
Combining Memory and Landmarks with Predictive State Representations

Michael R. James and Britton Wolfe and Satinder Singh
Computer Science and Engineering

University of Michigan
{mrjames, bdwolfe, baveja}@umich.edu

Abstract

It has recently been proposed that it is advantageous
to have models of dynamical systems be based
solely on observable quantities. Predictive state
representations (PSRs) are a type of model that uses
predictions about future observations to capture the
state of a dynamical system. However, PSRs do
not use memory of past observations. We propose
a model called memory-PSRs that uses both mem-
ories of the past, and predictions of the future. We
show that the use of memories provides a number of
potential advantages. It can reduce the size of the
model (in comparison to a PSR model). In addi-
tion many dynamical systems have memories that
can serve as landmarks that completely determine
the current state. The detection and recognition of
landmarks is advantageous because they can serve
to reset a model that has gotten off-track, as of-
ten happens when the model is learned from sam-
ples. This paper develops both memory-PSRs and
the use and detection of landmarks.

1 Introduction
This paper explores the use of two types of observable quanti-
ties — the history of past observations and predictions about
future observations — in creating models for complex dy-
namical systems. Models that use only predictions of future
observations to capture state, called predictive state repre-
sentations or PSRs[Littman et al., 2001], have been shown
(surprisingly) to be at least as expressive and compact[Singh
et al., 2004] as classical models such as partially observable
Markov decision processes (POMDPs) that use hidden state
variables. Models that only use observation history, such as
k-order Markov models, are known to be not as expressive
and hence not as widely applicable as PSRs or POMDPs. On
the other hand, history-based models are easier to learn from
data than either PSRs and POMDPs. In this paper, we pro-
pose an extension to PSRs, called memory-PSRs (mPSRs),
that combines past observations (memories) with predictions
about the future to define the state of a dynamical system.1

1Sutton and Tanner[2004] have also recently proposed a model
that combines memory and predictions.

Our goal is to provide a model class that is as expressive as
PSRs but that has some of the efficient learning properties of
history-based models.

In addition to accelerating learning, mPSRs can also ex-
ploit landmarksor observations that capture the state of the
system uniquely, by “resetting” the approximate state of the
learned model during prediction whenever these landmark-
observations are encountered. We present a method for find-
ing landmarks in mPSRs, develop the basic theory of mPSRs
and provide preliminary empirical results exploring the rela-
tive efficiency of learning mPSRs and PSRs.

2 PSRs and memory-PSRs
PSRs depart from other models of dynamical systems in that
their representation of state is a vector of predictions of the
outcomes ofteststhat may be performed on the dynamical
system. A testt = a1o1, ...akok is a sequence of alternating
actionsai ∈ A and observationsoj ∈ O, and itsprediction,
p(t), is the conditional probability that the observation se-
quence occurs, given that the action sequence is taken, and so
p(t) = prob(o1, ...ok|a1, ...ak). Of course, the prediction of
a test is dependent on the actions and observations that have
occurred so far, called thehistory. The prediction of a testt
at historyh is p(t|h) = prob(o1, ...ok|ha1, ...ak).

A PSR’s state representation consists of predictions of a
special setQ of tests, called thecore tests. The core tests
are special because at any history, the predictions foranytest
can be computed as a linear function of the predictions of the
core tests. The prediction vectorp(Q|h) is the(n = |Q| × 1)
vector of predictions for the tests inQ at historyh. Thus,
p(Q|h) is the PSR’s representation of state and is the coun-
terpart to belief-states in POMDPs and the lastk observations
in k-order Markov models.

