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Abstract

It has recently been proposed that it is advantageous
to have models of dynamical systems be based
solely on observable quantities. Predictive state
representations (PSRs) are a type of model that uses
predictions about future observations to capture the
state of a dynamical system. However, PSRs do
not use memory of past observations. We propose
a model called memory-PSRs that uses both mem-
ories of the past, and predictions of the future. We
show that the use of memories provides a number of
potential advantages. It can reduce the size of the
model (in comparison to a PSR model). In addi-
tion many dynamical systems have memories that
can serve as landmarks that completely determine
the current state. The detection and recognition of
landmarks is advantageous because they can serve
to reset a model that has gotten off-track, as of-
ten happens when the model is learned from sam-
ples. This paper develops both memory-PSRs and
the use and detection of landmarks.

Introduction

Our goal is to provide a model class that is as expressive as
PSRs but that has some of the efficient learning properties of
history-based models.

In addition to accelerating learning, mPSRs can also ex-
ploit landmarksor observations that capture the state of the
system uniquely, by “resetting” the approximate state of the
learned model during prediction whenever these landmark-
observations are encountered. We present a method for find-
ing landmarks in mPSRs, develop the basic theory of MPSRs
and provide preliminary empirical results exploring the rela-
tive efficiency of learning mPSRs and PSRs.

2 PSRs and memory-PSRs

PSRs depart from other models of dynamical systems in that
their representation of state is a vector of predictions of the
outcomes oteststhat may be performed on the dynamical
system. A test = ajo01,...a;0; IS @ sequence of alternating
actionsa; € A and observations; € O, and itsprediction

p(t), is the conditional probability that the observation se-
quence occurs, given that the action sequence is taken, and so
p(t) = prob(oy, ...ox|a1, ...ax). Of course, the prediction of

a test is dependent on the actions and observations that have
occurred so far, called thastory. The prediction of a test

at historyh is p(t|h) = prob(o, ...ox|hay, ...a).

This paper explores the use of two types of observable quanti- A PSR’s state representation consists of predictions of a
ties — the history of past observations and predictions aboutPecial set) of tests, called theore tests. The core tests
future observations — in creating models for complex dy-are special because at any history, the predictionargtest
namical systems. Models that use only predictions of futuré&an be computed as a linear function of the predictions of the
observations to capture state, called predictive state repr&9re tests. The prediction vecta(@Q|h) is the(n = |Q| x 1)
sentations or PSR ittman et al, 2001, have been shown Vector of predictions for the tests @@ at historyh. Thus,
(surprisingly) to be at least as expressive and comj3iagh 4 4 f
et al, 2004 as classical models such as partially observablderpart to belief-states in POMDPs and the lasbservations
Markov decision processes (POMDPs) that use hidden staf@ k-order Markov models.

variables. Models that only use observation history, such as Inaddition to the set of core tests, a PSR has model param-
k-order Markov models, are known to be not as expressiv&ters: a set ofn x n) matricesi,,, and(n x 1) vectorsm,,

and hence not as widely applicable as PSRs or POMDPs.

p(Q|h) is the PSR’s representation of state and is the coun-

ogrr all a,0. The model parameters allow linear computation

the other hand, history-based models are easier to learn froRf the prediction for any test= {ay01 ... a0} as follows:

data than either PSRs and POMDPs. In this paper, we pro-

pose an extension to PSRs, called memory-P3f2SR}
that combines past observatiomsgmorie} with predictions
about the future to define the state of a dynamical sydtem. is taken in history: ando is observed, is accomplished by

1Sutton and Tanndi2004 have also recently proposed a model

that combines memory and predictions.

p(ﬂh) :p(Q|h)T]\/‘[alol"‘Mak—lok—lmakok‘ (1)
Updating the current state, or prediction vector, when action

p(Qlhao)” = P@0QIN) _ p(QI1)" Ma,

p(aclh) — p@MTme O



The matricesM,, and vectorsm,, have a special form. parameters. The set of memories and core tests for each par-
The i*" column of M,, is the (n x 1) constant vector that tition form the basis of MPSR models. It is straightforward
computes the prediction of thei{) one-step extension of that the rank of each submatrix is at most the rank of the full
the it" core testq; € @, i.e., of testaog;. The vector matrix D. In the worst case, the ranks of all the submatri-
mg, 1S the constanfn x 1) vector that computes the pre- ces are the same as the rankfin which case the resulting
diction for the one-step test = ao. The fact that the mPSR model may have (many) more parameters than the PSR
model parameters have these meanings is the foundation ofodel. But in other cases the ranks of the submatrices may
existing PSR learning algorithnidames and Singh, 2004; be much smaller than the rank &f and then the resulting
Rosencrantet al, 2004 as well as the new mPSR learning mPSR model may be more compact than the PSR model. We

