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Abstract expresses independencies between variables, resultiag in
e h ial in th f th

_Cutset conc_;lltlonlng is one of th_e methods of solv- 3vehaerrce C};zeiljz;pgr:fntla In the depthof the pseudo tree,
ing reasoning tasks for graphical models, espe- This paper applies the AND/OR paradigm to the cycle cut-
.C"."‘"y when space restrictions ”.‘ake 'r?fefence (e.g., set method. We show that tAND/OR cycle cutses a strict
JO'?trEt’.e'CIUStte”n?) at1lgor_|thm? tlkr]1fea5|t)rlea ;I'Iwa H improvement of the traditional cycle cutset method (and the
Eque IIS a.nha urﬁ ex er}smn orthe T:e oh oa g’ same holds for the extended w-cutset version). The result
t.” _algoritt rglt at pc?r. ofrms searc t(r)1n the condi- goes beyond the simple organization of the traditionaletuts
|ont|)rllg varlfa_ gs ag !gtﬁrgncedog eTLe_mamlng in an AND/OR pseudo tree, which would be just the straight-
pro ekmsofln l;cle |‘(N' b oun ehb?j( hIS pa—h he forward improvement. The complexity of exploring the tradi
per t‘::‘ es af rXﬁID/%)R att eie metho fSt rough. t Ie tional cutset is time exponential in the number of nodesén th
speé: rlumT?] i ?\leDal/r(gRspzi[\cef Ortr?(;zp Ical cutset, and therefore it calls for finding a minimal cardiyal
”;0. te.s. e resutlng\ ) C(Lj’.?e ”l‘e e;t cutsetC. The complexity of exploring the AND/OR cutset is
strict improvement over he traditional one, often time exponential in its depth, and therefore it calls for find

by exponential amounts. ing a minimal depttAND/OR cutsetAO-C. That is, a set of
nodes that can be organized in a start pseudo tree of mini-
1 Introduction mal depth. So, while the cardinality of the optimal AND/OR

Graphical models are a widely used knowledge represent&—y.tsetMO'C" may be far larger thaf‘ that of the optimal tra-
tion framework that captures independencies in the data an%'tlonal cutset|C|, the depth of10-C is always smaller than
allows for a concise representation. The complexity of Or equal to[C|.
reasoning task over a graphical model depends on the irE _ .
duced width of the graph. For inference-type algorithms, Preliminaries
the space complexity is exponential in the induced width inReasoning graphical models A reasoning graphical model
the worst case, which often makes them infeasible for largés a tripletR = (X, D, F') whereX is a set of variables,
and densely connected problems. In such cases, space cdn= {X;,...,X,}, D = {Dy,...,D,} is the set of their
be traded at the expense of time by conditioning (assigningespective finite domains and = {F,..., F;} is a set of
values to variables). Search algorithms perform conditionreal-valued functions, defined over subsetsofTheprimal
ing on all the variables. Cycle-cutset scherfigearl, 1988; graph of a reasoning problem has a node for each variable,
Dechter, 199Donly condition on a subset of variables such and any two variables appearing in the same function’s scope
that the remaining network is singly connected and can bare connected. Thecopeof a function is its set of arguments.
solved by inference tree algorithms. The more recent hyBelief networks A belief network can be viewed as an in-
brid w-cutsetscheme[Rish and Dechter, 2000; Bidyuk and stance of a reasoning graphical model. In this case the set
Dechter, 200Bconditions on a subset of variables such that,of functions F is denoted byP? = {Pi,...,P,} and rep-
when removed, the remaining network has induced width resents a set of conditional probability tables (CPTR):=
or less, and can be solved by a variable eliminat@echter,  P(X;|pa;), wherepa; are the parents ok;. The associated
1999 type algorithm. directed graph, drawn by pointing arrows from parents to
The AND/OR search spader graphical model$Dechter  children, should be acyclic. The belief network represents
and Mateescu, 2004s a newly introduced framework for a probability distribution overX having the product form
search that is sensitive to the independencies in the modePg(zZ) = P(z1,...,2,) = I}y P(x;|zpe,). The moral
often resulting in exponentially reduced complexities.eTh graphof a directed graph is the undirected graph obtained by
traditional way of doing search consists of instantiating t connecting the parent nodes of each variable and elimgpatin
n variables of the problem as if they were all connected indirection.
a chain, which results in a search tree exponential.inn  Constraint networks A constraint network can also be
contrast, AND/OR search is based on a pseudo tree whichiewed as an instance of a reasoning graphical model. In this
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Figure 1:AND/OR Search Tree Figure 2:Context-minimal AND/OR Search Graph

