
Shallow Semantics for Relation Extraction

Sanda Harabagiu, Cosmin Adrian Bejan and Paul Morărescu
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688, USA

sanda,ady,paul@hlt.utdallas.edu

Abstract

This paper presents a new method for extracting
meaningful relations from unstructured natural lan-
guage sources. The method is based on informa-
tion made available by shallow semantic parsers.
Semantic information was used (1) to enhance a
dependency tree kernel; and (2) to build semantic
dependency structures used for enhanced relation
extraction for several semantic classifiers. In our
experiments the quality of the extracted relations
surpassed the results of kernel-based models em-
ploying only semantic class information.

1 Introduction
With the advent of the Internet, more and more information
is available electronically. Most of the time, information on
the Internet is unstructured, generated in textual form. One
way of automatically identifying information of interest from
the vast Internet resources is by recognizing relevant entities
and meaningful relations they share. Examples of entities are
PERSONS, ORGANIZATIONS and LOCATIONS. Examples of
relations are ROLE, NEAR and SOCIAL.

In the 90s, the Message Understanding Conferences
(MUCs) and the TIPSTER programs gave great impetus to
research in information extraction (IE). The systems that par-
ticipated in the MUCs have been quite successful at recog-
nizing relevant entities, reaching near-human precision with
over 90% accuracy. More recently, the Automatic Content
Extraction (ACE) program focused on identifying not only
relevant entities, but also meaningful relations between them.
If success in recognizing entities with high precision was at-
tributed to the usage of finite-state transducers, in the last
three years the dominant successful technique for extracting
relations was based on kernel methods.

Kernel methods are non-parametric density estimation
techniques that compute a kernel function to measure the sim-
ilarity between data instances. [8] introduced the formaliza-
tion of relation extraction in terms of tree kernels, which are
kernels that take advantage of syntactic trees. [1] extended the
work by using dependency trees that describe the grammati-
cal relations between the words of a sentence. Furthermore,
each word of a dependency tree is augmented with lexico-
semantic information, including semantic information avail-

able from the WordNet database [2]. The average precision
of relation extraction using dependency trees was reported in
[1] to be 67.5%. Since meaningful relations between relevant
entities are of semantic nature, we argue that additional se-
mantic resources should be used for extracting relations from
texts. In this work, we were interested in investigating the
contribution of two shallow semantic parsing techniques to
the quality of relation extraction.

We explored two main resources: PropBank and
FrameNet. Proposition Bank or PropBank is a one mil-
lion word corpus annotated with predicate-argument struc-
tures. The corpus consists of the Penn Treebank 2 Wall
Street Journal texts (www.cis.upenn.edu/∼treebank). The
PropBank annotations were performed at University of
Pennsylvania (www.cis.upenn.edu/∼ace). To date Prop-
Bank has addressed only predicates lexicalized by verbs,
proceeding from the most to the least common verbs
while annotating verb predicates in the corpus. The
FrameNet project (www.icsi.berkeley.edu/∼framenet) pro-
duced a lexico-semantic resource encoding a set of frames,
which represent schematic representations of situations char-
acterized by a set of target words, or lexicalized predicates,
which can be verbs, nouns or adjectives. In each frame, vari-
ous participants and conceptual roles are related by case-roles
or theta-roles which are called frame elements or FEs. FEs
are local to each frame, some are quite general while oth-
ers are specific to a small family of lexical items. FrameNet
annotations were performed on a corpus of over three mil-
lion words. Recently, semantic parsers using PropBank and
FrameNet have started to become available. In each sentence,
verbal or nominal predicates are discovered in relation to their
arguments or FEs. Our investigation shows that predicate-
arguments structures and semantic frames discovered by shal-
low semantic parsers play an important role in discovering
extraction relations. This is due to the fact that arguments
of extracted relations belong to arguments of predicates or to
FEs.