algorithm presented here. provide examples of both cases in Section 5. The size of the
model is important because a model with fewer parameters
Tests should in general be more efficient (i.e., require less data) to
learn. We also test this empirically in Section 5.
ST SRR In this paper we do not address the question of automat-
- L. TRY ically discovering useful ways of partitioning histories and
o=hy p(tl h ) p(tl h ) instead assume that partitions correspond to history suffixes
8 . . . of some fixed length.
S . . . Definition of memory: For this paper, given an mPSR
B using lengthk suffixes, amemoryis a specific sequence of
T h|pt ). o) length & that identifies a partition. So, when considering a
history h and memories of length one, the memoryhaits
just the last (most recent) observatioriipand there will be

|O] memories in the mPSR. For memories of length two, the
memory ath is the last (most recent) action-observation pair
in i, and there will bd.A| « |O] memories in the mPSR. In
general, the set of possible memories in an mMPSR that uses
length+ suffixes is the set of all length-sequences of alter-
System Dynamics Matrix nating actions and observations that end in an observation; we

The theoretical development of mMPSRs is best explained ugvill denote the size of such a setas..

ing the system dynamics matriX), that was developed in Let p1 ... um, represent all the distinct memories in an

Singhet al.[2004. The matrixD, shown in Figure 1, has all mPSR model. Also, let the memory at histdrype denoted

possible histories as rows and all possible tests as columng(h). Each memory:; has a corresponding submatifix*:

The columns (rows) are arranged by test (history) length andreated by the partition of histories corresponding.toThe

within the same length in lexicographic ordering. The entrycore tests for partitiorD* are referred to ag-core tests to

D;; = p(t;|h;) is the prediction for the’" test at thei'” distinguish them from the core tests of the PSR model of

history. There is a one to one correspondence between syie same system. Thus, thecore tests for the submatrices

tem dynamics matrices and dynamical systeiftse rank of ~ D#* ... D#m are denotedp”! ... Q"™+ respectively. The

D is_the dimension of the corresponding dynamical systemprediction vectop(Q*(™ |h) contains the predictions for the

and is the number of core tests needed by the PSR model.core testg)»(") at memoryy,.

The core tests of a PSR model correspond to a maximal set pefinition of mPSR state: The mPSR statet history

of linearly independent columns. Similarly, we can definé a;, s jenoted by the concatenation of the memoryhat

Iri]l?uorr; c?:;(éore :Igt?:tlers\zat \c;\?rr\zﬁlpor?ld kt)o ﬁ]{nfx':ngliﬁ?itnﬁf and the prediction vector for that memory At i.e., as

dir?]iﬂgion;p:ystsms OTr?i.s agsumgtign ii noet) t?—zsrriebly restrieclu(h)’p (Qu™[n)]. Thus, the mPSR.s'gate contains both a
: memory of the past as well as predictions about the future

tive because all POMDPs withunderlying or nominal states : . g
are dynamical systems of dimension at masa full deriva- while a PSR state contains only predictions about the future.

tion of PSRs through use of the system dynamics matrix is Definition of mPSR update parameters:For each mem-

Figure 1: The system dynamics matrix.

presented in Singat al.[2004. ory, u;, we will keep a set of matrice®//: and vectorsn#:
for all a, 0. There is a subtle issue in defining these parame-
memory-PSRs ters. Itis not the case that each submatrix is a separate dynam-

The central idea behind mPSRs isgartition D into a set ical system. Indeed if the memory corresponding to current
of m submatricesD?! ... D™ by partitioning the set of his- history h is sayu; and we take action and observe, the
tories (rows) but not the tests (columns), i.e., each submatrimmemory corresponding to the next histdryo could be dif-

D' contains all the columns but only a subset of the historiesferent fromy,. Lets say it isu;. Thus the update parameters
How do memories enter this picture? We will use memoryM i must transform the current prediction vector that makes
of past observations to partition histories, and every memprediction foru-core testg)*: in history h to the prediction
ory will correspond to a partition; we elaborate on this later.vector foru-core test€)*: in historyhao. Note that all histo-
For now, note that each submatrix will have its own rank andies belonging to memory; will transition to the same mem-

its own core tests and core histories as well as model-updatary 1., for action-observation pairo, i.€.,j is uniquely deter-



mined byi and the pairo; and so the model parametif: Lemma 2. For any dynamical system of finite dimension and
need not explicitly reference to the next memery Thus  any choice of (fixed-length suffix) memories, the size of the
one can define the state update for mPSRs as follows: upaesulting mPSR model for that system is at most the number
taking actiona in history h and observing of memories times the size of a PSR model for that system.