case the functions are denoted®@y= {C1, ...,C;}, and the  ((X1,z1), (X2, ®2),...,(Xi—1,%i—1)). Consistency is well

constraint network is denoted iy = (X, D, C'). Each con-  defined for constraint networks. For probabilistic netveork
straint is a pailC; = (S;, R;), whereS; C X is the scope consistent tuples have non zero probability.

of the relationR; that denotes the allowed combinations of The children of an AND nodéXj;, z;) are OR nodes la-
values. beled with the children of variabl&; in the pseudo tre@'.

!nduceq-gcr;azhs ahnd irg;dyced Wi%t.h {M& orderhed %aﬁh Example 1 Figure 1a shows a belief network. Figure 1b
|)s(a pa;r(( D ), W derg 'Sf"f[lr'? un (ljrec ﬁ_h‘?&?ﬁ ,fa a shows a pseudo tree of the moral graph, together with the
1, An IS @n orgering ot the nodes. oranode - ack-arcs (dotted lines). Figure 1c shows the AND/OR search

in an ordered graph is the number of the node’s neighbor - :
that precede it in the ordering. Thedth of an orderingd, ttee based on the pseudo tree, for binary valued variables.

denotedw(d), is the maximum width over all nodes. The The AND/OR Search Tree can be traversed by a depth first
induced width of an ordered graphw*(d), is the width of ~ search algorithm. The arcs frod; to (X;, z;) are associ-

the induced ordered graph obtained as follows: nodes ara@ted with appropriatéabels of the functions inf'. The al-
processed from last to first; when nodeis processed, all gorithm maintainyaluesfor each node, accumulating the re-
its preceding neighbors are connected. Huiced width of ~ sult of the computation performed in the subtree below. The
a graph w*, is the minimal induced width over all its or- computation is dictated by the graphical model and task at
derings. Theree-widthof a graph is the minimal induced hand, for example for belief networks, AND nodes are asso-
width. Thepath-widthpw* of a graph is the tree-width over ciated with multiplication (of the values of the indepenten
the restricted class of orderings that correspond to chain d subproblems) and OR nodes are associated with summation

compositions. (over all the values of the variable). Based on earlier work
[Freu_der and Q_uinn, 1985; Bayardo and Miranker, 1996;
3 AND/OR Search Spaces for Graphical Darwiche, 200}, it can be shown that:
Models THEOREM1 Given a graphical modeR and a pseudo tree

e’g of depthm, the size of the AND/OR search tree based on T
i58O(n-exp(m)). A graphical model of tree-widt* has an
' AND/OR search tree of size(exp(w™* - logn)).

This section introduces the basics of AND/OR search spac
for graphical models as presented Dechter and Mateescu
2004. Given a graphical modeR = (X,D,F), its
AND/OR search space is driven bypseudo tredFreuder
and Quinn, 198F 3.2 AND/OR Search Graph