In addition to the set of core tests, a PSR has model param-
eters: a set of(n×n) matricesMao, and(n×1) vectorsmao,
for all a, o. The model parameters allow linear computation
of the prediction for any testt = {a1o1 . . . akok} as follows:

p(t|h) = p(Q|h)T Ma1o1 ...Mak−1ok−1makok
. (1)

Updating the current state, or prediction vector, when action
a is taken in historyh ando is observed, is accomplished by

p(Q|hao)T =
p(aoQ|h)
p(ao|h)

=
p(Q|h)T Mao

p(Q|h)T mao
. (2)

The matricesMao and vectorsmao have a special form.
The ith column ofMao is the (n × 1) constant vector that
computes the prediction of the (ao) one-step extension of
the ith core testqi ∈ Q, i.e., of testaoqi. The vector
mao is the constant(n × 1) vector that computes the pre-
diction for the one-step testt = ao. The fact that the
model parameters have these meanings is the foundation of
existing PSR learning algorithms[James and Singh, 2004;
Rosencrantzet al., 2004] as well as the new mPSR learning
algorithm presented here.

1

ih

p(t |h)
1t

1 1

jt

p(t |h)j 1

p(t |h)1 i p(t |h)j i

Tests

h=φ

H
is

to
ri

es

Figure 1: The system dynamics matrix.

System Dynamics Matrix
The theoretical development of mPSRs is best explained us-
ing the system dynamics matrix,D, that was developed in
Singhet al. [2004]. The matrixD, shown in Figure 1, has all
possible histories as rows and all possible tests as columns.
The columns (rows) are arranged by test (history) length and
within the same length in lexicographic ordering. The entry
Dij = p(tj |hi) is the prediction for thejth test at theith

history. There is a one to one correspondence between sys-
tem dynamics matrices and dynamical systems.The rank of
D is the dimension of the corresponding dynamical system
and is the number of core tests needed by the PSR model.
The core tests of a PSR model correspond to a maximal set
of linearly independent columns. Similarly, we can define a
notion of core historiesthat correspond to a maximal set of
linearly independent rows. We will only be interested in finite
dimensional systems. This assumption is not terribly restric-
tive because all POMDPs withn underlying or nominal states
are dynamical systems of dimension at mostn. A full deriva-
tion of PSRs through use of the system dynamics matrix is
presented in Singhet al. [2004].

memory-PSRs
The central idea behind mPSRs is topartition D into a set
of m submatricesD1 . . . Dm by partitioning the set of his-
tories (rows) but not the tests (columns), i.e., each submatrix
Di contains all the columns but only a subset of the histories.
How do memories enter this picture? We will use memory
of past observations to partition histories, and every mem-
ory will correspond to a partition; we elaborate on this later.
For now, note that each submatrix will have its own rank and
its own core tests and core histories as well as model-update

parameters. The set of memories and core tests for each par-
tition form the basis of mPSR models. It is straightforward
that the rank of each submatrix is at most the rank of the full
matrix D. In the worst case, the ranks of all the submatri-
ces are the same as the rank ofD, in which case the resulting
mPSR model may have (many) more parameters than the PSR
model. But in other cases the ranks of the submatrices may
be much smaller than the rank ofD and then the resulting
mPSR model may be more compact than the PSR model. We
provide examples of both cases in Section 5. The size of the
model is important because a model with fewer parameters
should in general be more efficient (i.e., require less data) to
learn. We also test this empirically in Section 5.

In this paper we do not address the question of automat-
ically discovering useful ways of partitioning histories and
instead assume that partitions correspond to history suffixes
of some fixed length.

Definition of memory: For this paper, given an mPSR
using lengthk suffixes, amemoryis a specific sequence of
lengthk that identifies a partition. So, when considering a
history h and memories of length one, the memory ath is
just the last (most recent) observation inh, and there will be
|O| memories in the mPSR. For memories of length two, the
memory ath is the last (most recent) action-observation pair
in h, and there will be|A| ∗ |O| memories in the mPSR. In
general, the set of possible memories in an mPSR that uses
length-k suffixes is the set of all length-k sequences of alter-
nating actions and observations that end in an observation; we
will denote the size of such a set asmk.