(Q" [hao) = p(aoQ"i|h) _ p(Q"|h)" My (3  Proof. Inthe worst case, the rank of each of the submatrices

p ao p(aolh) Qe [h)Tmt% in the mPSR is exactly the rank of the full system dynamics
i ) matrix. In such a case, if we happen to find differenatore

wherep(h) = p; andp(hao) = iy The matrixMf: is of  tests for each submatrix, then the model for each submatrix

size(|Q"| x|Q"7]) and the vectomy; is of size(|Q"*[x1). il be exactly as large as the PSR model. O
As in PSRs the update parameters in mPSRs have meaning.

For instance, thé*" column of M} is the(|Q"i| x 1)-sized The above lemma holds no matter how one chooses the

constant parameter vector that computes the prediction for thememories. But what if we can choose the memories to use

test that is the:' pi-core test for memory;. in constructing an mPSR judiciously (by which we mean to
The mPSR model parameters allow linear computation ominimize the size of the resulting model)?

the prediction for any test= {a;0; ... agox} at historyh as

follows:

Theorem 1. With a judicious choice of memories, the size of
the corresponding mPSR for any dynamical system is at least
p(t|h) = P(Q|h)TM5fol LM bk (4)  as compact as the size of the PSR for that dynamical system.
o ' Furthermore, there exist dynamical systems for which some
whereyy is the memory corresponding to histdryu, isthe  choice of memories leads to an mPSR model that is more com-
memory corresponding to histohy;0; and so on. pact than the PSR model of the same dynamical system.
Definition of mPSR: An mPSR model is defined by the
tuple (A, O, 1 ..., , Q" ... QFmx M, [0, p(QH0]0)]) Proof. The proof of the first statement follows from the fact
where A is the set of actions® is the set of observations; thata PSR is also an mPSR with the null set as memories. We
1 - fim, are the possible memorie§*: is the set ofu- prove the second statement by constructing such a dynamical
core tests for memory,;; M is the set of update parameters system. Table 1 compares the size of mMPSRs and PSRs for
M*i andm#: for all a, o, u;; uo is the initial memory; and  various standard test dynamical systems (based on POMDPs).

p(Q"|0) is the initial prediction vector. In all instances, a suffix of length one was used to partition
A special and interesting case arises when a memory bthe histories. For at least three problems, Cheese, Shuttle and
itself serves as state and no predictions are needed. Four-Three, the mPSR is more compact than the PSR

Definition of landmark: Given an mPSR, mndmarkis a
memory that serves as state, i.e., is a sufficient statistic of his3-1 Landmarks
tory. Landmarks can be quite beneficial for making accuratgve show that landmarks are equivalent to memories for
predictions. We will discuss the identification of landmarkswhich there is only ong.-core test and furthermore that the
and exploiting them for prediction in Section 3.1. prediction of any test at a landmark is the same at all histories
that map to that landmark.
3 Basic Theory of MPSRs

Ouir first result is to show that for any dynamical system it
is possible to finds-core tests for all memories in an mPSR
model from the sef) of core tests for the corresponding PSR
model.

Lemma 3. For an mPSR model of a dynamical system,

e any memory that is a landmark has only greore test,
and every memory that hasiacore set of size one is a
landmark.

o for all histories that map to a landmark the prediction

Lemma 1. Let a dynamical system be modeled as a PSR with vector is a constant, i.e., independent of history.

core testg). Then there always exists an mPSR model for the

system such that for each memarythe corresponding:- o for all histories that map to a landmark the prediction of
core testg* satisfyQ*: C Q. any test is a constant, i.e., independent of history.

Proof. We provide a constructive proof which shows how to
derive the subsep*: from (). Recall that all columns ab
are linear combinations of the columns corresponding to

D. Consider the submatri*: for memoryy;. It must be
the case that all columns @*: are linear combinations of
the columns corresponding @ in D*i. Thus, there exists

Proof. If u is a landmark, then the predictions for all tests
are fully determined whep is known. Therefore, at any two
histories that have memopy, the prediction of every test is
the same at both histories. This means that every rom*of
must be identical, so the rank @* is one, and only one

_ u-core test exists fop.