To investigate the role of semantic information for relation
extraction we have used two shallow semantic parsers, one
trained on PropBank and one on FrameNet. We used the
semantic information identified by the parsers in two ways.
First it was used to enhance the features of dependency ker-
nels. Second, it was used to generate a new representation,
called semantic dependency structure. The results of the ex-

periments indicate that not only the precision of kernel meth-
ods is improved, but also relation extraction based on shallow
semantics outperforms kernel-based methods.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the semantic parsers. Section 3 details the
kernel methods and their enhancement with semantic infor-
mation. In Section 4 we show how relation extraction based
on semantic information is produced. Section 5 details the
experimental results and Section 6 summarizes our conclu-
sions.

2 Shallow Semantic Parsing

Shallow semantic information represented by predicates and
their arguments, or frames and their FEs, can be identified
in text sentences by semantic parsers. The idea of automat-
ically identifying and labeling shallow semantic information
was pioneered by [3]. Semantic parsers operate on the output
of a syntactic parser. When using the PropBank information,
the semantic parser (1) identifies each verbal predicate and (2)
labels its arguments. The expected arguments of a predicate
are numbered sequentially from Arg0 to Arg5. Additionally,
the arguments may include functional tags from Treebank,
e.g. ArgM-DIR indicates a directional, ArgM-LOC indicates
a locative and ArgM-TMP stands for a temporal. When us-
ing the FrameNet information, the semantic parser (1) iden-
tifies the target words; (2) disambiguates the semantic frame
for each target word; and (3) labels the FEs that relate to the
target word based on the frame definition. For example, in
FrameNet the EMPLOYMENT frame has the FEs: Employee,
Employer, Purpose, Compensation, Manner, Place, Position,
Time, Field, Duration and Task.

S

Task 2:

The Chippewas

ArgM

[as a lobbyist][Eckstein]

[as a lobbyist]

Employer TARGET PositionEmployee

Arg0 Arg1PREDICATE(PropBank)

(FrameNet)

S
yn

ta
ct

ic
 P

ar
se

 T
re

e

NP

VP NP PP
NP

asEcksteinhired

VP

hired[The Chippewas]

[Eckstein]hired[The Chippewas]Task 1:

Task 2:

Task 1:

a lobbyist

Parser
Semantic

Parser
Semantic

Figure 1: Sentence with labeled semantic roles.

Figure 1 illustrates the output of both semantic parsers
when processing a sentence. The parsing consists of two
tasks: (1) identifying the parse tree constituents correspond-
ing to arguments of each predicate or FEs of each frame; and
(2) recognizing the role corresponding to each argument or
FE. Each task is cast as a separate classifier. For example,
task 1 identifies the two NPs and the PP as arguments and
FEs respectively. The second classifier assigns the specific
roles: Arg0, Arg1 and ArgM given the predicate “hired” and
FEs Employer, Employee and Position given the target word
“hired”. In the case of semantic parsing parsed on FrameNet,
a third task of finding the frame corresponding to the sentence
is cast as a third classification problem.

are preserved.
of the evaluated phrase. Case and morphological information
− HEAD WORD (hw) − This feature contains the head word

− PARSE TREE PATH (path): This feature contains the path
in the parse tree between the predicate phrase and the

labels linked by direction symbols (up or down), e.g.

− PHRASE TYPE (pt): This feature indicates the syntactic

noun phrases only, and it indicates if the NP is dominated
by a sentence phrase (typical for subject arguments with
active−voice predicates), or by a verb phrase (typical
for object arguments).

− GOVERNING CATEGORY (gov) − This feature applies to

type of the phrase labeled as a frame element, e.g.

target word, expressed as a sequence of nonterminal

− TARGET WORD − In our implementation this feature

(2) LEMMA which represents the target normalized to lower
the case and morphological information preserved; and
consists of two components: (1) WORD: the word itself with

case and infinitive form for the verbs or singular for nouns.

NP for Employer in Figure 1.

NP S VP VP for Employer in Figure 1.

− VOICE (voice) − This feature distinguishes between
active or passive voice for the predicate phrase.

− POSITION (pos) − Indicates if the constituent appears
before or after the predicate in the sentence.

Figure 2: Feature Set 1 (FS1).

