that invokes an existing local
search algorithm from a random subset and its com-
plementary set, exchanging information between
the two runs to help identify wrong moves. Prelimi-
nary results on complex SAT, Max Clique, 0/1 Mul-
tidimensional Knapsack and Vertex Cover prob-
lems show thatCOMPSET improves the efficient
stochastic hill climbing and tabu search algorithms
by up to two orders of magnitudes.

1 Introduction
The subset selection problem (SSP) is simply defined: Given
a set of elementsE = {e1, e2, . . . , en} and a utility function
U : 2E 7→ R, find a subsetS ⊆ E such thatU(S) is opti-
mal. Many real-life problems are SSPs, or can be formulated
as such. Classic examples include SAT, max clique, indepen-
dent set, vertex cover, knapsack, set covering, set partitioning,
feature subset selection (classification) and instance selection
(for nearest-neighbor classifiers) to name a few.

Since the search space is exponential in the size ofE,
finding an optimal subset without relaxing assumptions is in-
tractable. Problems associated with subset selection are typ-
ically NP-hard or NP-complete. Local search algorithms are
among the common methods for solving hard combinatorial
optimization problems such as subset selection. Hill climb-
ing, simulated annealing[Kirkpatrick et al., 1983] and tabu
search[Glover and Laguna, 1993] have all been proven to
provide good solutions in a variety of domains. The gen-
eral technique of random restarts is applicable to all of them,
yielding anytime behavior as well as the PAC property (prob-
ability to find the optimal solution converges to 1 as the run-
ning time approaches infinity).

The problem with these local search algorithms is, how-
ever, that they aretoo general. The only heuristic they have
about the domain is in a form of a black-box, the utility

function which they try to optimize. It is therefore com-
mon to have modifications to these algorithms that trade be-
ing general for additional domain-specific knowledge. The
SAT domain is full of such variants[Gent and Walsh, 1993;
Hoos and Sẗutzle, 2005] but they are common in other do-
mains as well[Khuri and B̈ack, 1994; Evans, 1998].

In this paper we present a general modification to known
local search algorithms which improve their performance on
SSPs. The idea behind it is to exploit attributes that are
specific to search spaces of subset selection. Knowing that
it is a subset search space allows us to infer which moves
were likely to be wrong. By reversing these moves and try-
ing again, we start from a new context, and the probability
to repeat the mistake is reduced. In experiments performed
on complex SAT, max clique, 0/1 multidimensional knapsack
and vertex cover problems, the new method has shown to sig-
nificantly improve the underlying search algorithm.

2 The COMPSETAlgorithm
Subset selection can be expressed as a search in a graph. Each
node (state) in the graph represents a unique subset. Edges
correspond to adding or removing an element from the subset,
thus there aren = |E| edges to every node. The following
figure shows the search graph for 3 elements.

A stateS can be represented by a bit vector where bitS[i] is
1 iff ei ∈ S. Moving to a neighboring state in the graph is
equivalent to flipping one bit.

Each state is associated with a utility value, which is the
value of U on the subset it represents. Local search algo-
rithms typically start from a random state and make suc-
cessive improvements to it by moving to neighboring states.
They vary from each other mainly in their definition of neigh-
borhood, and their selection method.

Using this representation, all local search algorithms are
also applicable to subset selection. However, being general,
they overlook the specific characteristics of subset selection.
COMPSETguides a given local search algorithm using knowl-
edge specific to subset selection.

2.1 Characteristics of Subset Selection
In a selection problem ofn elements, there aren operators:
F = {f1, f2, . . . , fn} wherefi is the operator of toggling the
membership of elementi in a set (if it was in the set remove
it , or add it if it was out). Applyingfi is equivalent to flip-
ping theith bit in the bit vector representation. Throughout
the following discussion we assume a single optimal subset
(solution) which we donateS∗.

We make the following observations about subset search:

Observation 1. Let S′ be an arbitrary state (subset). From
any stateS, there exists a subset of the operators,σ(S, S′) ⊆
F , that when applied toS results inS′.

Proof. SinceS′, asS, is ann bits long vector, there are at
mostn bits of S′ that do not agree withS and need to be
flipped using an operator.

Observation 2. Let S be the complementary state ofS i.e.,
the state derived fromS by flipping all its bits. The subset of
operatorsσ(S, S∗) leading fromS to the solutionS∗, is the
complementary subset ofσ(S, S∗) in F . That is,σ(S, S∗) ∪
σ(S, S∗) = F andσ(S, S∗) ∩ σ(S, S∗) = ∅.
Proof. We need to show, that for everyfi∈F either fi ∈
σ(S, S∗) or fi ∈ σ(S, S∗). If S[i] = S∗[i] thenfi /∈ σ(S, S∗)
(it does not need to be flipped). Moreover, ifS[i] = S∗[i], then

necessarilyS[i] 6= S∗[i], since inS all bits are flipped. Thus,

fi /∈ σ(S, S∗) → fi ∈ σ(S, S∗). The same goes for the other
possible case, in whichS[i] = S∗[i].