QM C Q. - For a memoryu that has a singl@-core testg”, let H*

In this paper, we don't exploit Lemma 1 for two reasons: 1)denote the histories that map to mempryFor anys € H*,
the core tests of PSRs are not unique, and 2) in any case whéfd any action, itmusthold thab _, p(ao|h) = 1 which im-
learning a model of a dynamical system from experience datglies thaty"_ p(¢*|h)"m#, = 1, which in turn implies that
we do not have a PSR model and thus its core @dtsbegin  p(¢*|h)” =1/, m#,. Recall thatn’, are independent of
with. history, and thus the prediction ¢f must be independent of



Determining p-core tests and histories

Table 1. Comparison of the size of PSRs and mPSRs The algorithm proceeds in iterations. At iteratigrihe algo-

Problem # Core Tests # Param. Entries rithm has a current set of linearly independentiezore tests
PSR mPSR PSR| mPSR and histories for each memory. L&Y (T}*") be the set of
Tiger 2 2,2 36 72 p-core histories gg-core tests) found by iterationfor mem-
Paint 2 2,2 48 96 ory u;. Theseu-core tests (histories) start off as the empty
Cheese 11 | 1,1,1,1,2,2,3| 3696 792 set at the first iteration. We also keep a set of candidate tests
Network 7 4,6 448 480 and histories at each iteration. The set of candidate tests for
Bridge 5 22445 | 1800| 4488 memoryy; is the set of one-step tests; and for eveypair,
Shuttle 7 11,2,2,4 | 840 450 the set ofao-extensions for all the current-core tests for
Four Three| 10 | 1,1,1,1,3,4 | 2640 748 memory;, wherep; is the next memory when actianis
Float Reset 5 1,5 120 96 taken in memory; ando is observed. The set of candidate

histories is similarly generated. We ask the oracle for the
predictions of all the candidate tests at all the candidate his-
the history. This calculation exploits the fact that the predic-tories. We compute the rank of this oracle-generated matrix,
tion vector and update parameters are scalars. denotedX;. The linearly independent rows and columns of
Furthermore, because the predictiongtfis independent X, become the nevi/, andT};, respectively. In selecting
of history, and the update vector)’ for any test is indepen-  the newu-core tests and histories we always include the pre-
dent of history, the predictiop(t|h) = p(g”|h)Tm! of t at  vious u-core tests and histories. We stop at iteratidhthe
history h must also be independent of history. So, all rows ofrank of X, is the same as the rank &f,_; for all memories.
D# must be identical, and is therefore a landmark. [ The above algorithm is an adaptation of the similar al-

. orithm for determining core test and histories for PSRs by
Landmarks come in handy because they can be used &ames and Singl2004. Just like for PSRs this algorithm is

keep a learned — and therefore only approximately correchy o \aranteed to find ll-core tests and histories, but also
o model_from progressively drifting farther and farther_av_vay-ust like for PSRs it seems to work for all empirical work done
from reality as we make longer and longer term pred|ct|0n§50 far

from such a model. Every time we observe a landmark mem-

ory, we can reset the prediction vector to the constant corre€omputing the model-update parameters

sponding to the landmark irrespective of the actual observefjow we discuss how to compute the model-update matrix
history. This can keep the error in the prediction for very |0ngM50 for anyao pair and any memory. We define a matrixi
tests from growing with the length of the test. We exploit thisfor memory that contains the predictions for all thecore

ability in our empirical results below. tests at all theu-core histories for memony. This matrix will
) have full rank and is computed in the algorithm above. jLet
4 Learning mPSR models from data be the memory achieved when actiois taken in memory:

In this section we present an algorithm for learning mpSRando is observed. Thé" column of A7/, denotedr, is the
models from data under the assumption that the algorithm hazonstant parameterxectorthat computes the prediction for the
the ability to reset the dynamical system being modeled to afio-€xtension of thé*" s-core test, denotegl of memoryy;.

initial state. We present the algorithm in two stages. In thé-€tb be the column vector of predictions of tgsfor the .-

first stage, we will assume that the algorithm has access to &€ histories of memory. We ask the oracle for the entries
oracle that if given a histor and test will return the predic-  Of b Then from Equation 3 abovelx :_15- Since A is

tion p(t|h) for the dynamical system. In the second stage weull rank, it is invertible and hence = A™"b. We can use

will show how the oracle can be replaced by the use of sampli'€ same idea to compute the model-update parameter vector
data from the dynamical system with reset. Because we wisHao- )

rithm, we will attempt to minimize the number of calls to the @bove algorithm can be replaced by using data from the dy-
oracle in the first stage. Our algorithm is a relatively straight-Namical system with reset.

forward adaptation to mPSRs of the algorithm presented by,

James and Singl2004 for PSRs. 4.2 Learning mPSRs from sample data
) We show how to obtain an estimate for the predictidtih),
4.1 Oracle based algorithm something we went to the oracle for in the previous algorithm.