; ; The AND/OR search tree may contain nodes that root iden-
82”\;";'%‘, t(gﬁggg%t:ggzsjn{?en@a:n (‘u/?gl/r;e gtsf?ne%r%%h tical subtrees. These are calledifiable When unifiable

nodes are merged, the search space becomes a graph. Its size

becomes smaller at the expense of using additional memory.
In this way, the depth first search algorithm can be modified
to cache previously computed results, and retrieve thermwhe
the same nodes are encountered again. Some unifiable nodes
3.1 AND/OR Search Tree can be identified based on theiontextsDarwiche, 2001
Given a graphical modeR = (X, D, F), its primal graph  The context of an AND nodéX;, z;) is defined as the set
G and a pseudo treg of G, the associated AND/OR search of ancestors ofX; in the pseudo tree, including;, that are
tree, denotedir(R), has alternating levels of AND and OR connected to descendants®f. It is easy to verify that the
nodes. The OR nodes are label&d and correspond to the context of X; d-separate§Pearl, 1988 the subproblem be-
variables. The AND nodes are labeled;, z;) and corre-  Jow X; from the rest of the network. Theontext minimal

spond to the value assignments in the domains _of the variAND/OR graph is obtained by merging all the context unifi-
ables. The structure of the AND/OR search tree is based ogple AND nodes.

the underlying backbone tréB. The root of the AND/OR i -
search tree is an OR node labeled with the rodf of Example 2 Figure 2 shows the context-minimal AND/OR

The children of an OR nodey. are AND nodes la- search graph of the problem and pseudo tree from Figure 1.

beled with assignment$X;, z;) that are consistent with It can be shown thdBayardo and Miranker, 1996; Dechter
the assignments along the path from the rgath(z;) = and Mateescu, 2004

all its nodes is calleghseudo tred any arc of G which is not
included inE’ is a back-arc, namely it connects a node to an
ancestor inT".



®
® (B

© ® ©
(b) (©

Figure 3:Traditional cycle cutset viewed as AND/OR tree

THEOREM?2 Given a graphical modeR, its primal graphG

and a pseudo tre#, the size of the context minimal AND/OR Figure 4:AND/OR cycle cutset
search graph based dfi is O(exp(wi(G))), wherew’.(G)
is the induced width aff (extended with the pseudo treeextra |f g Cyc|e cutset of Cardina"tyCl = ¢ is exp|0red by

arcs) over the ordering given by the depth first traversal'of  AND/OR search, based on a start pseudo Te®ver the set
C, and the depth df’ is m, thenm < c. Therefore,
4 Cycle Cutset Explored by AND/OR Search o _ _
. . Proposition 1 Exploring a cycle cutset by AND/OR search is
The AND/OR paradigm exploits the problem structure, by ays petter than, or the same as, exploring it by OR search.

solving independent components separately. This fundamen
tal idea can also be applied to the cycle cutset method, or

reasoning by conditioninfPearl, 1988 5 AND/OR Cvcle Cutset

DEFINITION 2 (cycle cutset) Given a graphical modeR = ycle Lutse

(X, D, F), acycle cutsets a subset C X suchthatthe pri- The idea presented in section 4 is a straightforward applica
mal graph ofR becomes singly connected if all the nodes intion of the AND/OR paradigm to cycle cutsets. In the follow-

C are removed from it. Aoptimal cycle cutseis one having ing we will describe a more powerful version of tAdID/OR
the minimum number of variables. cycle cutset

The cycle cutset method consists of enumerating all the>eriniTioN 4 (AND/OR cycle cutset) Given a graphical
possible instantiations af, and for each one of them solv- modelR = (X, D, F), an AND/OR cycle cutsetdO-C is
ing the remaining singly connected network by a linear timeg cycle cutset together with an associated start pseudo tree
and space tree algorithm. The instantiation§ afe enumer- 7, ,_. of depthm. Anoptimal AND/OR cycle cutseis one
ated by regular OR search, yielding linear space complexitfaving the minimum deptt.
andO(exp |C]) time complexity, therefore requiring a mini- ] ]
mal cycle cutset to optimize complexity. Example 4 Figure 4 shc_st a network for which th_@p-

A first simple improvement to the traditional cycle cutsettimal cycle cutsetcontains fewer nodes than theptimal

scheme described above would be the enumeratighlnf ~ AND/OR cycle cutsetyet the latter yields an exponential
AND/OR search. improvement in time complexity. The network in the ex-

ample is based on a complete binary tree of depttihe

nodes marked4] shown on a gray background. The up-
per index; corresponds to the depth of the node in the bi-
nary tree, and the lower indeixto the position in the level.
Each of the leaf nodes, fromj to A%, is a side node
én a 3 x 3 grid. A cycle cutset has to contain at least 2
hodes from each of the"~! grids. An optimal cycle cut-

et isC = {AY,...,AL,_,,Bf,..., B}, _,}, containing2"