The inherent problem in findingσ(S, S∗) using local
search, is that operators are applied successively and their ef-
fect is not necessarily of monotonic improvement due to in-
terdependencies between elements. Such non-monotonic be-
havior ofU confuses local search algorithms and often makes
them trapped in local optima. In such a case, there are two
options: either the search is progressing on the correct path
to the solution (but the algorithm does not see a way of con-
tinuing), or it is off the correct path altogether. It would be
beneficial to distinguish between these two scenarios.

Consider two independent hill climbing runs, one fromS
and one fromS. Given that the optimal solution is not found,
the two runs have stopped in local optima,LS andLS respec-
tively. We consider the subsets of operators leading fromS
to LS and fromS to LS . By observation 2, it is not possible
that an operatorfi appears in both operator subsets if they are
both on the path toS∗. If we do observe the same operator in
both, it is a clear sign that one of them is wrong. This is the
idea behindCOMPSET, which is described next.

2.2 Description of theCOMPSETAlgorithm
Interdependencies between elements are distracting when
searching for good solutions. Had all elements been inde-
pendent, a simple linear search, which adds element after
element as long as the utility value improves, would suffice.
Local optima are an example where such interdependency
brings the search to a full stop. It is likely that by applying
the operators in a different order, or eliminating some, the
local optimum would have been avoided.COMPSET uses

the above observations to try and identify wrong invocations
of operators. It then cancels them (reverses their effect) and
resumes the run towards another local optimum or, hopefully,
the solution.

Procedure COMPSET(S, LOCALSEARCHALG)

S1 ← S ; S2 ← S ; agree← false
loop until agree

LS ← LOCALSEARCHALG(S1)
LS ← LOCALSEARCHALG(S2)
C← σ(S, LS) ∩ σ(S, LS)
if C is empty then

agree← true
else

S1 ← C(LS) // apply all operators in C onLS

S2 ← C(LS)
return the better betweenLS andLS

end

Given a start stateS, COMPSET initiates two runs of
the given local search algorithm, one fromS and one from
its complementaryS. Once two local optima are achieved,
the series of operators that has led to each one is examined.
Every operator that appears in both series must be wrong
in one of them. We do not know which of the runs went
wrong, so we reverse the effect of such operators in both
local optima. Once all obviously wrong operators are
undone, the local search is continued. The process repeats
upon encountering the next pair of local optima. When no
conflicting operators exist, and the optimal solution was not
found,COMPSETends and returns the better of the two local
optima in hand.

The rational behindCOMPSETis illustrated here:

σ(S, S∗)

σ(S, S∗)

S
∗

S

S

LS

L
S

S1

S2

The solutionS∗ is reachable by applying all operators from
σ(S, S∗) to S (in any order), and by applying all operators
from σ(S, S∗) to S. The underlying search algorithm fromS
is in a correct path if it is using only operators fromσ(S, S∗).

However, a search can easily divert from this path, and it
is often necessary for its overall convergence to the solution.
Diversion occurs if an operator fromσ(S, S∗) is applied to
S, or an operator fromσ(S, S∗) is appliedS. The problem is,
that since we do not knowσ(S, S∗) or σ(S, S∗), it is difficult
to detect such diversions. However, what we do know, is that
the solutionS∗ conforms toσ(S, S∗) ∩ σ(S, S∗) = ∅. We
can use this fact to try and identify diversions.

Once stopped in local optimaLS from S andLS from S,
we checkσ(S, LS) ∩ σ(S,LS). If the intersection is not
empty then by definition eitherLS or LS are off the path.
Note, that if the intersection is empty, the local optima might
still be off path, because eitherσ(S, LS) uses an operator
from σ(S, S∗), or σ(S,LS) uses an operator fromσ(S, S∗).
However,σ(S, LS) ∩ σ(S, LS) 6= ∅ means thatfor sureat

least one of the local optima is off path.
In general it is possible that the search algorithm would

continue applying operators and finally return to the path, but
being in a local optimum means that it has essentially ”given
up”. Elimination of all conflicting operators from both sides
brings us toS1 andS2, LS → S1 andLS → S2. Since all
common operators were eliminated,σ(S, S1) ∩ σ(S, S2) =
∅ and thusS1 andS2 are on a possibly correct path. It is
still possible thatσ(S, S1) contains operators fromσ(S, S∗)
or thatσ(S, S2) contains operators fromσ(S, S∗) thus still
being an obstacle for reaching the solution.