Recall that there are two components to an mPSRutbere  We generate samples from the distributign/ i) by first tak-
tests for the different memories and the model-update paraning the action sequence inafter a reset. If the observation
eters for the memories. In our empirical work below, we al-sequence ih happens, then we have succeeded in generating
ways use memories of length one. Clearly the model paramhistory h. If we don’t succeed in generating the history, we
eters for a memory depend on the choiceuedore tests for reset the system and try again. If we do succeed in generat-
that memory (recall that the-core tests are not unique). The ing the history, we take the action sequence in tedf the
process of computing-core tests and update parameters forobservation sequence in teéstappens, the test succeeds, else
each memory is identical and so we can just discuss how tthe test fails. We get an estimateydt|h) from the empirical

do this for any one memory, say. success rate of the testt historyh. Of course, this is ex-
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Figure 2: Results of running mPSR learning algorithms on a suite of test problems. See text for details.

tremely wasteful in the number of data samples needed. Weecond is to test whether the oracle-based algorithm for com-
implement this basic idea much more efficiently by execut-puting mPSRs finds exact mMPSR models. The third is to test
ing the action sequence it regardless of the observations the efficacy of the sample-data based learning algorithm for
obtained and then mining the data generated for all possibllPSRs. Finally, we are also interested in whether using land-
history and test pairs that can be extracted from it. marks, where available, to reset prediction vectors during the
One problem that occurs with this estimation techniqueprocess of computing predictions for long test sequences pro-
is that the sampled entries of the system dynamics matrixides a measurable benefit. All of these experiments were on
will almost certainly result in inaccurate calculations of rank a suite of standard POMDP-based dynamical systeas-
(needed in the above oracle-based algorithm). We use a mosandra, 1990that have been used for both POMDP-learning
robust rank calculation procedure developed in the PSR learras well for PSR-learning.
ing algorithm by James and Sin§®004. The central idea is Again, for all of the results presented below, the memories
that we can use the number of samples that went into eaalised for the mPSR models were the most recent observation.
entry of the matrix we wish to find the rank of to generate a
threshold on singular values obtained via singular value de5.1 Comparing PSRs and mPSRs

composition. This threshold is more conservative when W&-or PSRs and mPSRs. the size of the model can be measured
have fewer samples and generally leads to a smaller rank thjiih, in terms of the number of core testsdore tests), and
otherwise. As more samples are included, the threshold bes 1o number of entries in the model parameters. Table 1
comes less conservative and the calculated rank is closer E‘bmpares the sizes of PSR and mPSR models for the suite
the straightforward calculation of rank. of test problems. For mPSRs, the numbepefore tests at

.. each memory is listed. Fully half of the test problems have
5 Empirical results landmarks (memories with only onecore test), indicating
We conducted experiments with a view towards validatingthat this may be a fairly common situation.
four major ideas presented above. The first experiments are The number of entries in the model parameters are listed
meant to compare the relative size of PSRs and mPSRs. Ttier both PSRs and mPSRs. On three of the problems (Cheese,



Shuttle, and Four-Three) there are significantly fewer entriegandmarks stabilizes the error and gives the best results.
needed for the mPSR model than for the PSR model; on three
other problems (Tiger, Bridge, and Paint) there are signifi6 Conclusion

cantly more; and on the two remaining problems there argn this paper we pronosed a new class of models. MPSRS
approximately an equal number needed. This proves that mP- pap prop . o '
Qat combines memory of past observations and predictions of

SRs can be more compact than PSRs. This also illustrat ture observations into its state representation. We showed
that the unless we choose memories wisely, mMPSRs can al . P '
at mPSRs are as expressive as and can be more compact

be less compact than PSRs. than PSRs that solely use predictions of future observations