BOOLEAN NAMED ENTITY FLAGS − A feature set comprising:
− neOrganization: set to 1 if an organization is recognized in the phrase
− neLocation: set to 1 a location is recognized in the phrase
− nePerson: set to 1 if a person name is recognized in the phrase
− neMoney: set to 1 if a currency expression is recognized in the phrase
− nePercent: set to 1 if a percentage expression is recognized in the phrase
− neTime: set to 1 if a time of day expression is recognized in the phrase
− neDate: set to 1 if a date temporal expression is recognized in the phrase

word from the constituent, different from the head word.
− CONTENT WORD (cw) − Lexicalized feature that selects an informative

PART OF SPEECH OF HEAD WORD (hPos) − The part of speech tag of
the head word.

PART OF SPEECH OF CONTENT WORD (cPos) −The part of speech
tag of the content word.

NAMED ENTITY CLASS OF CONTENT WORD (cNE) − The class of
the named entity that includes the content word

Figure 3: Feature Set 2 (FS2).

Several classifiers were previously tried for this problem:
decision trees [7], and Support Vector Machines (SVMs) [6].
Based on the results of the CoNLL and Senseval-3 evalua-
tions1, we selected an implementation based on SVMs, us-
ing the SVMlight package 2. For the semantic parser based
on PropBank, we combined feature sets: FS1 (illustrated in
Figure 2) introduced in [3], FS2 (illustrated in Figure 3) in-
troduced in [7], FS3 (illustrated in Figure 4) introduced in
[6]. For the semantic parser based on FrameNet we have also
added the feature set FS4 (illustrated in Figure 5). The se-

1The Conference on Natural Language Learning (CoNLL)
(http://cnts.uia.ac.be/signll/shared.html) has focused in 2004 on the
problem of semantic role labeling, using PropBank data. Senseval-
3 (www.senseval.org/senseval3) had a semantic role labeling task,
using FrameNet data.

2http://svmlight.joachims.org/

mantic parser using FrameNet also required the disambigua-
tion of the frame. To disambiguate the frame, we used the
BayesNet algorithm implemented in the Weka learning pack-
age 3. The features that were used are (1) the target word; (2)
the part-of-speech of the target word; (3) the phrase type of all
the FEs (e.g. NP, VP, PP); and (4) the grammatical function.
The grammatical function is defined in Figure 4. To learn
the grammatical function, we again used the SVM with the
features FS1, FS2, the features Human and Target-Type
from FS3 and only the feature PP-PREP from FS4.

SUPPORT_VERBS that are recognized for adjective or noun target words
have the role of predicate for the FEs. For example, if the target = clever,
in the sentence "Smith is very clever, but he’s no Einstein", the
FE = Smith is an argument of the support verb ’is’ rather than of the
target word. The values of this feature are either (1) The POS of the head
of the VP containing the target word or (2) NULL if the target word does
not belong to a VP

or ADJECTIVE

LIST_CONSTITUENT (FEs): This feature represents a list of the syntactic

Grammatical Function: This feature indicates whether the FE is:
− an External Argument (Ext)
− an Object (Obj)
− a Complement (Comp)
− a Modifier (Mod)
− Head noun modified by attributive adjective (Head)
− Genitive determiner (Gen)
− Appositive (Appos)

LIST_Grammatical_Function: This feature represents a list of the
grammatical functions of the FEs recognized in the sentence.

in each sentence.

FRAME_NAME: This feature indicates the name of the semantic frame
for which FEs are labeled

COVERAGE: This feature indicates whether there is a syntactic structure
in the parse tree that perfectly covers the FE

CORE: This feature indicates whether the FE is one that instantiates
a conceptually necessary participant of a frame. For example, in the
REVENGE frame, Punishment is a core element. The values of this feature
are: (1) core; (2) peripheral and (3) extrathemathic. FEs that mark notions
such as Time, Place, Manner and Degree are peripheral. Extratematic
FEs situate an event against a backdrop of another event, by evoking
a larger frame for which the target event fills a role.

SUB_CORPUS: In FrameNet, sentences are annotated with the name
of the subcorpus they belong to. For example, for a verb target word,
V−swh represents a subcorpus in which the trget word is a predicate
to a FE included in a relative clause headed by a wh−word.