An important point to notice, is thatS1 andS2 are not nec-
essarily states that the algorithm has visited before. Groups of
operators are simultaneously eliminated, an operation which
interdependencies would prohibit had the operators were suc-
cessively eliminated.COMPSET effectively switches to an-
other context which is mostly correct, in which the eliminated
operators can be tried again.

3 Empirical Evaluation
The following algorithms were considered:

• Stochastic Hill Climbing(SHC) - starts from a random sub-
set, iteratively picks a neighboring subset (differs in exactly
one element) in random and moves there if it has a better or
equal utility value. The simplicity of SHC often misleads;
several works[Mitchell et al., 1994; Baluja, 1995] showed
that SHC does not fall from the complex GA mechanism.
In the SAT domain such stochastic local search (SLS) meth-
ods have been shown to be comparable with state-of-the-art
domain-specific algorithms[Hoos and Sẗutzle, 2005].

• Tabu Search(TS) [Glover and Laguna, 1993] - examines
the neighborhood of the current state for the best replace-
ment. It moves to the chosen state even if it does not improve
the current state, which might result in cycles. To avoid cy-
cles, TS introduces the notion of atabu list that stores the
lastt (tabu tenure) operators used. TS is prevented from us-
ing operators from the tabu list when it generates the neigh-
borhood to be examined, unless certain conditions calledas-
piration criteria are met. In this paper we use a common
aspiration criterion that allows operators which lead to better
state than the best obtained so far.

• Simulated Annealing(SA) [Kirkpatrick et al., 1983] - be-
gins at hightemperaturewhich enables it to move to arbitrary
neighboring states, including those which are worse than the
current one. As the temperature declines, the search is less
likely to choose a non-improving state, until it settles in a
state which is a local minimum from which it cannot escape
in low temperatures.

To test the effectiveness ofCOMPSETwe have applied it to
SHC and TS.COMPSETis not applicable to SA since SA be-
gins with a high temperature at which it randomly moves far
from the initial state. The concept ofCOMPSETis to set new
start points for the underlying algorithm and by randomly
moving away from them SA defeats its purpose.

The algorithms were tested in the following domains:

• Propositional Satisfiability (SAT)- the problem of finding a
truth assignment that satisfies a given boolean formula rep-

resented by a conjunction of clauses (CNF)C1 ∧ . . . ∧ Cm.
SAT is a classic SSP since we look for a subset of variables
that when assigned a true value, makes the entire formula
true. The utility function is the number of unsatisfied clauses
when assigning true to all variables inS:

U(S) ≡ |{Ci|Ci is false underS, 0 ≤ i ≤ m}|
The global minimum forU is 0, for satisfied formulas. A
search algorithm using this utility function will attempt to
maximize the number of satisfied clauses, which is a general-
ization of SAT called MAX-SAT. Problem instances for SAT
were obtained from the SATLIB[Hoos and Sẗutzle, 2000]
repository of random 3-SAT. We use problems from the sol-
ubility phase transition region1 [Cheesemanet al., 1991].

• Max Clique - another classic SSP, where the goal is to
find the maximum subset of vertices that forms a clique in
a graph. Given a graphG = (V, E) and a subsetS ⊆ V , we
define the following utility function:

U(S) ≡
{
|V | − |S| S is a clique
|V | − |S|+ |V |+ |S| · (|S| − 1)− |ES | else

A clique should be maximized but our implementation al-
ways minimizesU , therefore we use|V | − |S|. Incomplete
solutions are penalized by the number of additional edges
they require for being a clique (|S| · (|S| − 1) − |ES |), plus
a fixed value|V | that is used to separate them from the legal
solutions. By striving to minimizeU , the search algorithm
finds feasible solutions first, and then continues by minimiz-
ing their size. The global minimum ofU corresponds to the
maximum clique. Problem instances were obtained from the
DIMACS [1993] benchmark for maximum clique.

• 0/1 Multidimensional Knapsack(MKP) - the problem of
filling m knapsacks withn objects. Each object is either
placed in allm knapsacks, or in none of them (hence ”0/1”).
The knapsacks have capacities ofc1, c2, . . . , cm. Each ob-
ject is associated with a profitpi andm different weights,
one for each knapsack. Objecti weighswij when put into
knapsackj. The goal is to find a subset of objects yielding
the maximum profit without overfilling any of the knapsacks.
Knapsackj is overfilled in stateS iff

∑n
i=1 S[i] · wij > cj .

Let k be the number of overfilled knapsacks. We define:

U(S) ≡
{−∑n

i=0 S[i] · pi k=0
k k > 0

The utility of feasible subsets is simply their profit (with
minus sign for minimization purposes). Infeasible solu-
tions are penalized for each knapsack they overfill. Prob-
lem instances for MKP were obtained from the OR-library
[Beasley, 1997].