Example 3 Figure 3a shows tw@ x 3 grids, connected on
the side noded. A cycle cutset must include at least two
nodes from each grid, so the minimal cycle cutset contain
three nodes: the common nodeand one more node from
each grid, for exampl® andC. The traditional way of solv-
ing the cycle cutset problem consists of enumerating all th
assignments of the cycle cutdet, B, C'}, as if these vari-

ables form the chain pseudo tree in Figure 3b. However, M odes. so the complexity @(cxp [C]) = O(exp(27)). We

A is the first conditioning variable, the remaining subprob- 1
lem is split into two independent portions, so the cycle cut-should note that the best orgamzatlonG)lfas an AND/OR
set{ A4, B, C'} can be organized as an AND/OR search spacespace would yield a pseudo tree of depith' + 1. This is be-

based on the pseudo tree in Figure 3c.klfs the maximum gﬁ]u;e {ar!;éhic:ﬁdeesg;%%ét' ;{ A%Erlilgrze ?ﬁgr;zﬁid g¥ht?nethe
domain size of variables, the complexity of solving Figuye 3 y ’ y PP 9 P

. 3 ; : . 2 pseudo tree (this observation also holds for any other agitim
is O(k*) while that of solving Figure 3¢ i©)(k<). cycle cutset in this example). Exploriddyy AND/OR search

We can improve the general cycle cutset method, based dowers the complexity fror (exp(27)) to O(exp(2"~1+1)).
the p(evious exa_mple: first find the minimal cycle cutSgt Let's now look at the AND/OR cycle cutséD-C = {A{ |
_ther? find the minimal depthtart pseudo treenade of nodes jo=1,...mi=1,...27YU{B... B} con-
inC: taining all the A and B nodes. A pseudo tree in this case is
DEFINITION 3 (start pseudo tree) Given an undirected formed by the binary tree of nodes, and thé& nodes exactly
graph G = (V, E), a directed rooted tred” = (V', E'), in the same position as in the figure. The depth in this case is
whereV’ C X, is called astart pseudo tregit has the same r + 1, so the complexity i®(exp(r + 1)), even though the
root and is a subgraph of some pseudo treéof number of nodes IK1O0-C| = |C| + 277! — 1.



The previous example highlights the conceptual difference variable elimination type algorithm, or by search with
between thecycle cutset methodnd what we will call the bounded caching - in particular, AND/OR search with full
AND/OR cycle cutset methodn cycle cutsetthe objective  caching is feasible for these subproblems.
is to identify the smallest cardinality cutset. Subsediyent
the exploration can be improved from OR search to AND/OR7.1 Improved AND/OR Caching Scheme
search. IPAND/OR cycle cutsahe objective is to find a cut-

set that forms a start pseudo tree of smallest depth. In [Dechter and Mateescu, 2004he caching scheme of

AND/OR search is based oocontexts[Darwiche, 200},
THEOREM3 Given a graphical modeR, an optimal cycle which are precomputed based on the pseudo tree before
cutsetC, its corresponding smallest depth start pseudo treesearch begins. AlgorithmO(4) performs caching only at the
T, and the optimal AND/OR cycle cutséD-C with the start ~ variables for which the context size is smaller than or equal
pseudo tred’4o-¢, then: to ¢ (calledi-bound.
The cutset principle inspires a more refined caching

ICl = depth(Tc) = depth(Tao-c) (1) scheme fortO, which caches some values even at nodes with
There exist instances for which the inequalities are strict ~ Contexts greater than thound Lets assume the context of
the nodeXy, is context(Xy) = {X1, ..., Xk}, wherek > i.