Let µ1 . . . µmk
represent all the distinct memories in an

mPSR model. Also, let the memory at historyh be denoted
µ(h). Each memoryµi has a corresponding submatrixDµi

created by the partition of histories corresponding toµi. The
core tests for partitionDµ are referred to asµ-core tests to
distinguish them from the core tests of the PSR model of
the same system. Thus, theµ-core tests for the submatrices
Dµ1 . . . Dµmk are denotedQµ1 . . . Qµmk respectively. The
prediction vectorp(Qµ(h)|h) contains the predictions for the
µ-core testsQµ(h) at memoryµh.

Definition of mPSR state: The mPSR stateat history
h is denoted by the concatenation of the memory ath
and the prediction vector for that memory ath, i.e., as
[µ(h), p(Qµ(h)|h)]. Thus, the mPSR state contains both a
memory of the past as well as predictions about the future
while a PSR state contains only predictions about the future.

Definition of mPSR update parameters:For each mem-
ory, µi, we will keep a set of matricesMµi

ao and vectorsmµi
ao

for all a, o. There is a subtle issue in defining these parame-
ters. It is not the case that each submatrix is a separate dynam-
ical system. Indeed if the memory corresponding to current
history h is sayµi and we take actiona and observeo, the
memory corresponding to the next historyhao could be dif-
ferent fromµi. Lets say it isµj . Thus the update parameters
Mµi

ao must transform the current prediction vector that makes
prediction forµ-core testsQµi in historyh to the prediction
vector forµ-core testsQµj in historyhao. Note that all histo-
ries belonging to memoryµi will transition to the same mem-
ory µj for action-observation pairao, i.e.,j is uniquely deter-

mined byi and the pairao; and so the model parameterMµi
ao

need not explicitly reference to the next memoryµj . Thus
one can define the state update for mPSRs as follows: upon
taking actiona in historyh and observingo

p(Qµj |hao) =
p(aoQµj |h)

p(ao|h)
=

p(Qµi |h)T Mµi
ao

p(Qµi |h)T mµi
ao

(3)

whereµ(h) = µi andµ(hao) = µj . The matrixMµi
ao is of

size(|Qµi |×|Qµj |) and the vectormµi
ao is of size(|Qµi |×1).

As in PSRs the update parameters in mPSRs have meaning.
For instance, thekth column ofMµi

ao is the(|Qµi | × 1)-sized
constant parameter vector that computes the prediction for the
test that is thekth µ-core test for memoryµj .

The mPSR model parameters allow linear computation of
the prediction for any testt = {a1o1 . . . akok} at historyh as
follows:

p(t|h) = p(Q|h)T Mµ0
a1o1

...Mµk−2
ak−1ok−1

mµk−1
akok

. (4)

whereµ0 is the memory corresponding to historyh, µ1 is the
memory corresponding to historyha1o1 and so on.

Definition of mPSR: An mPSR model is defined by the
tuple 〈A,O, µ1 . . . µmk

, Qµ1 . . . Qµmk ,M, [µ0, p(Qµ0 |∅)]〉
whereA is the set of actions;O is the set of observations;
µ1 . . . µmk

are the possible memories;Qµi is the set ofµ-
core tests for memoryµi; M is the set of update parameters
Mµi

ao andmµi
ao for all a, o, µi; µ0 is the initial memory; and

p(Qµ0 |∅) is the initial prediction vector.
A special and interesting case arises when a memory by

itself serves as state and no predictions are needed.
Definition of landmark: Given an mPSR, alandmarkis a

memory that serves as state, i.e., is a sufficient statistic of his-
tory. Landmarks can be quite beneficial for making accurate
predictions. We will discuss the identification of landmarks
and exploiting them for prediction in Section 3.1.

3 Basic Theory of mPSRs
Our first result is to show that for any dynamical system it
is possible to findµ-core tests for all memories in an mPSR
model from the setQ of core tests for the corresponding PSR
model.