(2) a hyponym of sense 1 of PERSON in WordNet
(1) a personal pronoun or

HUMAN: This feature indicates whether the syntactic phrase is either

TARGET−TYPE: the lexical class of the target word, e.g. VERB, NOUN

consituents covering each FE of the frame recognized in a sentence.
For the example illustrated in Figure 1, the list is: [NP, NP, PP]

NUMBER_FEs: This feature indicates how many FEs were recognized

Figure 4: Feature Set 3 (FS3).

3 Dependency Tree Kernels
In [1] the relation extraction problem was cast as a classifi-
cation problem based on kernels that operate on dependency
trees. Kernels measure the similarity between two instances
of a relation. If X is the instance space, a kernel function
is a mapping K:X×X→[0,∞) such that given two instances

3http://www.cs.waikato.ac.nz/∼ml

PARSE TREE PATH WITH UNIQUE DELIMITER − This feature removes
the direction in the path, e.g. VBN−VP−ADVP

PARTIAL PATH − This feature uses only the path from the constituent to
the lowest common ancestor of the predicate and the constituent

FIRST WORD − First word covered by constituent

FIRST POS − POS of first word covered by constituent

LEFT CONSTITUENT − left sibling constituent label

RIGHT HEAD − Right sibling head word

RIGHT POS HEAD − Right sibling POS of head word

LAST POS − POS of last word covered by the constituent

LEFT HEAD − Left sibling head word

LEFT POS HEAD − Left sibling POS of head word

RIGHT CONSTITUENT − right sibling constituent label

PP PREP − If constituent is labeled PP get first word in PP

DISTANCE − Distance in the tree from constituent to the target word

LAST WORD − Last word covered by the constituent

Figure 5: Feature Set 4 (FS4).

x and y, K(x, y) =
∑

i φi(x)φi(y) = φ(x) · φ(y), where
φi(x) is some feature function over the instance x. The in-
stances can be represented in several ways. First, each sen-
tence where a relation of interest occurs can be viewed as a
list of words. Thus, the similarity between two instances rep-
resented in this way is computed as the number of common
words between the two instance sentences. All words from
instances x and y are indexed and φi(x) is the number of
times instance x contains the word referenced by i. Such a
kernel is known as bag-of-words kernel. When sentences are
represented as strings of words, string kernels, count the num-
ber of common subsequences in the two strings and weight
their matches by their length. Thus φi(x) is the number of
times string x contains the subsequence referenced by i. If
the instances are represented by syntactic trees, more com-
plex kernels are needed. A class of kernels, called convolu-
tion kernels, was proposed to handle such instance represen-
tations. Convolution kernels measure the similarity between
two structured instances by summing the similarity of their
substructures. Thus, given all possible substructures in in-
stances x and y, φi(x) counts not only the number of times
the substructure referenced by i is matched into x, but also
how many times it is matched into any of its substructures.

Given a training set T={x1, . . . xN}, kernel methods com-
pute the Gram matrix G such that Gij=K(xi, xj). G enables
a classifier to find a hyperplane which separates instances of
different classes. G enables classifiers to find a separating hy-
perplane that separates positive and negative examples. When
a new instance y needs to be classified, y is projected into the
feature space defined by the kernel function. Classification
consists of determining on which side of the separating hy-
perplane y lies. Support Vector Machines(SVMs) formulate
the task of finding the separating hyperplane as a solution to a
quadratic programming problem.Therefore, following the so-
lution proposed by [1], they are used for classifying relation
instances in texts.

To measure the similarity between two instances of the

NP

Masachusetts state trooperA is

demanding

an apology from

one

of

the attorneys

who

until represented

British au pair Louise Woodward

NNPNNFWNPBNPB

IN NP

PPWP

NNDT

NPB

NPIN

PPCD

NP

PP

DT

NPVBG

VP

VP

S

NN NN VBZNNPDT

NN IN

NNP

A Masachusetts state trooper is

one

of

the attorneys

who

until

British au pair Louise Woodward

NNP

(Woodward)

NPB NPB FW NN NNP

NP

VP

VBDNPIN

PP

S

SBAR

WHNP

WP

NNDT

NPB

NPIN

PPCD

NP

PP

IN

fromapology

NN

an

DT

VBG

VP

VP

VBZNNNNNNPDT

NP

S

(represented)