• Vertex Cover- the goal is to find the smallest subset of
vertices in a graph that covers all edges. Given a graph
G = (V, E), we define:

U(S) ≡
{
|S| S covers all edges
|S|+ |V |+ |E\ES | else

1Random 3-SAT problem with 4.26 clauses per variable that are
the hardest to solve using local search.

For legal vertex covers,U takes values less than or equal to
|V |. Incomplete solutions are penalized by the number of
edges they do not cover, plus a fixed value|V | that is used to
separate them from the legal solutions. The global minimum
of U corresponds to the optimal vertex cover.
The complementary graphs of the instances from the original
DIMACS benchmark were taken, so that the known maxi-
mum clique sizes could be translated to corresponding mini-
mum vertex covers2.

3.1 Experimental Methodology
We have tested five algorithms: SHC, TS, SA (withT =
100, α = 0.95), COMPSETover SHC andCOMPSETover TS.
TS was used witht = 5 for all domains other than SAT, and
t = 9 for SAT. Each run was limited to107 U evaluations.

All algorithms use random restart to escape from local
optima when they have still not exhausted their evaluations
quota. They use random restart also when there is no im-
provement over the lastk steps. We usek = 10 for domains
other than SAT, andk = 20 for SAT. SAT is characterized by
wide and frequent plateaus[Franket al., 1997] therefore we
chose higher values oft andk for it.

100 runs of each algorithm were performed on each prob-
lem in the test sets. Each run started from a random state, that
was common to all algorithms. We measured the number of
U evaluations needed to obtain the optimal solution in each
run, as well as the time taken.

3.2 Results
The results are summarized in Tables 1, 2, 3 and 4. For
brevity, we did not include the timing information in these
tables. The considered algorithms do not introduce a signif-
icant overhead, so the execution time is a linear function of
the number ofU evaluations. The tables show the charac-
teristics of the problem instance, followed by the number of
successful runs (columns titled#ok) and the average number
of U evaluations for each algorithm. A successful run is a
run in which the algorithm has found the optimal solution
within the limit. We tested the statistical significance of the
improvement introduced byCOMPSET using the Wilcoxon
matched-pairs signed-ranks test with the extension by Etzioni
and Etzioni[1994] to cope with censored data3. A ”+” sign in
the sg. column between SHC andCOMPSET/SHC indicates
thatCOMPSET improved SHC withp < 0.05. A ”-” sign in-
dicates that SHC performed better withp < 0.05. A ”?” sign
indicates that the difference is not significant. Whenever it is
not possible to draw definitive conclusions since there is too
much censored data,n/a appears. The same holds for thesg.
column between TS andCOMPSET/TS.

The superiority ofCOMPSETover the other algorithms is
striking, both in the number of evaluations, and the num-
ber and difficulty of instances solved. In the SAT do-
main, the best performing algorithms areCOMPSET/TS and

2Note that while it is possible to take the complementary graph,
solve the Max Clique problem, and then translate back to Vertex
Cover, none of the algorithms in this paper has done so.

3The information about runs in which the solution was not found
within the given bound is calledtruncatedor censored.

COMPSET/SHC. The average success ratio ofCOMPSET/TS
is 85% and ofCOMPSET/SHC is 76%. For comparison, the
success ratios for SA, TS and SHC are 37%, 23% and 28%
respectively. The speedup factor gained by usingCOMPSET
is as large as 462 for SHC (instance uf50-011) and as large
as 156 for TS (instance uf75-013). Note that these are lower
bounds since SHC and TS were terminated because of re-
source limit for some of the runs.

The best performing algorithms in the Max Clique do-
main are COMPSET/SHC and SHC with average success
ratios of 94% and 80% respectively. The speed up fac-
tor of COMPSET/SHC over SHC is as large as 14 (instnace
sanr2000.7).

In the Knapsack domain, the best performing algorithm is
COMPSET/SHC with an average success ratio of 89%. For
comparison, the success ratios for TS, SA,COMPSET/SHC
and SHC are 50%, 25%, 19% and 17% respectively. The
speedup factor gained by usingCOMPSET is as large as 127
for TS (instance WEISH07) and as large as 3.8 for SHC (in-
stance WEISH04).

The best performing algorithms in the Vertex Cover do-
main areCOMPSET/SHC and SHC with average success ra-
tios of 94% and 77% respectively. SA is relatively close with
71% but TS is far behind with 23%, improved byCOMPSET
to 28%. The speedup factor gained by usingCOMPSET is as
large as 310 for TS (instance hamming6-2) and as large as 10
for SHC (instance sanr2000.7).

Another interesting statistics is the number of random
restarts required by the underlying search algorithm and
COMPSET, as well as the number of operator elimina-
tions performed byCOMPSETand how many operators they
spanned. We have collected this data throughout 100 runs on
the phat1000-1 vertex cover problem, a graph of 1000 ver-
tices. SHC required 517.37 random restarts on average (in
each run), whileCOMPSET required only 3.13.COMPSET
has performed 20.52 operator eliminations, reversing the ef-
fect of 2.97 operators each time.

