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Abstract

Cutset conditioning is one of the methods of solv-
ing reasoning tasks for graphical models, espe-
cially when space restrictions make inference (e.g.,
jointree-clustering) algorithms infeasible. Thew-
cutsetis a natural extension of the method to a hy-
brid algorithm that performs search on the condi-
tioning variables and inference on the remaining
problems of induced width bounded byw. This pa-
per takes a fresh look at these methods through the
spectrum of AND/OR search spaces for graphical
models. The resultingAND/OR cutset methodis a
strict improvement over the traditional one, often
by exponential amounts.

1 Introduction
Graphical models are a widely used knowledge representa-
tion framework that captures independencies in the data and
allows for a concise representation. The complexity of a
reasoning task over a graphical model depends on the in-
duced width of the graph. For inference-type algorithms,
the space complexity is exponential in the induced width in
the worst case, which often makes them infeasible for large
and densely connected problems. In such cases, space can
be traded at the expense of time by conditioning (assigning
values to variables). Search algorithms perform condition-
ing on all the variables. Cycle-cutset schemes[Pearl, 1988;
Dechter, 1990] only condition on a subset of variables such
that the remaining network is singly connected and can be
solved by inference tree algorithms. The more recent hy-
brid w-cutsetscheme[Rish and Dechter, 2000; Bidyuk and
Dechter, 2003] conditions on a subset of variables such that,
when removed, the remaining network has induced widthw
or less, and can be solved by a variable elimination[Dechter,
1999] type algorithm.

TheAND/OR search spacefor graphical models[Dechter
and Mateescu, 2004] is a newly introduced framework for
search that is sensitive to the independencies in the model,
often resulting in exponentially reduced complexities. The
traditional way of doing search consists of instantiating the
n variables of the problem as if they were all connected in
a chain, which results in a search tree exponential inn. In
contrast, AND/OR search is based on a pseudo tree which

expresses independencies between variables, resulting ina
search tree exponential in the depthm of the pseudo tree,
where clearlym ≤ n.

This paper applies the AND/OR paradigm to the cycle cut-
set method. We show that theAND/OR cycle cutsetis a strict
improvement of the traditional cycle cutset method (and the
same holds for the extended w-cutset version). The result
goes beyond the simple organization of the traditional cutset
in an AND/OR pseudo tree, which would be just the straight-
forward improvement. The complexity of exploring the tradi-
tional cutset is time exponential in the number of nodes in the
cutset, and therefore it calls for finding a minimal cardinality
cutsetC. The complexity of exploring the AND/OR cutset is
time exponential in its depth, and therefore it calls for find-
ing a minimal depthAND/OR cutsetAO-C. That is, a set of
nodes that can be organized in a start pseudo tree of mini-
mal depth. So, while the cardinality of the optimal AND/OR
cutset,|AO-C|, may be far larger than that of the optimal tra-
ditional cutset,|C|, the depth ofAO-C is always smaller than
or equal to|C|.

2 Preliminaries
Reasoning graphical models A reasoning graphical model
is a tripletR = (X,D,F ) whereX is a set of variables,
X = {X1, . . . ,Xn}, D = {D1, . . . ,Dn} is the set of their
respective finite domains andF = {F1, . . . , Ft} is a set of
real-valued functions, defined over subsets ofX. Theprimal
graph of a reasoning problem has a node for each variable,
and any two variables appearing in the same function’s scope
are connected. Thescopeof a function is its set of arguments.
Belief networks A belief network can be viewed as an in-
stance of a reasoning graphical model. In this case the set
of functionsF is denoted byP = {P1, . . . , Pn} and rep-
resents a set of conditional probability tables (CPTs):Pi =
P (Xi|pai), wherepai are the parents ofXi. The associated
directed graphG, drawn by pointing arrows from parents to
children, should be acyclic. The belief network represents
a probability distribution overX having the product form
PB(x̄) = P (x1, . . . , xn) = Πn

i=1P (xi|xpai
). The moral

graphof a directed graph is the undirected graph obtained by
connecting the parent nodes of each variable and eliminating
direction.
Constraint networks A constraint network can also be
viewed as an instance of a reasoning graphical model. In this
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Figure 1:AND/OR Search Tree