(represented)

(yesterday)

(represented)(attorneys)

(attorneys)

(attorneys)

(attorneys)

(attorneys)(apology)

(demanding)

(demanding)

(demanding)

(trooper)

represented

NP

WHNP

SBAR

S

VP

VBD NP

demanding

yesterday

yesterday

(a)

(b)

(c)

REL−A
Arg0
Employee

REL−B
Arg1
Employer

demanding

apologytrooper

yesterday Woodward

represented

attorneys

trooper

demanding

apology

Woodwardyesterday

represented

attorneys

Predicate/Target

(d)

Figure 6: (a) Syntactic parse; (b) Head word propagation; (c) Dependency tree; (d) Semantic dependency tree.

same extraction relation both [1] and [8] relied on kernels
that operate on trees expressing syntactic information. To
build such a tree we have used the Collins syntactic parser.
When using this parser, for each constituent in the parse tree,
we also have access to a dependency model that enables the
mapping of parse trees into sets of binary relations between
the head-word of each component and its sibling words. For
example, Figure 6(a) describes the parse tree of a sentence.
For each possible constituent in the parse tree, rules first de-
scribed in [4] identify the head-child and propagate the head
word to the parent. Figure 6(b) illustrates the propagation
for the parse tree illustrated in Figure 6(a). When the prop-
agation is over, head-modifier relations are extracted, gener-
ating a dependency structure. Figure 6(c) illustrates the de-
pendency structure of the sentence that was analyzed syntac-
tically in Figure 6(a). The nodes of this dependency structure
were augmented with features, to enable the calculation of
the kernel. Figure 7 lists the features that were assigned to
each node in the dependency tree. Two sets of features were
used: F1, the features proposed in [1] and F2, a new set of
features that we have added. Feature set F1 contains: (1) the
word; (2) the part-of-speech (POS) (24 values); (3) a gener-
alized POS (5 values); (4) the tag of the nonterminal from the
parse tree having the feature word as a head; (5) the entity
type, as defined by the ACE guidelines; (6) the entity level
(e.g. name); (7) the relation argument (e.g. REL-A); and (8)
a WordNet hypernym. The new set of features F2 contains:
(1) the predicate argument number provided by the semantic
parser when using PropBank; (2) the predicate target for that
argument; (3) the FE provided by the semantic parser when

using FrameNet; (4) the target word for the frame; (5) the
grammatical function; (6) the Frame; (7) the WordNet do-
main; (8) the WordNet concept that expressed the type of re-
lation in which the word may belong within the domain; (9) a
set of other related WordNet concepts (e.g. direct hypernym);
(10) the ProbBank concepts that most frequently occur as ar-
guments for the predicate; (11) the FrameNet concepts that
most frequently occur in FEs for the frame. The features and
their values for the node “attorneys” are listed in Figure 7.

3 General−POS

Example

attorneys

noun

PERSON
nominal
REL−A

Feature Set F2

 1 Predicate−argument number
 2 Predicate Target
 3 FE

 6 Frame
5 Entity−type
6 Entity−level
7 Relation−argument
8 WordNet hypernym

Example

professional,paralegal

1 Word
2 Part−of−speech NN

 8 WordNet Relation Concept
 7 WordNet Domain

 5 Gramatical function

 9 WordNet Semantic Concepts

10 PropBank(WN) Concepts

11 FrameNet(WN) Concepts

Arg0
represent
Employee

Ext
Employment
jurisprudence
lawyer−clientIndividual

represent 4 Target wordNP4 Syntactic chunk tag

Feature Set F1

banker, lawyer, share

relation, men

Figure 7: Sets of features assigned to each node in the dependency
tree.