4 Conclusions and Future Work
In this paper, we have provided useful insights into the do-
main of subset selection. We have realized that using lo-
cal search, paths from complementary subsets to the solution
must be distinct in terms of the operators used. This has led
us to conclude that if the paths contain common operators, it
may serve as an indication of a mistake. To test our conjec-
ture, we introducedCOMPSET, a new guiding policy for local
search algorithms in the context of SSP. The results show a
significant improvement over both TS and SHC by up to two
orders of magnitudes.

We currently in the process of runningCOMPSETon other
subset selection domains, progressing towards a better under-
standing of its behavior. One interesting direction is to re-
search for ways to incorporate knowledge of the entire search
paths, instead of only the local minima at their end. In ad-
dition, it is beneficial to find out how characteristics of a
specific problem affect its performance. Overall, the general
idea of incorporating such SSP specific insights seems to be
a promising lead to better subset selection algorithms.

3-SAT Instances SHC COMPSET/SHC TS COMPSET/TS SA
name vars clauses #ok evals sg. #ok evals #ok evals sg. #ok evals #ok evals

uf20-011 20 91 100 211 + 100 167 100 309 ? 100 275 82 1,800,168
uf20-012 20 91 100 115 ? 100 102 100 190 ? 100 201 100 197
uf20-013 20 91 100 576 ? 100 655 100 1,089 ? 100 940 57 4,300,196
uf20-014 20 91 100 590 ? 100 596 100 872 ? 100 863 72 2,800,287
uf20-015 20 91 100 243 ? 100 256 100 421 ? 100 361 98 201,003
uf50-011 50 218 74 5,920,013 + 100 12,792 100 160,575 + 100 17,250 11 8,900,193
uf50-012 50 218 100 1,162,273 + 100 10,624 100 36,955 ? 100 35,072 22 7,800,249
uf50-013 50 218 100 1,682,981 + 100 3,803 100 45,616 + 100 9,275 65 3,501,795
uf50-014 50 218 100 1,995,884 + 100 6,704 100 66,185 + 100 14,317 40 6,001,598
uf50-015 50 218 99 1,005,804 + 100 2,547 100 33,894 + 100 7,335 68 3,201,009
uf75-011 75 325 0 - + 100 80,928 16 9,137,745 + 100 142,969 37 6,306,563
uf75-012 75 325 0 - + 100 409,036 12 9,375,096 + 100 579,683 5 9,500,223
uf75-013 75 325 0 - + 100 9,700 63 5,890,614 + 100 37,587 56 4,404,356
uf75-014 75 325 0 - + 100 22,677 50 7,364,576 + 100 77,866 41 5,904,975
uf75-015 75 325 0 - + 100 89,098 27 8,595,672 + 100 179,802 53 4,762,145
uf100-011 100 430 0 - + 100 289,359 0 - + 100 450,070 16 8,404,825
uf100-012 100 430 0 - + 100 130,835 0 - + 100 309,667 37 6,321,626
uf100-013 100 430 0 - + 100 158,180 0 - + 100 376,166 40 6,011,208
uf100-014 100 430 0 - + 100 872,275 0 - + 100 966,083 41 6,175,183
uf100-015 100 430 0 - + 100 283,024 0 - + 100 361,632 19 8,110,739
uf125-011 125 538 0 - + 100 544,188 0 - + 100 496,277 28 7,211,118
uf125-012 125 538 0 - + 100 786,882 0 - + 100 1,048,369 21 7,908,011
uf125-013 125 538 0 - n/a 52 7,202,045 0 - + 87 4,471,437 11 8,906,967
uf125-014 125 538 0 - n/a 46 7,653,790 0 - n/a 67 6,388,535 4 9,601,212
uf125-015 125 538 0 - + 100 1,574,893 0 - + 100 1,597,965 10 9,001,632
uf150-011 150 645 0 - + 100 1,129,916 0 - + 100 650,899 66 3,458,095
uf150-012 150 645 0 - n/a 7 9,525,999 0 - n/a 48 6,722,510 17 8,332,034
uf150-013 150 645 0 - + 82 4,429,762 0 - + 100 1,037,124 64 3,750,319
uf150-014 150 645 0 - n/a 49 6,748,236 0 - + 97 3,384,813 15 8,507,697
uf150-015 150 645 0 - n/a 11 9,373,759 0 - n/a 48 7,193,000 15 8,517,484
uf200-011 200 860 0 - n/a 2 9,811,767 0 - n/a 7 9,703,756 10 9,013,804
uf200-012 200 860 0 - n/a 0 - 0 - n/a 24 8,434,746 14 8,642,899
uf200-013 200 860 0 - n/a 7 9,506,131 0 - n/a 39 7,769,246 15 8,546,974
uf200-014 200 860 0 - n/a 2 9,857,446 0 - n/a 41 6,907,585 40 6,121,901
uf200-015 200 860 0 - n/a 1 9,900,146 0 - n/a 3 9,766,815 4 9,648,972