case the functions are denoted byC = {C1, ..., Ct}, and the
constraint network is denoted byR = (X,D,C). Each con-
straint is a pairCi = (Si, Ri), whereSi ⊆ X is the scope
of the relationRi that denotes the allowed combinations of
values.
Induced-graphs and induced width An ordered graph
is a pair(G, d), whereG is an undirected graph, andd =
X1, ...,Xn is an ordering of the nodes. Thewidth of a node
in an ordered graph is the number of the node’s neighbors
that precede it in the ordering. Thewidth of an orderingd,
denotedw(d), is the maximum width over all nodes. The
induced width of an ordered graph, w∗(d), is the width of
the induced ordered graph obtained as follows: nodes are
processed from last to first; when nodeX is processed, all
its preceding neighbors are connected. Theinduced width of
a graph, w∗, is the minimal induced width over all its or-
derings. Thetree-widthof a graph is the minimal induced
width. Thepath-widthpw∗ of a graph is the tree-width over
the restricted class of orderings that correspond to chain de-
compositions.

3 AND/OR Search Spaces for Graphical
Models

This section introduces the basics of AND/OR search spaces
for graphical models as presented in[Dechter and Mateescu,
2004]. Given a graphical modelR = (X,D,F ), its
AND/OR search space is driven by apseudo tree[Freuder
and Quinn, 1985]:

DEFINITION 1 (pseudo tree)Given an undirected graph
G = (V,E), a directed rooted treeT = (V,E′) defined on
all its nodes is calledpseudo treeif any arc ofG which is not
included inE′ is a back-arc, namely it connects a node to an
ancestor inT .

3.1 AND/OR Search Tree
Given a graphical modelR = (X,D,F ), its primal graph
G and a pseudo treeT of G, the associated AND/OR search
tree, denotedST (R), has alternating levels of AND and OR
nodes. The OR nodes are labeledXi and correspond to the
variables. The AND nodes are labeled〈Xi, xi〉 and corre-
spond to the value assignments in the domains of the vari-
ables. The structure of the AND/OR search tree is based on
the underlying backbone treeT . The root of the AND/OR
search tree is an OR node labeled with the root ofT .

The children of an OR nodeXi are AND nodes la-
beled with assignments〈Xi, xi〉 that are consistent with
the assignments along the path from the root,path(xi) =
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Figure 2:Context-minimal AND/OR Search Graph

(〈X1, x1〉, 〈X2, x2〉, . . . , 〈Xi−1, xi−1〉). Consistency is well
defined for constraint networks. For probabilistic networks,
consistent tuples have non zero probability.

The children of an AND node〈Xi, xi〉 are OR nodes la-
beled with the children of variableXi in the pseudo treeT .

Example 1 Figure 1a shows a belief network. Figure 1b
shows a pseudo tree of the moral graph, together with the
back-arcs (dotted lines). Figure 1c shows the AND/OR search
tree based on the pseudo tree, for binary valued variables.

The AND/OR Search Tree can be traversed by a depth first
search algorithm. The arcs fromXi to 〈Xi, xi〉 are associ-
ated with appropriatelabelsof the functions inF . The al-
gorithm maintainsvaluesfor each node, accumulating the re-
sult of the computation performed in the subtree below. The
computation is dictated by the graphical model and task at
hand, for example for belief networks, AND nodes are asso-
ciated with multiplication (of the values of the independent
subproblems) and OR nodes are associated with summation
(over all the values of the variable). Based on earlier work
[Freuder and Quinn, 1985; Bayardo and Miranker, 1996;
Darwiche, 2001], it can be shown that:

THEOREM 1 Given a graphical modelR and a pseudo tree
T of depthm, the size of the AND/OR search tree based on T
is O(n · exp(m)). A graphical model of tree-widthw∗ has an
AND/OR search tree of sizeO(exp(w∗ · log n)).

3.2 AND/OR Search Graph
The AND/OR search tree may contain nodes that root iden-
tical subtrees. These are calledunifiable. When unifiable
nodes are merged, the search space becomes a graph. Its size
becomes smaller at the expense of using additional memory.
In this way, the depth first search algorithm can be modified
to cache previously computed results, and retrieve them when
the same nodes are encountered again. Some unifiable nodes
can be identified based on theircontexts[Darwiche, 2001].
The context of an AND node〈Xi, xi〉 is defined as the set
of ancestors ofXi in the pseudo tree, includingXi, that are
connected to descendants ofXi. It is easy to verify that the
context ofXi d-separates[Pearl, 1988] the subproblem be-
low Xi from the rest of the network. Thecontext minimal
AND/OR graph is obtained by merging all the context unifi-
able AND nodes.