Lemma 1. Let a dynamical system be modeled as a PSR with
core testsQ. Then there always exists an mPSR model for the
system such that for each memoryµi the correspondingµ-
core testsQµi satisfyQµi ⊂ Q.

Proof. We provide a constructive proof which shows how to
derive the subsetQµi from Q. Recall that all columns ofD
are linear combinations of the columns corresponding toQ in
D. Consider the submatrixDµi for memoryµi. It must be
the case that all columns ofDµi are linear combinations of
the columns corresponding toQ in Dµi . Thus, there exists
Qµi ⊂ Q.

In this paper, we don’t exploit Lemma 1 for two reasons: 1)
the core tests of PSRs are not unique, and 2) in any case when
learning a model of a dynamical system from experience data
we do not have a PSR model and thus its core testsQ to begin
with.

Lemma 2. For any dynamical system of finite dimension and
any choice of (fixed-length suffix) memories, the size of the
resulting mPSR model for that system is at most the number
of memories times the size of a PSR model for that system.

Proof. In the worst case, the rank of each of the submatrices
in the mPSR is exactly the rank of the full system dynamics
matrix. In such a case, if we happen to find differentµ-core
tests for each submatrix, then the model for each submatrix
will be exactly as large as the PSR model.

The above lemma holds no matter how one chooses the
memories. But what if we can choose the memories to use
in constructing an mPSR judiciously (by which we mean to
minimize the size of the resulting model)?

Theorem 1. With a judicious choice of memories, the size of
the corresponding mPSR for any dynamical system is at least
as compact as the size of the PSR for that dynamical system.
Furthermore, there exist dynamical systems for which some
choice of memories leads to an mPSR model that is more com-
pact than the PSR model of the same dynamical system.

Proof. The proof of the first statement follows from the fact
that a PSR is also an mPSR with the null set as memories. We
prove the second statement by constructing such a dynamical
system. Table 1 compares the size of mPSRs and PSRs for
various standard test dynamical systems (based on POMDPs).
In all instances, a suffix of length one was used to partition
the histories. For at least three problems, Cheese, Shuttle and
Four-Three, the mPSR is more compact than the PSR.

3.1 Landmarks
We show that landmarks are equivalent to memories for
which there is only oneµ-core test and furthermore that the
prediction of any test at a landmark is the same at all histories
that map to that landmark.

Lemma 3. For an mPSR model of a dynamical system,

• any memory that is a landmark has only oneµ-core test,
and every memory that has aµ-core set of size one is a
landmark.

• for all histories that map to a landmark the prediction
vector is a constant, i.e., independent of history.

• for all histories that map to a landmark the prediction of
any testt is a constant, i.e., independent of history.

Proof. If µ is a landmark, then the predictions for all tests
are fully determined whenµ is known. Therefore, at any two
histories that have memoryµ, the prediction of every test is
the same at both histories. This means that every row ofDµ

must be identical, so the rank ofDµ is one, and only one
µ-core test exists forµ.

For a memoryµ that has a singleµ-core test,qµ, let Hµ

denote the histories that map to memoryµ. For anyh ∈ Hµ,
and any actiona, it must hold that

∑
o p(ao|h) = 1 which im-

plies that
∑

o p(qµ|h)T mµ
ao = 1, which in turn implies that

p(qµ|h)T = 1/
∑

o mµ
ao. Recall thatmµ

ao are independent of
history, and thus the prediction ofqµ must be independent of

Table 1: Comparison of the size of PSRs and mPSRs

Core Tests # Param. EntriesProblem
PSR mPSR PSR mPSR

Tiger 2 2,2 36 72
Paint 2 2,2 48 96
Cheese 11 1,1,1,1,2,2,3 3696 792
Network 7 4, 6 448 480
Bridge 5 2,2,4,4,5 1800 4488
Shuttle 7 1,1,2,2,4 840 450
Four Three 10 1,1,1,1,3,4 2640 748
Float Reset 5 1,5 120 96

the history. This calculation exploits the fact that the predic-
tion vector and update parameters are scalars.