Table 1: SAT: average over all 100 runs, including censored data

Graphs SHC COMPSET/SHC TS COMPSET/TS SA
name |V | opt #ok evals sg. #ok evals #ok evals sg. #ok evals #ok evals

brock2001 200 21 41 7,953,200 + 98 2,485,541 0 - n/a 0 - 24 8,880,969
hamming6-2 64 32 100 659 ? 100 633 80 2,984,249 + 100 14,163 100 1,129
hamming6-4 64 4 100 302 ? 100 275 100 1,794 ? 100 1,807 100 517
hamming8-2 256 128 100 4,317 ? 100 4,519 6 9,402,266 n/a 14 8,612,975 100 6,486
hamming8-4 256 16 100 8,924 + 100 6,609 45 5,514,223 n/a 54 4,619,182 100 18,546
hamming10-2 1024 512 100 36,837 ? 100 38,312 6 9,438,856 n/a 6 9,438,856 100 54,520
hamming10-4 1024 40 62 6,716,761 n/a 70 6,336,176 0 - n/a 0 - 36 7,956,686
johnson8-2-4 28 4 100 81 ? 100 90 100 299 ? 100 305 100 204
johnson8-4-4 70 14 100 1,208 + 100 898 45 5,575,650 + 97 1,005,066 100 2,802
johnson16-2-4 120 8 100 740 ? 100 631 100 6,470 ? 100 6,305 100 745
johnson32-2-4 496 16 100 4,661 ? 100 4,661 83 1,798,068 + 85 1,600,804 100 4,843
p hat700-1 700 11 38 8,029,518 + 92 3,471,758 1 9,902,542 n/a 1 9,902,542 6 9,658,510
p hat700-2 700 44 100 361,250 + 100 92,712 1 9,902,564 n/a 1 9,902,564 100 639,270
p hat700-3 700 62 100 912,534 + 100 224,936 0 - n/a 0 - 100 1,513,576
p hat1000-1 1000 10 92 3,764,601 + 100 891,693 4 9,619,971 n/a 4 9,619,971 69 6,161,992
p hat1000-2 1000 46 100 1,177,655 + 100 211,710 0 - n/a 0 - 100 1,645,523
p hat1000-3 1000 68 43 7,490,258 + 100 1,253,011 0 - n/a 0 - 31 8,610,929
p hat1500-1 1500 12 0 - n/a 3 9,926,760 0 - n/a 0 - 0 -
p hat1500-2 1500 65 99 2,215,890 + 100 369,480 0 - n/a 0 - 98 2,629,112
p hat1500-3 1500 94 86 4,982,543 + 100 1,943,943 0 - n/a 0 - 73 5,884,335
sanr2000.7 200 18 100 2,189,803 + 100 151,344 0 - n/a 1 9,900,505 91 3,530,091
sanr2000.9 200 42 96 2,871,830 + 100 530,846 0 - n/a 0 - 73 5,535,066
sanr4000.5 400 13 26 8,561,953 + 86 4,167,521 0 - n/a 0 - 7 9,683,128
sanr4000.7 400 21 37 8,029,818 + 95 3,493,629 0 - n/a 0 - 11 9,252,956

Table 2: Maximum Clique: average over all 100 runs, including censored data

References

[Baluja, 1995] S. Baluja. An empirical comparison of seven
iterative and evolutionary function optimization heuristics.
Technical Report CMU-CS-95-193, School of Computer
Science, CMU, 1995.

[Beasley, 1997] J. E. Beasley. OR-library: a collection of test
data sets. Technical report, Management School, Imperial
College, London, 1997.

[Cheesemanet al., 1991] P. Cheeseman, B. Kanefsky, and
W. M. Taylor. Where the really hard problems are. In
Proceedings of IJCAI-91, pages 331–336, 1991.

[DIMACS, 1993] DIMACS. Challenge problems for maxi-
mum clique, dimacs.rutgers.edu., 1993.

[Etzioni and Etzioni, 1994] O. Etzioni and R. Etzioni. Statis-
tical methods for analyzing speedup learning experiments.
Machine Learning, 14(1):333–347, 1994.

[Evans, 1998] Isaac K. Evans. Evolutionary algorithms for
vertex cover. In V. W. Porto, N. Saravanan, D. Waagen,
and A. E. Eiben, editors,Evolutionary Programming VII,
pages 377–386, 1998.