The features are used by a tree kernel function K(T1, T2)
that returns a similarity score in the range (0, 1). We pre-
ferred the more general version of the kernel introduced in
[1] to the kernel described by [8]. This kernel is based
on two functions defined on the features of tree nodes: a
matching function m(ti, tj) ∈ {0, 1} and a similarity func-
tion s(ti, tj) ∈ (0,∞). The feature vector of a tree node
φ(ti) = {v1, . . . vd} consists of two possibly overlapping
subsets φm(ti) ⊆ φ(ti) and φs(ti) ⊆ φ(ti). As in [1], φm(ti)

are used by the matching function and φs(ti) are used by the
similarity function. The two functions are defined by:

m(ti, tj) =

{

1 if φm(ti) = φm(tj)
0 otherwise

and
s(ti, tj) =

∑

vq∈φs(ti)

∑

vr∈φs(tj)

C(vq, vr)

where C(vq, vr) is some compatibility function between the
two feature values. For example, in the simplest case where

C(vq, vr) =

{

1 if vq = vr

0 otherwise

s(ti, tj) returns the number of feature values in common be-
tween the feature vectors φs(ti) and φs(tj). For two depen-
dency trees T1 and T2 with root nodes r1 and r2 the tree ker-
nel is defined as:

K(T1, T2) =

{

0 if m(r1, r2)=0
s(r1, r2) + Kc(r1[c], r2[c]) otherwise

where Kc is a kernel function over the children of the nodes
r1 and r2. Let a and b be sequences of indices such that a
is a sequence a1 ≤ a2 ≤ . . . ≤ an and likewise for b. Let
d(a) = an − a1 + 1 and l(a) be the length of a. Then for
every ti ∈ T1 and tj ∈ T2, we have

Kc(ti[c], tj [c]) =
∑

a,b,l(a)=l(b)

λd(a)λd(b)K(ti[a], tj [b])

where λ∈(0, 1) represents a decay factor that penalizes
matching subsequences that are spread out within the child
sequences. The definition of Kc, the kernel function over
children, assumes that the matching function used in the def-
inition of the tree kernel K(ti[a], tj [b]) operates not only on
single nodes, but also on node sequences ti[a] or tj [b]. If all
the nodes in the sequence are matched, m(ti[a], tj [b]) = 1.
For each matching pair of nodes (ai, bj) is a matching sub-
sequence, we accumulate the result of the similarity func-
tion s(ai, bj) and then recursively search for matching sub-
sequences of their children.

As in [1], we implemented two types of tree kernels: a con-
tiguous kernel and a sparse kernel. A contiguous kernel only
matches children subsequences that are uninterrupted by non-
matching nodes. Therefore d(a) = l(a). A sparse tree ker-
nel, by contrast, allows non-matching nodes within matching
subsequences.

4 Relation Extraction
When analyzing the dependency kernels, we noticed that
only few nodes bear semantic information derived by the se-
mantic parsers. We also noticed that these nodes are clus-
tered together in the dependency tree. For example, Fig-
ure 6(d) illustrates the cluster of nodes from the dependency
tree that contains semantic information. Instead of using
the entire dependency tree to compute similarities, we se-
lected sub-trees that contain nodes having values for the fea-
tures from set F2 (illustrated in Figure 7). Typically these
nodes correspond to target predicates and their arguments
or FEs. This allowed us to compare trees of the form

SDT (R1) [“attorneys”→“represented”←“Woodward”]
and SDT (R2)[“intern”→“dismissed”←“lawyer”]. We
called such trees semantic dependency trees since they are
characterized by semantic features present in the nodes of de-
pendency trees. Semantic dependency trees (SDTs) are bi-
nary trees containing three nodes: a verbal predicate that is
the root of the tree; and two children nodes, each an argu-
ment of the predicate. To measure the similarity of two SDTs
we built a very simple kernel:

K(T1, T2) =

{

0 if m(c(T1), c(T2))=0
S(r(T1), r(T2)) + Sp(T1, T2) otherwise

where the matching function is performed only on
the children. The matching features that were used
comprised φ1

m={General-POS, Entity-Type, Relation-
argument}, φ2

m={FE} and φ3
m={Predicate-argument

number}. m(c(T1), c(T2))=1 if there is a combination of
the pair of arguments that has the same matching features.
For example, in the case of SDT (R1) and SDT (R2), the
combination is {(“attorneys”, “lawyer”) and (“intern”,
“Woodward”)} when using φ1

m∪φ
2
m, since both attorney

and lawyer are nouns, Persons, REL-A and they are both cov-
ered by the FE Employee in their respective frames. To mea-
sure the similarity between the verbal predicates, the func-
tion S(r(T1), r(T2)) measures the semantic compatibility of
the predicates. The features used for measuring similarity of
predicates are φP