Furthermore, because the prediction ofqµ is independent
of history, and the update vectormµ

t for any testt is indepen-
dent of history, the predictionp(t|h) = p(qµ|h)T mµ

t of t at
historyh must also be independent of history. So, all rows of
Dµ must be identical, andµ is therefore a landmark.

Landmarks come in handy because they can be used to
keep a learned — and therefore only approximately correct
— model from progressively drifting farther and farther away
from reality as we make longer and longer term predictions
from such a model. Every time we observe a landmark mem-
ory, we can reset the prediction vector to the constant corre-
sponding to the landmark irrespective of the actual observed
history. This can keep the error in the prediction for very long
tests from growing with the length of the test. We exploit this
ability in our empirical results below.

4 Learning mPSR models from data
In this section we present an algorithm for learning mPSR
models from data under the assumption that the algorithm has
the ability to reset the dynamical system being modeled to an
initial state. We present the algorithm in two stages. In the
first stage, we will assume that the algorithm has access to an
oracle that if given a historyh and testt will return the predic-
tion p(t|h) for the dynamical system. In the second stage we
will show how the oracle can be replaced by the use of sample
data from the dynamical system with reset. Because we wish
to minimize the amount of sample data needed by our algo-
rithm, we will attempt to minimize the number of calls to the
oracle in the first stage. Our algorithm is a relatively straight-
forward adaptation to mPSRs of the algorithm presented by
James and Singh[2004] for PSRs.

4.1 Oracle based algorithm
Recall that there are two components to an mPSR: theµ-core
tests for the different memories and the model-update param-
eters for the memories. In our empirical work below, we al-
ways use memories of length one. Clearly the model param-
eters for a memory depend on the choice ofµ-core tests for
that memory (recall that theµ-core tests are not unique). The
process of computingµ-core tests and update parameters for
each memory is identical and so we can just discuss how to
do this for any one memory, sayµi.

Determining µ-core tests and histories
The algorithm proceeds in iterations. At iterationt, the algo-
rithm has a current set of linearly independent orµ-core tests
and histories for each memory. LetHµi

t (Tµi

t) be the set of
µ-core histories (µ-core tests) found by iterationt for mem-
ory µi. Theseµ-core tests (histories) start off as the empty
set at the first iteration. We also keep a set of candidate tests
and histories at each iteration. The set of candidate tests for
memoryµi is the set of one-step tests; and for everyao pair,
the set ofao-extensions for all the currentµ-core tests for
memoryµj , whereµj is the next memory when actiona is
taken in memoryµi ando is observed. The set of candidate
histories is similarly generated. We ask the oracle for the
predictions of all the candidate tests at all the candidate his-
tories. We compute the rank of this oracle-generated matrix,
denotedXt. The linearly independent rows and columns of
Xt become the newHµi

t+1 andTµi

t+1 respectively. In selecting
the newµ-core tests and histories we always include the pre-
viousµ-core tests and histories. We stop at iterations if the
rank ofXs is the same as the rank ofXs−1 for all memories.

The above algorithm is an adaptation of the similar al-
gorithm for determining core test and histories for PSRs by
James and Singh[2004]. Just like for PSRs this algorithm is
not guaranteed to find allµ-core tests and histories, but also
just like for PSRs it seems to work for all empirical work done
so far.

Computing the model-update parameters
Now we discuss how to compute the model-update matrix
Mµ

ao for anyao pair and any memoryµ. We define a matrixA
for memoryµ that contains the predictions for all theµ-core
tests at all theµ-core histories for memoryµ. This matrix will
have full rank and is computed in the algorithm above. Letµj

be the memory achieved when actiona is taken in memoryµ
ando is observed. Thekth column ofMµ

ao, denotedx, is the
constant parameter vector that computes the prediction for the
ao-extension of thekth µ-core test, denotedy, of memoryµj .
Let b be the column vector of predictions of testy for theµ-
core histories of memoryµ. We ask the oracle for the entries
of b. Then from Equation 3 above,Ax = b. SinceA is
full rank, it is invertible and hencex = A−1b. We can use
the same idea to compute the model-update parameter vector
mµ

ao.
In the next section we show how the oracle needed for the

above algorithm can be replaced by using data from the dy-
namical system with reset.