We should note that strict inequalities in Eq 1 could tranS-During the Search, when Variab|$’ . 7Xk?—i are instan-
late into exponential differences in time complexities. tiated, they can be regarded as part of a cutset. The problem
rooted byX;,_,.1 can be solved in isolation, like a subprob-
6 AND/OR w-Cutset lem in the cutset scheme, after the variabés ..., X;_;
are assigned their current values in all the functions. i th

The principle of cutset conditioning can be generalizedgisi subproblem context(Xy,) = {Xi_is1,--., X1}, S0 it can

the notion ofw-cutset A w-cutseiof a graph is a set of nodes o o5 ched withir-bounded space. However, when the search
Sth that, when remove_d, the remaining graph has _'n.ducet%tracts toX_, or above, the cache table for variablg,
width at mostw. A hybrid algorithmic scheme combining heeqs 16 he purged, and will be used again when a new sub-
conditioning andv-boundednference was presented[iRish problem rooted an’_ .1 is solved.

and Dechter, 2000; Larrosa and Dechter, J00Rlore re- This improved caching scheme only increases the space re-

cently, w-cutsetsampling was investigated ifBidyuk and . . . ) :
X o 2 quirements linearly, compared #0(i), but the time savings
v[\)/fl?ctseeriwzagogsiﬂgstdei%gydixelltg dogé'gﬁt'gg ZtBS 4m|n|mal can be exponential. We will show results in section 8.

The hybridw-cutsetalgorithm performs search on the cut- : .
set variables and exact inferenaeg. bucket elimination 7.2 Algorithm AO-C (i)
[Dechter, 1999 on each of the conditioned subproblems. If \We can now define the different versions&fiD/OR i-cutset
the w-cutsetC,, is explored by linear space OR search, thealgorithm that we experimented with. We chose to explore
time complexity isO(exp(|Cy| + w)), and the space com- the cutset portion either by linear space AND/OR search (no
plexity is O (exp w). caching) or by AND/OR search with improved caching. For
The AND/OR cycle cutset idea can be extended naturallythe i-bounded subproblems, we chose either Bucket Elim-
to AND/OR w-cutsetTo show an example of the difference ination (BE) or AND/OR search with full caching (which
between the traditional w-cutset and th&lD/OR w-cutset coincides with the improved caching on the bounded sub-
we refer again to the example in Figure 4. Consider eaclproblems). The four resulting algorithms are: AP-LC(i)
3 x 3 grid replaced by a network which has a minimal w- - linear space cutset and full caching for subproblems; 2)
cutsetC’,,. The minimal w-cutset of the whole graph contains AO-LC-BE(i) - linear space cutset and BE for subproblems;
in this case" ! - |C,,| nodes. If this w-cutset is explored by AO-C(i) - improved caching everywhere; 40-C-BE(i)
OR search, it yields a time complexity exponentia(2fi—* - - improved caching on cutset and BE on subproblems.
|Cw| + w). If the w-cutset is explored by AND/OR search it
yields a time complexity exponential 2"~ + |C\,| + w) 7.3 Finding a Start Pseudo Tree
(similar to Example 4). In contrast to this, tHeND/OR w- N .
cutsef which contains thed nodes and the w-cutsets of each The performance oflO-C/(i) is influenced by the quality of
leaf network, yields a time complexity exponential only in the start pseudo tree. Finding the minimal depth start pseud
(r + |Cl| + w), or possibly even less if the nodesdh, can ~ tree for the giveri-bound is a hard problem, and it is beyond

be organized in a start pseudo tree which is not a chiain ( the scope of this paper to address its complexity and salutio
has depth smaller thar,|). We will only describe the heuristic we used in creating the

pseudo trees for our experiments.