Example 2 Figure 2 shows the context-minimal AND/OR
search graph of the problem and pseudo tree from Figure 1.

It can be shown that[Bayardo and Miranker, 1996; Dechter
and Mateescu, 2004]:
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Figure 3:Traditional cycle cutset viewed as AND/OR tree

THEOREM 2 Given a graphical modelR, its primal graphG
and a pseudo treeT , the size of the context minimal AND/OR
search graph based onT is O(exp(w∗

T (G))), wherew∗
T (G)

is the induced width ofG (extended with the pseudo tree extra
arcs) over the ordering given by the depth first traversal ofT .

4 Cycle Cutset Explored by AND/OR Search
The AND/OR paradigm exploits the problem structure, by
solving independent components separately. This fundamen-
tal idea can also be applied to the cycle cutset method, or
reasoning by conditioning[Pearl, 1988].

DEFINITION 2 (cycle cutset)Given a graphical modelR =
(X,D,F ), a cycle cutsetis a subsetC ⊂ X such that the pri-
mal graph ofR becomes singly connected if all the nodes in
C are removed from it. Anoptimal cycle cutsetis one having
the minimum number of variables.

The cycle cutset method consists of enumerating all the
possible instantiations ofC, and for each one of them solv-
ing the remaining singly connected network by a linear time
and space tree algorithm. The instantiations ofC are enumer-
ated by regular OR search, yielding linear space complexity
andO(exp |C|) time complexity, therefore requiring a mini-
mal cycle cutset to optimize complexity.

A first simple improvement to the traditional cycle cutset
scheme described above would be the enumeration ofC by
AND/OR search.

Example 3 Figure 3a shows two3 × 3 grids, connected on
the side nodeA. A cycle cutset must include at least two
nodes from each grid, so the minimal cycle cutset contains
three nodes: the common nodeA and one more node from
each grid, for exampleB andC. The traditional way of solv-
ing the cycle cutset problem consists of enumerating all the
assignments of the cycle cutset{A,B,C}, as if these vari-
ables form the chain pseudo tree in Figure 3b. However, if
A is the first conditioning variable, the remaining subprob-
lem is split into two independent portions, so the cycle cut-
set{A,B,C} can be organized as an AND/OR search space
based on the pseudo tree in Figure 3c. Ifk is the maximum
domain size of variables, the complexity of solving Figure 3b
is O(k3) while that of solving Figure 3c isO(k2).

We can improve the general cycle cutset method, based on
the previous example: first find the minimal cycle cutsetC;
then find the minimal depthstart pseudo treemade of nodes
in C:

DEFINITION 3 (start pseudo tree) Given an undirected
graph G = (V,E), a directed rooted treeT = (V ′, E′),
whereV ′ ⊆ X, is called astart pseudo treeif it has the same
root and is a subgraph of some pseudo tree ofG.
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Figure 4:AND/OR cycle cutset

If a cycle cutset of cardinality|C| = c is explored by
AND/OR search, based on a start pseudo treeT over the set
C, and the depth ofT is m, thenm ≤ c. Therefore,

Proposition 1 Exploring a cycle cutset by AND/OR search is
always better than, or the same as, exploring it by OR search.

5 AND/OR Cycle Cutset
The idea presented in section 4 is a straightforward applica-
tion of the AND/OR paradigm to cycle cutsets. In the follow-
ing we will describe a more powerful version of theAND/OR
cycle cutset.

DEFINITION 4 (AND/OR cycle cutset) Given a graphical
modelR = (X,D,F ), an AND/OR cycle cutsetAO-C is
a cycle cutset together with an associated start pseudo tree
TAO-C of depthm. An optimal AND/OR cycle cutsetis one
having the minimum depthm.