[Franket al., 1997] J. Frank, P. Cheeseman, and J. Stutz.
When gravity fails: Local search topology.Journal of Ar-
tificial Intelligence Research, 7:249–281, 1997.

Problems SHC COMPSET/SHC TS COMPSET/TS SA
name n m opt #ok evals sg. #ok evals #ok evals sg. #ok evals #ok evals

HP1 28 4 3418 80 4,911,555 n/a 56 6,544,038 100 719,239 - 98 1,968,905 96 3,404,960
HP2 35 4 3186 13 9,252,758 n/a 7 9,594,786 53 6,704,029 n/a 65 6,402,176 17 9,235,896
PB1 27 4 3090 96 3,072,586 - 87 3,952,437 100 670,184 - 100 1,200,320 100 1,982,159
PB2 34 4 3186 16 9,158,395 n/a 8 9,670,627 61 5,895,593 n/a 76 5,213,605 31 8,258,914
PB4 29 2 95168 12 9,400,912 n/a 14 9,278,001 100 141,267 - 100 186,156 2 9,958,448
PB5 20 10 2139 100 352,913 ? 100 299,587 100 80,253 - 100 735,297 100 318,187
PB6 40 30 776 74 5,420,914 n/a 74 5,318,641 30 7,715,915 + 100 17,418 25 8,949,831
PB7 37 30 1035 0 - n/a 2 9,866,520 44 7,526,288 + 100 168,889 40 7,654,095
SENTO1 60 30 7772 0 - n/a 0 - 1 9,900,037 + 100 167,722 0 -
SENTO2 60 30 8722 0 - n/a 0 - 0 - + 93 3,742,251 0 -
WEING1 28 2 141278 1 9,951,662 n/a 1 9,967,393 100 430,212 ? 100 295,032 1 9,913,058
WEING2 28 2 130883 1 9,988,929 n/a 1 9,920,886 86 4,325,976 ? 90 4,249,753 0 -
WEING3 28 2 95677 7 9,669,592 n/a 3 9,851,757 37 8,002,117 n/a 38 7,917,398 1 9,922,652
WEING4 28 2 119337 45 7,854,172 n/a 39 8,067,189 100 352,464 + 100 122,820 19 8,968,454
WEING5 28 2 98796 9 9,355,108 n/a 7 9,720,010 79 4,962,961 n/a 80 4,560,088 3 9,894,039
WEING6 28 2 130623 2 9,896,760 n/a 1 9,961,823 100 2,190,253 ? 99 2,263,775 1 9,950,248
WEISH01 30 5 4554 0 - n/a 8 9,627,601 100 142,532 + 100 6,808 56 6,542,273
WEISH02 30 5 4536 15 9,256,801 n/a 19 9,029,940 100 203,812 + 100 4,981 96 3,118,697
WEISH03 30 5 4115 13 9,367,427 n/a 44 7,691,588 100 133,341 + 100 15,052 92 4,043,836
WEISH04 30 5 4561 50 7,207,287 + 100 1,860,648 100 27,689 + 100 1,944 100 1,645,413
WEISH05 30 5 4514 93 3,749,094 + 100 1,856,242 100 45,793 + 100 3,300 96 2,753,007
WEISH06 40 5 5557 0 - n/a 0 - 34 7,450,036 + 100 237,437 5 9,752,363
WEISH07 40 5 5567 0 - n/a 2 9,904,913 41 7,047,862 + 100 55,207 16 9,189,652
WEISH08 40 5 5605 0 - n/a 1 9,993,609 15 9,186,377 + 99 1,988,697 5 9,797,464
WEISH09 40 5 5246 0 - n/a 1 9,965,165 51 6,243,931 + 100 62,502 1 9,981,328
WEISH10 50 5 6339 0 - n/a 0 - 12 9,041,645 + 100 185,651 0 -
WEISH11 50 5 5643 0 - n/a 0 - 7 9,393,532 n/a 79 4,126,644 0 -
WEISH12 50 5 6339 0 - n/a 0 - 12 8,933,081 + 100 287,267 0 -
WEISH13 50 5 6159 0 - n/a 0 - 11 9,123,859 + 99 1,041,062 0 -
WEISH14 60 5 6954 0 - n/a 0 - 1 9,901,672 + 94 2,668,066 0 -
WEISH15 60 5 7486 0 - n/a 0 - 11 9,008,543 + 100 729,395 0 -
WEISH16 60 5 7289 0 - n/a 0 - 0 - n/a 49 6,847,342 0 -
WEISH17 60 5 8633 0 - n/a 0 - 1 9,906,889 + 100 1,344,074 2 9,844,304
WEISH18 70 5 9580 0 - n/a 0 - 2 9,843,393 n/a 49 7,382,229 0 -
WEISH19 70 5 7698 0 - n/a 0 - 0 - n/a 4 9,705,819 0 -
WEISH20 70 5 9450 0 - n/a 0 - 1 9,935,892 + 83 4,260,796 0 -