S ={Frame, Predicate Target, WordNet
Domain}. The compatibility measures assigned to each fea-
ture are: 1 if the same predicate target, 0.9 if both predi-
cates are targets of the same frame, 0.7 if both predicates
are targets of frames from the same event structure, 0.5 if
both predicates belong to the same WordNet domain and 0.3
if the predicates are not covered in FrameNet, but have the
same arguments in PropBank as other predicates from the
same frame. The predicate similarity brings forward semantic
frames that characterize a type of extraction relation. For ex-
ample, in the case of Role Client relation, such frames were
(a) Employment end and its subframes from the event struc-
ture; Employment Start; and (b) Commerce Sell or (c) Com-
merce Buy.

The Sp(T1, T2) similarity focuses on the combination of
FEs or predicate-arguments that are identified for the children
of the SDTs. The similarity features that are used are {FE,
Predicate-argument number, Grammatical Function, Word-
Net Domain, WordNet Relation Concept}. For example,
when the similarity Sp(SDT (R1), SDT (R2)) is computed,
since we have an {Employer Employee} relation between
the FEs in both SDTs, the confidence assigned based on iden-
tical FE-FE relation is 1. If we have identical Predicate-
argument numbers, the confidence is 0.6. For identical Word-
Net domains, 0.4 and for the same WordNet relation concept,
we assign the confidence 0.7.

One limitation of the SDTs stems from the fact that this for-
malism cannot capture extraction relations that are expressed
in the same noun phrase, e.g. “our customers”, “his urolo-
gist” or “George’s high school”. To recognize such relations
we consider that they relate to some arguments of “unspec-
ified” predicates. In the case when NPs contain pronouns,
they are resolved by a successful coreference resolution algo-
rithm [5], and the pronoun is substituted by a pair (referent,

CATEGORY). For example, the pronoun “our” from “our cus-
tomers” is replaced by (“IBM”, ORGANIZATION)

By measuring the semantic similarity between the pair
(NP head, Category) and any pair of arguments of a pred-
icate from the training corpus, a plausible predicate can
be found. For the noun phrase “our customers”, the
SDT [“shop”←“billed”→“customers”] was deemed the
most relevant, assigning the predicate “billed” to the two
arguments: ORGANIZATION and “customers”. The se-
mantic similarity was measured by enhancing the Word-
Net, similarity measure is publicly available resource
(www.d.umn.edu/∼tpederse/Pubs/AAAI04PedersenT.pdf), to
handle semantic classes identified for entities, e.g. ORGA-
NIZATION, DISEASE.

5 Experimental results
To evaluate the role of shallow semantics provided by se-
mantic parsers on relation extraction we have used the Auto-
matic Content Extraction (ACE) corpus available from LDC
(LDC2003T11). The data consists of 422 annotated text doc-
uments gathered from various newspapers and broadcasts.
Five entity types have been annotated (PERSON, ORGANI-
ZATION, GEO-POLITICAL ENTITY, LOCATION, FACILITY)
along with the 24 types of relations. The relations are listed
in Figure 8.

Role_Affiliate

Role_Owner

Soc_Personal
Soc_Relative

Role_Client

Role_Other
Part_Other
Soc_Sibling

Soc_Grandparent

Soc_Associate
Role_Founder

Soc_Spouse

At_Residence

Role_Citizen

Part_Subsidiary

Near_Relative−loc

Soc_Professional

Soc_Parent

Role_Member

Part_Part−of
At_Based−in

At_Located
Role_Staff

Role_Mgmt

Figure 8: Extraction relations evaluated in ACE.

We implemented the same five kernels as [1]: K0=sparse
kernel, K1=contiguous kernel, K2=bag-of-words kernel and
K3=K0+K2 and K4=K1+K2 and used first only the feature
set F1 from Figure 7 and then both feature sets F1 and F2. The
comparison of the kernel performance of the two experiments
is listed in Figure 9.