Example 4 Figure 4 shows a network for which theop-
timal cycle cutsetcontains fewer nodes than theoptimal
AND/OR cycle cutset, yet the latter yields an exponential
improvement in time complexity. The network in the ex-
ample is based on a complete binary tree of depthr, the
nodes markedAj

i shown on a gray background. The up-
per indexj corresponds to the depth of the node in the bi-
nary tree, and the lower indexi to the position in the level.
Each of the leaf nodes, fromAr

1 to Ar
2r−1 is a side node

in a 3 × 3 grid. A cycle cutset has to contain at least 2
nodes from each of the2r−1 grids. An optimal cycle cut-
set isC = {Ar

1, . . . , A
r
2r−1 , B

r
1 , . . . , Br

2r−1}, containing2r

nodes, so the complexity isO(exp |C|) = O(exp(2r)). We
should note that the best organization ofC as an AND/OR
space would yield a pseudo tree of depth2r−1 +1. This is be-
cause all the nodes in{Ar

1, . . . , A
r
2r−1} are connected by the

binary tree, so they all must appear along the same path in the
pseudo tree (this observation also holds for any other optimal
cycle cutset in this example). ExploringC by AND/OR search
lowers the complexity fromO(exp(2r)) to O(exp(2r−1+1)).

Let’s now look at the AND/OR cycle cutsetAO-C = {Aj
i |

j = 1, . . . , r; i = 1, . . . , 2j−1} ∪ {Br
1 , . . . , Br

2r−1}, con-
taining all theA andB nodes. A pseudo tree in this case is
formed by the binary tree ofA nodes, and theB nodes exactly
in the same position as in the figure. The depth in this case is
r + 1, so the complexity isO(exp(r + 1)), even though the
number of nodes is|AO-C| = |C| + 2r−1 − 1.



The previous example highlights the conceptual difference
between thecycle cutset methodand what we will call the
AND/OR cycle cutset method. In cycle cutset, the objective
is to identify the smallest cardinality cutset. Subsequently,
the exploration can be improved from OR search to AND/OR
search. InAND/OR cycle cutsetthe objective is to find a cut-
set that forms a start pseudo tree of smallest depth.

THEOREM 3 Given a graphical modelR, an optimal cycle
cutsetC, its corresponding smallest depth start pseudo tree
TC , and the optimal AND/OR cycle cutsetAO-C with the start
pseudo treeTAO-C , then:

|C| ≥ depth(TC) ≥ depth(TAO-C) (1)

There exist instances for which the inequalities are strict.

We should note that strict inequalities in Eq. 1 could trans-
late into exponential differences in time complexities.

6 AND/OR w-Cutset
The principle of cutset conditioning can be generalized using
the notion ofw-cutset. A w-cutsetof a graph is a set of nodes
such that, when removed, the remaining graph has induced
width at mostw. A hybrid algorithmic scheme combining
conditioning andw-boundedinference was presented in[Rish
and Dechter, 2000; Larrosa and Dechter, 2002]. More re-
cently, w-cutsetsampling was investigated in[Bidyuk and
Dechter, 2003], and the complexity of finding the minimal
w-cutsetwas discussed in[Bidyuk and Dechter, 2004].

The hybridw-cutsetalgorithm performs search on the cut-
set variables and exact inference (e.g. bucket elimination
[Dechter, 1999]) on each of the conditioned subproblems. If
the w-cutsetCw is explored by linear space OR search, the
time complexity isO(exp(|Cw| + w)), and the space com-
plexity isO(exp w).

The AND/OR cycle cutset idea can be extended naturally
to AND/OR w-cutset. To show an example of the difference
between the traditional w-cutset and theAND/OR w-cutset
we refer again to the example in Figure 4. Consider each
3 × 3 grid replaced by a network which has a minimal w-
cutsetCw. The minimal w-cutset of the whole graph contains
in this case2r−1 · |Cw| nodes. If this w-cutset is explored by
OR search, it yields a time complexity exponential in(2r−1 ·
|Cw| + w). If the w-cutset is explored by AND/OR search it
yields a time complexity exponential in(2r−1 + |Cw| + w)
(similar to Example 4). In contrast to this, theAND/OR w-
cutset, which contains theA nodes and the w-cutsets of each
leaf network, yields a time complexity exponential only in
(r + |Cw| + w), or possibly even less if the nodes inCw can
be organized in a start pseudo tree which is not a chain (i.e.
has depth smaller than|Cw|).

7 Algorithm Description
The idea ofw-cutset schemes is to define an algorithm that
can run in spaceO(exp w). TheAND/OR w-cutset algorithm
is a hybrid scheme. The cutset portion, which is organized
in a start pseudo tree, is explored by AND/OR search. The
remainingw-bounded subproblems can be solved either by

a variable elimination type algorithm, or by search withw-
bounded caching - in particular, AND/OR search with full
caching is feasible for these subproblems.