Table 3: Knapsack: average over all 100 runs, including censored data

Graphs SHC COMPSET/SHC TS COMPSET/TS SA
name |V | opt #ok evals sg. #ok evals #ok evals sg. #ok evals #ok evals

brock2001 200 179 44 7,703,031 + 97 2,407,132 0 - n/a 0 - 24 8,706,894
hamming6-2 64 32 100 705 ? 100 663 74 3,241,435 + 100 10,444 100 1,258
hamming6-4 64 60 100 325 ? 100 299 100 1,813 ? 100 1,790 100 535
hamming8-2 256 128 100 4,442 ? 100 4,642 11 8,903,987 n/a 27 7,320,998 100 6,176
hamming8-4 256 240 100 9,399 + 100 6,287 39 6,112,570 n/a 49 5,117,786 100 18,168
hamming10-2 1024 512 100 44,727 + 100 38,674 5 9,535,915 n/a 7 9,353,124 100 59,437
hamming10-4 1024 984 58 6,412,744 n/a 71 5,645,469 0 - n/a 0 - 37 7,811,420
johnson8-2-4 28 24 100 75 ? 100 75 100 292 ? 100 292 100 201
johnson8-4-4 70 56 100 1,122 ? 100 962 52 4,911,854 + 98 632,835 100 2,889
johnson16-2-4 120 112 100 618 ? 100 618 99 106,329 ? 100 6,423 100 742
johnson32-2-4 496 480 100 4,564 ? 100 4,564 79 2,192,741 n/a 79 2,192,741 100 4,339
p hat700-1 700 689 24 8,778,686 + 96 3,214,600 1 9,902,454 n/a 1 9,902,454 10 9,588,452
p hat700-2 700 656 100 461,639 + 100 102,745 0 - n/a 0 - 100 630,340
p hat700-3 700 638 100 1,189,058 + 100 210,935 0 - n/a 0 - 100 1,507,522
p hat1000-1 1000 990 86 3,917,288 + 100 829,765 1 9,905,190 n/a 1 9,905,190 60 6,770,941
p hat1000-2 1000 954 100 1,562,316 + 100 195,142 1 9,904,961 n/a 1 9,904,961 100 2,048,317
p hat1000-3 1000 932 32 8,093,992 + 100 1,163,768 0 - n/a 0 - 22 8,633,648
p hat1500-1 1500 1488 0 - n/a 2 9,958,079 0 - n/a 0 - 0 -
p hat1500-2 1500 1435 99 2,210,577 + 100 408,447 0 - n/a 0 - 96 2,669,373
p hat1500-3 1500 1406 75 5,533,569 + 100 2,070,512 0 - n/a 0 - 74 5,381,934
sanr2000.7 200 182 99 1,922,341 + 100 181,238 0 - n/a 0 - 85 4,625,237
sanr2000.9 200 158 98 3,074,483 + 100 551,969 0 - n/a 1 9,900,390 78 5,005,884
sanr4000.5 400 387 15 9,083,301 + 87 4,860,526 0 - n/a 0 - 8 9,662,423
sanr4000.7 400 379 27 8,500,584 + 96 2,838,407 0 - n/a 0 - 9 9,543,268

Table 4: Vertex cover: average over all 100 runs, including censored data

[Gent and Walsh, 1993] Ian P. Gent and Toby Walsh. To-
wards an understanding of hill-climbing procedures for
SAT. In National Conference on AI, pages 28–33, 1993.

[Glover and Laguna, 1993] F. Glover and M. Laguna. Tabu
search. In C. Reeves, editor,Modern Heuristic Techniques
for Combinatorial Problems, 1993.

[Hoos and Sẗutzle, 2000] Holger H. Hoos and Thomas
Stützle. SATLIB: An Online Resource for Research on
SAT. In SAT20000: Highlights of Satisfiability Research
in the year 2000, pages 283–292. 2000.

[Hoos and Sẗutzle, 2005] Holger H. Hoos and Thomas
Stützle. Stochastic Local Search - Foundations and Ap-

plications. Morgan Kaufman Publishers, 2005.

[Khuri and B̈ack, 1994] S. Khuri and T. B̈ack. An evolution-
ary heuristic for the minimum vertex cover problem. In
Genetic Algorithms within the Framework of Evolutionary
Computation, pages 86–90, 1994.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt, and
M. P. Vecchi. Optimization by simulated annealing.Sci-
ence, 220, 4598:671–680, 1983.

[Mitchell et al., 1994] M. Mitchell, J. H. Holland, and
S. Forrest. When will a genetic algorithm outperform hill
climbing. In Advances in NIPS, volume 6, pages 51–58,
1994.