5.2 Constructing mPSRs from exact predictions in its state representation. Our preliminary empirical results
. . showed that in dynamical systems where the mPSR model of
We tested the oracle algorithm for computing mPSRs by pro

S o - P Ythe system is more compact than the PSR model, learning the
viding access to the true predictions computed analytically,pgp model is more efficient than learning the PSR model.

for the test problems. As we mentioned in Section 4.1, th'SFinaIIy, we formalized the notion of landmark memories and
algorithm is not guarante_ed to find alicore tests for every demonstrated how to find them and how to exploit them in
memory. We found that in fact for all the test problems, themaking long-term predictions

algorithm does indeed find all the-core tests and histories As future work, we will explore the interesting challenge

for all the models. We_also verified that the result!ng mPSROf automatically finding good memories to combine with
models were perfect, in the sense that any prediction erroé1

. redictions of tests to make compact and efficiently learnable
was due to machine round-off error. Furthermore, becaus
: PSR models.
correct sets ofu-core tests were discovered, all landmarks

were identified. AcknowledgementsThe research reported in this paper was
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Here we present the results of learning mPSR models for all

our dynamical systems. As mentioned above we assumed

reset. This makes our results directly comparable to the rel-é(_:‘ferences

sults of James and SingB004 on the same set of problems [Cassandra, 199%A. Cassandra. ~ Tony's pomdp page.
under the same reset assumption. We applied the algorithm of http://www.cs.brown.edu/research/ai/ pomdp/index.html,
Section 4.2, stopping every so often during learning to test the 1999.

model learned so far. For each test of the learned model, Wesolub and Van Loan, 1996G.H. Golub and Ch. F.
asked the model to make predictions while tracking the sys- van Loan. Matrix Computations The Johns Hopkins
tem for 100, 000 steps (with randomly chosen actions). The  ynjversity Press, 3rd edition, 1996.

test error reported is the average error in the one-step predic- . . .
tions of the model relative to the true predictions. This is thefJames and Singh, 20DMichael R. James and Satinder

same error measure as used in James and 20t . Singh.i Lea}rning anq discovery of predictive State repre-
The results of this testing are presented in Figure 2. We Sentations in dynamical systems with reset. The 21st

compare our results to the results for PSR learning for the 'Mternational Conference on Machine Learnirgp04.

same dynamical systems from James and Siagb4. Plots  [Littmanet al, 2001 Michael L. Littman, Richard S. Sut-

A to D present the results for the systems without any land- ton, and Satinder Singh. Predictive representations of

marks, and show the results of PSR and mPSR learning. In state. InAdvances In Neural Information Processing Sys-

two of these systems, PSR learning is more efficient while tems 142001.

in the other two they are roughly equivalent. We note thajrgsencrantet al, 2004 Matthew Rosencrantz, Geoff Gor-
in all of these problems the PSR models are more compact don, and Sebastian Thrun. Learning low dimensional pre-

or equal in size than the mPSR models. Plots E to H are for jjctive representations. Mhe Twenty-First International
systems with landmarks. Here we plot three results: PSR ~qnference on Machine Learningo04.

learning, mPSR learning and mPSR learning with landmarks. ) _ . _

The last algorithm, mPSR learning with landmarks, uses this'ngh‘:-‘t al, 2003 Satinder Singh, Michael L. Littman,
mPSR learning algorithm of Section 4.2 but during testing Nicholas K. Jong, David Pardoe, and Peter Stone. Learn-
resets the prediction vector when a landmark memory is en- N9 predictive state representations. Tine Twentieth In-
countered to the constant prediction for that memory. In three t€rnational Conference on Machine Learnjizp03.

of the systems corresponding to graphs E, G and H, the size ¢§&inghet al, 2004 Satinder Singh, Michael R. James, and
the mPSR model is smaller than the PSR model. As we sur- Matthew R. Rudary. Predictive state representations, a new
mised in Section 2 this leads to mMPSR learning being more theory for modeling dynamical systmes. 20th Confer-
efficient than PSR learning. In the system for plot F the two ence on Uncertainty in Artificial Intelligen¢c2004.

are roughly equivalent as are their sizes. The effect of us Sutton and Tanner, 200/R. S. Sutton and B. Tanner.

ing Iandmarl_<s is most ea_sily seen in pl(_)ts G and_ H. Her Temporal-difference networks. ¥advances in Neural In-
mMPSR learning without using landmarks is very noisy for if formation Processing Systems, 2D04

the system gets off-track in its predictions the error accumu-
lates rapidly as the test sequence lengthens, while using the