7.1 Improved AND/OR Caching Scheme

In [Dechter and Mateescu, 2004], the caching scheme of
AND/OR search is based oncontexts[Darwiche, 2001],
which are precomputed based on the pseudo tree before
search begins. AlgorithmAO(i) performs caching only at the
variables for which the context size is smaller than or equal
to i (calledi-bound).

The cutset principle inspires a more refined caching
scheme forAO, which caches some values even at nodes with
contexts greater than thei-bound. Lets assume the context of
the nodeXk is context(Xk) = {X1, . . . ,Xk}, wherek > i.
During the search, when variablesX1, . . . ,Xk−i are instan-
tiated, they can be regarded as part of a cutset. The problem
rooted byXk−i+1 can be solved in isolation, like a subprob-
lem in the cutset scheme, after the variablesX1, . . . ,Xk−i

are assigned their current values in all the functions. In this
subproblem,context(Xk) = {Xk−i+1, . . . ,Xk}, so it can
be cached withini-bounded space. However, when the search
retracts toXk−i or above, the cache table for variableXk

needs to be purged, and will be used again when a new sub-
problem rooted atXk−i+1 is solved.

This improved caching scheme only increases the space re-
quirements linearly, compared toAO(i), but the time savings
can be exponential. We will show results in section 8.

7.2 Algorithm AO-C(i)

We can now define the different versions ofAND/OR i-cutset
algorithm that we experimented with. We chose to explore
the cutset portion either by linear space AND/OR search (no
caching) or by AND/OR search with improved caching. For
the i-bounded subproblems, we chose either Bucket Elim-
ination (BE) or AND/OR search with full caching (which
coincides with the improved caching on the bounded sub-
problems). The four resulting algorithms are: 1)AO-LC(i)
- linear space cutset and full caching for subproblems; 2)
AO-LC-BE(i) - linear space cutset and BE for subproblems;
AO-C(i) - improved caching everywhere; 4)AO-C-BE(i)
- improved caching on cutset and BE on subproblems.

7.3 Finding a Start Pseudo Tree

The performance ofAO-C(i) is influenced by the quality of
the start pseudo tree. Finding the minimal depth start pseudo
tree for the giveni-bound is a hard problem, and it is beyond
the scope of this paper to address its complexity and solution.
We will only describe the heuristic we used in creating the
pseudo trees for our experiments.

Min-Fill [Kjæaerulff, 1990] is one of the best and most
widely used heuristics for creating small induced width or-
derings. The ordering defines a unique pseudo tree. The min-
imal start pseudo for ani-bound contains the nodes for which
some descendant has adjusted context (i.e. context without
the variables instantiated on the current path) greater than i.
Min-Fill heuristic tends to minimize context size, rather than



CPCS 422 -f(i)

i 1 2 3 4 5 6 7 8 9 10 11
d(AO-C) 32 32 32 32 31 31 31 31 31 30 29
d(C) 40 37 32 32 38 37 36 34 32 30 29
|C| 79 71 65 59 54 50 46 41 37 34 32

GWCA 79 67 60 55 50 46 42 38 34 31 29

Table 1:CPCS 422 - Cutsets Comparison

pseudo tree depth. Nevertheless, we chose to try it and dis-
covered that it provides one of the best pseudo trees for higher
values ofi.

Min-Depth We developed a heuristic to produce a bal-
anced start pseudo tree, resulting in smaller depth. We
start from a Min-Fill tree decomposition and then iteratively
search for the separator that would break the tree in parts that
are as balanced as possible, relative to the following mea-
sure: on either side of the separator eliminate the separator
variables, count the number of remaining clusters, sayn, and
then add the sizes of the largestlog n clusters.

GWC [Bidyuk and Dechter, 2004] is a greedy algorithm
to build a minimal cardinality cutset. In the process, we also
arranged the minimal cardinality cutset as AND/OR cutset, to
compare with the minimal depth cutset that we could find.

8 Experimental Evaluation
We investigated two directions. One was to empirically test
the quality of the start pseudo trees, and the other was to com-
pare actual runs of the different versions ofAO-C(i).