; P Min-Fill [Kjeeaerulff, 1990 is one of the best and most
7 Algorithm Description widely used heuristics for creating small induced width or-
The idea ofw-cutset schemes is to define an algorithm thatderings. The ordering defines a unique pseudo tree. The min-
can run in spacé®(exp w). TheAND/OR w-cutset algorithm imal start pseudo for aiRbound contains the nodes for which
is a hybrid scheme. The cutset portion, which is organizedome descendant has adjusted contegt context without
in a start pseudo tree, is explored by AND/OR search. Thehe variables instantiated on the current path) greateritha
remainingw-bounded subproblems can be solved either byMin-Fill heuristic tends to minimize context size, rathkanh



[ CPCS 422 (1) | N=40, K=3, P=2, 20 instances, w*=7
7 11 21 3] 41 5] 6] 71 81 9110 11 i | Algorithms d Time(sec) # nodes
d(AO-C) [ 3232323231 |31[31|31|31[30]29 _| MF | MD MF MD MD MF
d(C) 20 |37 | 32 1 321381 371 36| 34| 32| 30| 29 1 AO(i) 12 9 | 610.14| 27.12| 50,171,141| 1,950,539
IC] 2o T 71 65 59 [ 54 | 50 | 26 | 41 37 | 34 | 32 AO-LC() 17453 | 8.75| 13,335595| 575,936
AO-C(i) 67.99 7.61 4,789,569 499,391
[GWCA [ 79[67[60]55[50[46[42[38]34]31[29] AO-C-BE(j) 16.95| 218 - -
3 AO(i) 7 6 71.68 8.13 5,707,323 595,484
Table 1:CPCS 422 - Cutsets Comparison AO-LC(i) 573 | 084 | 501,793 69,357
AO-C(i) 294 | 084| 248652 69,357
, ) AO-C-BE(j) 0.69| 0.25 - -
pseudo tree depth. Nevertheless, we chose to try it and disf s AO() | 4| 3| 1128 277| 999,441 24,39
covered that it provides one of the best pseudo trees foehigh AO-LC() 0.55| 0.54 50,024 4,670
| fi AO-C(i) 0.55 0.55 49,991 4,670
values or. o AO-C-BE(i) 010 | 0.04 - -
Min-Depth We developed a h_eur|§t|c to produce a bal- N=60, K=3, P=2. 20 instances, w=11
anced start pseudo tree, resulting in smaller depth. We_T] Algorithms d Time(sec) #nodes
in-Ei it i ¥ MF MD MF MD MD MF
start from a Min-Fill tree decomposition and then !terdgrve sT—ROTCl 7 & 15075 | 6301 | TA076416] 5.155.455
search for the separatorthat would preak the tree in paats th AO-C(i) 112.43 | 62.98| 9.925.855| 5165486
are as balanced as possible, relative to the following mea- AO-C-BE()) 27.33| 550 - -
sure: on either side of the separator eliminate the separato| °| A0Cl) 1 31 31 24401 41451 2,140,791 3,509.709
. - O-Ci) 24.15| 40.93 | 2,140,791| 3,509,709
variables, count the number of remaining clusters,isand AO-C-BE(i) 427 | 289 - -
then add the sizes of the largésg » clusters. 11 AO&JL(C:?; o[ 1 17.22 gggg 1,522,111 3,172,133
: : AO-C(i 17. . 1,562,111| 3,173,1
GWC [Bidyuk and Dechter, 20Q4s a greedy algorithm AC-C BE() 190 | 281 - -
to build a minimal cardinality cutset. In the process, weals
arranged the minimal cardinality cutset as AND/OR cutset, t Table 2:Random Networks

compare with the minimal depth cutset that we could find.
The time and the number of nodes expanded in the search are
8 Experimental Evaluation shown for the two pseudo trees correspondingly.

Random networks. Table 2 shows results for random net-
‘NOka, generated based on N, K and P and averaged over 20
Mhstances. Note that K=3, which makes the problems harder,

even thoughw* seems small. For N=40 we see that the

8.1 The Quality of Start Pseudo Trees old s_cheme AO(i) is aI_ways outperformed. U_si_ng @mproved
caching on the cutset is almost always beneficial. iRa@ry

We report here the results on the CPCS 422b network fronglose tows, caching on the cutset doesn’t save much, and in

the UAI repository. It has 422 nodes and induced widthsome cases when no caching is possible, the extra overhead