F1+F2F1
Features Features

Avg. Recall

F1 F1+F2
Features

F1 F1+F2
Kernel

Avg. F−score

K
K
K

K
2

1

3

4 60.5
54.8
38.2 48.7

61.3
72.2

61.4

20.3

20.4

18.5
7.2 28.5

40.7
44.5

32.3 29.78
12.12
27.66
30.4

42.33
35.96
48.92
55.06

K0

55.1
52.3 55.8 19.7 34.6 28.62 42.71

Avg. Precision

Figure 9: Kernel performance comparison.

We used each kernel within an SVM (we augmented the
SVMlight implementation to include our kernels). We choose
to train on all 24 relations, not only on the first 5-high level
relation types as was done in [1]. The results indicate that
on average, for K4, the best performing kernel, we obtained
an increase of 24.66% in the F-score when features provided
by the semantic parsers were added. When relying on SDTs,
the average Precision that was obtained was 89.3%, the re-
call was 76.4%, thus an F-score of 82.35%, when using the
same data as [1]. Figure 10 illustrates F-score obtained when
using several other machine learning techniques available in

the Weka package. In Figure 10 P indicates results for rela-
tions involving a predicate, NP indicates results for relations
within an NP and C indicates the combined results. The re-
sults show that frame semantics produce an enhancement of
53.24% over previous state-of-art results in relation extrac-
tion. Furthermore, they show that semantic representations
such as frames or predicate-argument structures have a wider
impact on classification performance than the classification
technique.

Bayes
Nets

Naive
Bayes

77.97 79.10

AdaBoost Bagging

82.48

Stacking

62.14

63.10

62.14

82.5279.32

73.45

ID3

83.05

J48 Random
Forest

82.48

Random
Tree

79.09

SVM

81.35

on SDTs
Kernels

85.22 84.81 83.10 83.92 83.85

82.17

63.71 72.35 80.63

78.43 80.24 62.46 83.39 62.66 72.71 83.64 82.69 79.60 82.21 82.73C

NP

P

Figure 10: Results of relation extraction.

In the ACE data 61.71% of the training/testing data could
be cast into SDTs. The semantic similarity between argu-
ments of a relation within the same NP and arguments present
in SDTs allowed the extraction with an average F1-score of
78.41%. The quality of the extraction results depend on the
quality of the semantic parsers, that obtained F-scores of over
90% in recent SENSEVAL evaluations.

6 Conclusions
In this paper we have introduced a new dependency structure
that relies on semantic information provided by shallow se-
mantic parsers. This structure enabled the extraction of rele-
vant relations with better performance than previous state-of-
the-art kernel methods. Furthermore, the semantic features
enabled similarly good results to be obtained with a few other
learning algorithms. We also used compatibility functions
that made use of semantic knowledge. This framework could
be extended to allow processing of idiomatic predicates, e.g.
[PERSON “lobbying on behalf of”” ORGANIZATION], and
combined predications.

References
[1] A. Culotta and J. Sorensen. Dependency tree kernels for relation

extraction. In Proceedings of the ACL-2004, 2004.
[2] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT

Press., 1998.
[3] Daniel Gildea and Daniel Jurasky. Automatic labeling of se-

mantic roles. Computational Linguistic, 28(3):496–530, 2002.
[4] F. Jelineck, J. Lafferty, D. Magerman, R. Mercer, A. Ratna-

parkhi, and S. Roukos. Decision tree parsing using a hidden
derivational model. In Proceedings of the HLT Workshop-1994.

[5] X. Luo, A. Ittycheriah, H. Jing, N. Kambhatla, and S. Roukos.
A Mention-Synchronous Coreference Resolution Algorithm
Based On the Bell Tree. In Proceedings of the ACL-2004, 2004.

[6] S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and
D. Jurafsky. Support Vector Learning for Semantic Argument
Classification. Journal of Machine Learning Research, 2004.

[7] M. Surdeanu, S. M. Harabagiu, J. Williams, and J. Aarseth. Us-
ing Predicate-Argument Structures for Information Extraction.
In Proceedings of the ACL-2003, 2003.

[8] D. Zelenko, C. Aone, and A. Richardella. Kernel Methods for
Relation Extraction. In Proceedings of the EMNLP-2002, pages
71–78, 2002.