8.1 The Quality of Start Pseudo Trees
We report here the results on the CPCS 422b network from
the UAI repository. It has 422 nodes and induced width
22. Table 1 shows the values off(i), which expresses the
total complexity of a cutset scheme. For a cardinality cut-
set,f(i) = i + |C| and for an AND/OR cutset of depthd,
f(i) = i + d. The rowd(AO-C) shows the depth of the
best AND/OR cutset we could find.|C| shows the num-
ber of nodes in the best cutset found by GWC, andd(C)
shows its depth when organized as AND/OR cutset. GWCA
is taken from[Bidyuk and Dechter, 2004]. The best complex-
ity, expressed by small values off(i), is always given by the
AND/OR cutset, and for smaller values ofi they translate into
impressive savings over the cardinality cutsetC.

In all our experiments described in the following, we re-
frained from comparing the new cutset scheme with the old
cardinality cutset scheme (equivalent to an OR search on the
cutset), because the latter was too slow.

8.2 Performance ofAO-C(i)

We tested the different version of theAO-C(i) family primar-
ily on Bayesian networks with strictly positive distributions,
for the task of belief updating. This is necessary to grasp the
power of the scheme when no pruning is involved in search.

In all the tables N is the number of nodes, K is the maxi-
mum domain size, P is the number of parents of a variable,
w∗ is the induced width,i is thei-bound,d is the depth of the
i-cutset. For most problems, we tested a min-fill pseudo-tree
(MF) and one based on the depth minimizing heuristic (MD).

N=40, K=3, P=2, 20 instances, w*=7
i Algorithms d Time(sec) # nodes

MF MD MF MD MD MF

1 AO(i) 12 9 610.14 27.12 50,171,141 1,950,539
AO-LC(i) 174.53 8.75 13,335,595 575,936

AO-C(i) 67.99 7.61 4,789,569 499,391
AO-C-BE(i) 16.95 2.18 - -

3 AO(i) 7 6 71.68 8.13 5,707,323 595,484
AO-LC(i) 5.73 0.84 501,793 69,357

AO-C(i) 2.94 0.84 248,652 69,357
AO-C-BE(i) 0.69 0.25 - -

5 AO(i) 4 3 11.28 2.77 999,441 24,396
AO-LC(i) 0.55 0.54 50,024 4,670

AO-C(i) 0.55 0.55 49,991 4,670
AO-C-BE(i) 0.10 0.04 - -

N=60, K=3, P=2, 20 instances, w*=11
i Algorithms d Time(sec) # nodes

MF MD MF MD MD MF

6 AO-LC(i) 7 6 159.79 63.01 14,076,416 5,165,486
AO-C(i) 112.43 62.98 9,925,855 5,165,486

AO-C-BE(i) 27.33 5.50 - -
9 AO-LC(i) 3 3 24.40 41.45 2,140,791 3,509,709

AO-C(i) 24.15 40.93 2,140,791 3,509,709
AO-C-BE(i) 4.27 2.89 - -

11 AO-LC(i) 0 1 17.39 38.46 1,562,111 3,173,129
AO-C(i) 17.66 38.22 1,562,111 3,173,129

AO-C-BE(i) 1.29 2.81 - -

Table 2:Random Networks

The time and the number of nodes expanded in the search are
shown for the two pseudo trees correspondingly.

Random networks.Table 2 shows results for random net-
works, generated based on N, K and P and averaged over 20
instances. Note that K=3, which makes the problems harder,
even thoughw∗ seems small. For N=40 we see that the
old scheme AO(i) is always outperformed. Using improved
caching on the cutset is almost always beneficial. Fori very
close tow∗, caching on the cutset doesn’t save much, and in
some cases when no caching is possible, the extra overhead
may actually make it slightly slower. Also, for strictly posi-
tive distributions, switching to BE is faster than running AO
search with caching on the remaining problems.

CPCS networks. CPCS are real life networks for med-
ical diagnoses, which are hard for belief updating. Table 3
shows results for CPCS 360 file, having induced width 20.
For i = 20, AO-C-BE(i) is actually BE. It is interesting
to note thatAO-LC-BE(i), for i = 12 is actually faster
than BE on the whole problem, while requiring much less
space (exp(12) compared toexp(20)), due to smaller over-
head in caching (smaller cache tables) and a good ordering
that doesn’t require recomputing the same problems again.
We also mention that AO(i) was much slower on this prob-
lem and therefore not included in the table.