22. Table 1 shows the values ¢fi), which expresses the may actually make it slightly slower. Also, for strictly fes

total complexity of a cutset scheme. For a cardinality cut+ive distributions, switching to BE is faster than runnin@ A

set, f(i) = i + |C| and for an AND/OR cutset of dep#y  search with caching on the remaining problems.

f(i) = i+ d. The rowd(AO-C) shows the depth of the  CcpCS networks. CPCS are real life networks for med-

best AND/OR cutset we could find/C| shows the num- jcal diagnoses, which are hard for belief updating. Table 3

ber of nodes in the best cutset found by GWC, aifd)  shows results for CPCS 360 file, having induced width 20.

shows its depth when organized as AND/OR cutset. GWCAror j — 20, AO-C-BE(i) is actually BE. It is interesting

is taken fron{Bidyuk and Dechter, 2004 The best complex-  to note thatAO-LC-BE(i), for i = 12 is actually faster

ity, expressed by small values 6fi), is always given by the  than BE on the whole problem, while requiring much less

AND/OR cutset, and for smaller valuesighey translate into space ¢xp(12) compared taxp(20)), due to smaller over-

impressive savings over the cardinality cutSet head in caching (smaller cache tables) and a good ordering

In all our experiments described in the following, we re- that doesn’t require recomputing the same problems again.

frained from comparing the new cutset scheme with the oldye also mention that AO(i) was much slower on this prob-
cardinality cutset scheme (equivalent to an OR search on them and therefore not included in the table.

the quality of the start pseudo trees, and the other was te co
pare actual runs of the different versionsAa®-C (7).

cutset), because the latter was too slow. In the above experiments, the valuesdo$how that MF
) heuristic provided a better cutset for large values, afhile

8.2 Performance ofAO-C(i) the MD heuristic provided good cutsets whiemas small.

We tested the different version of th&)-C (i) family primar- Genetic linkage network. We include in Table 4 results

ily on Bayesian networks with strictly positive distribois, ~ for the genetic linkage network EAlFishelson and Geiger,
for the task of belief updating. This is necessary to grasp th2004. This is a large network, with N=1173, but relatively
power of the scheme when no pruning is involved in search.small induced widthyw* = 15. This network contains a lot of

In all the tables N is the number of nodes, K is the maxi-determinism (zero probability tuples). We did not use in AO
mum domain size, P is the number of parents of a variablesearch any form of constraint propagation, limiting theoalg
w* is the induced width; is thei-bound,d is the depth of the  rithm to prune only the zero value nodes (their subproblems
i-cutset. For most problems, we tested a min-fill pseudo-tre€o not contribute to the updated belief). We note here that fo
(MF) and one based on the depth minimizing heuristic (MD).i-bound 13 and 9A0-C(4) is faster thanAO-C-BE (i) be-



CPCS 360b, N=360, K=2, w* = 20 [ K=3, P=2; AO-C-BE(i), i=12 ]
i Algorithms | d (MF) Time # nodes N | w* | d(MF) | Time(sec)
1 AO-LC(i) 23 | 2,507.6 | 406,322,117 70 13 2 12
AO-LC-BE()) 1,756.4 - 80 | 15 3 61
AO-C()) 1,495.2 | 243,268,549 90 | 17 5 2072
AO-C-BEQ) 1,019.4 - 100 18 9 22,529
12 AO-LC(i) 8 186.8 14,209,057
AO-LC-BE() 10.3 - . . .
AO-C(i) 185.1 | 14,209,057 Table 5:Networks with high memory requirements for BE
AO-C-BE(i) 10.4 -
20 AO-LC() 0 | 167.8| 12,046,369 . L .
AO-LC-BE() 11.5 _ ture work the investigation of using look-ahead and no-good
AO-C(i) 170.9 | 12,046,369 learning in the presence of determinism for the AND/OR w-
AO-C-BE() 11.6 - cutset scheme.

Table 3:CPCS 360 Finally, the new scheme is scalable to memory intensive
) problems, where inference type algorithms are infeasible.

EA4 - N=1173, K=5, w*=15
i Algorithms d Time(sec) # nodes
: T T Wb o 7= Acknowledgments
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