In the above experiments, the values ofd show that MF
heuristic provided a better cutset for large values ofi, while
the MD heuristic provided good cutsets wheni was small.

Genetic linkage network. We include in Table 4 results
for the genetic linkage network EA4[Fishelson and Geiger,
2002]. This is a large network, with N=1173, but relatively
small induced width,w∗ = 15. This network contains a lot of
determinism (zero probability tuples). We did not use in AO
search any form of constraint propagation, limiting the algo-
rithm to prune only the zero value nodes (their subproblems
do not contribute to the updated belief). We note here that for
i-bound 13 and 9,AO-C(i) is faster thanAO-C-BE(i) be-



CPCS 360b, N=360, K=2, w* = 20
i Algorithms d (MF) Time # nodes
1 AO-LC(i) 23 2,507.6 406,322,117

AO-LC-BE(i) 1,756.4 -
AO-C(i) 1,495.2 243,268,549

AO-C-BE(i) 1,019.4 -
12 AO-LC(i) 8 186.8 14,209,057

AO-LC-BE(i) 10.3 -
AO-C(i) 185.1 14,209,057

AO-C-BE(i) 10.4 -
20 AO-LC(i) 0 167.8 12,046,369

AO-LC-BE(i) 11.5 -
AO-C(i) 170.9 12,046,369

AO-C-BE(i) 11.6 -

Table 3:CPCS 360

EA4 - N=1173, K=5, w*=15
i Algorithms d Time(sec) # nodes

MF MD MF MD MD MF

6 AO(i) 23 21 10.0 103.4 1,855,490 15,312,582
AO-LC(i) 22.5 76.4 3,157,012 9,928,754

AO-C(i) 2.0 51.3 281,896 6,666,210
AO-C-BE(i) 8.4 82.3 - -

9 AO(i) 18 17 3.3 9.3 410,934 1,466,338
AO-LC(i) 1.6 4.7 196,662 617,138

AO-C(i) 1.5 4.8 196,662 616,802
AO-C-BE(i) 3.5 7.0 - -

13 AO(i) 3 8 2.0 5.9 235,062 887,138
AO-LC(i) 1.4 3.6 172,854 431,458

AO-C(i) 1.6 3.4 172,854 431,458
AO-C-BE(i) 0.7 5.3 - -

Table 4:Genetic Linkage Network

cause it is able to prune the search space. We used a version
of BE which is insensitive to determinism.

Large networks. Memory limitations are the main draw-
back of BE. In Table 5 we show results for hard networks,
solved byAO-C-BE(i), wherei = 12 is set to the maximum
value that we could use on a 2.4 GHz Pentium IV with 1 GB
of RAM. For N=100, the space requirements of BE would
be about 100 times bigger than the RAM (note K=3), yet
AO-C-BE(12) could solve it in about six and a half hours,
showing the scalability of the AND/OR cutset scheme.

9 Conclusion
The paper presents theAND/OR w-cutset scheme, which
combines the newly developed AND/OR search for graphi-
cal models[Dechter and Mateescu, 2004] with the w-cutset
scheme[Bidyuk and Dechter, 2003]. Theorem 3 shows that
the new scheme is always at least as good as the existing cut-
set schemes, but it often provides exponential improvements.

The new AND/OR cutset inspired an improved caching
scheme for the AND/OR search, which is always better than
the one used by AO(i)[Dechter and Mateescu, 2004], based
on context.

The experimental evaluation showed, first, that the theoret-
ical expectations of getting exponential improvements over
the traditional cardinality cutset are actually met in practice.

Second, it showed the power and flexibility of the new hy-
brid scheme. Our conclusion is that improved caching on the
cutset is in most cases beneficial. For the remaining prob-
lems, if the task is belief updating (or counting solutions)and
there is little determinism, then switching to BE is faster.In
the presence of determinism, solving the remaining problems
with search with full caching may be better. We leave for fu-

K=3, P=2; AO-C-BE(i), i=12

N w* d (MF) Time(sec)
70 13 2 12
80 15 3 61
90 17 6 2,072

100 18 9 22,529

Table 5:Networks with high memory requirements for BE

ture work the investigation of using look-ahead and no-good
learning in the presence of determinism for the AND/OR w-
cutset scheme.

Finally, the new scheme is scalable to memory intensive
problems, where inference type algorithms are infeasible.
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