4.2 Learning mPSRs from sample data
We show how to obtain an estimate for the predictionp(t|h),
something we went to the oracle for in the previous algorithm.
We generate samples from the distributionp(t|h) by first tak-
ing the action sequence inh after a reset. If the observation
sequence inh happens, then we have succeeded in generating
historyh. If we don’t succeed in generating the history, we
reset the system and try again. If we do succeed in generat-
ing the history, we take the action sequence in testt. If the
observation sequence in testt happens, the test succeeds, else
the test fails. We get an estimate ofp(t|h) from the empirical
success rate of the testt at historyh. Of course, this is ex-

A

 1e−05

 0.001

 0.1

 0 300000 600000 900000
Total Number of Samples

PSR and mPSR Learning for Tiger

PSR
mPSR

T
es

tin
g

E
rr

or
B

 1e−05

 1e−04

 0.001

 0.01

 0 2e+06 4e+06 6e+06
Total Number of Samples

PSR and mPSR Learning for Paint

PSR
mPSR

T
es

tin
g

E
rr

or

C

 1e−04

 0.001

 0.01

 0.1

 0 1e+06 2e+06 3e+06
Total Number of Samples

PSR and mPSR Learning for Network

PSR
mPSR

T
es

tin
g

E
rr

or

D

 1e−04

 0.001

 0.01

 0.1

 1

 0 1e+08 2e+08 3e+08 4e+08

T
es

tin
g

E
rr

or

Total Number of Samples

PSR and mPSR Learning for Bridge

PSR
mPSR

E

 1e−06

 1e−04

 0.01

 0 4e+07 8e+07 1.2e+08 1.6e+08
Total Number of Samples

PSR and mPSR Learning for Cheese

PSR
mPSR

mPSR with landmarks

T
es

tin
g

E
rr

or

F

 1e−04

 0.001

 0.01

 0.1

 0 200000 400000
Total Number of Samples

PSR
mPSR

mPSR with landmarks

PSR and mPSR Learning for Float−Reset

T
es

tin
g

E
rr

or

G

 1e−05

 0.001

 0.1

 0 1.2e+07 1.8e+07
Total Number of Samples

PSR and mPSR Learning for Shuttle

PSR
mPSR

mPSR with landmarks

T
es

tin
g

E
rr

or

 6e+06

H

 1e−04

 0.001

 0.01

 0.1

 1

 0 4e+07 8e+07 1.2e+08
Total Number of Samples

PSR and mPSR Learning for 4x3

PSR
mPSR

mPSR with landmarks

T
es

tin
g

E
rr

or

Figure 2: Results of running mPSR learning algorithms on a suite of test problems. See text for details.

tremely wasteful in the number of data samples needed. We
implement this basic idea much more efficiently by execut-
ing the action sequence inht regardless of the observations
obtained and then mining the data generated for all possible
history and test pairs that can be extracted from it.

One problem that occurs with this estimation technique
is that the sampled entries of the system dynamics matrix
will almost certainly result in inaccurate calculations of rank
(needed in the above oracle-based algorithm). We use a more
robust rank calculation procedure developed in the PSR learn-
ing algorithm by James and Singh[2004]. The central idea is
that we can use the number of samples that went into each
entry of the matrix we wish to find the rank of to generate a
threshold on singular values obtained via singular value de-
composition. This threshold is more conservative when we
have fewer samples and generally leads to a smaller rank than
otherwise. As more samples are included, the threshold be-
comes less conservative and the calculated rank is closer to
the straightforward calculation of rank.

5 Empirical results
We conducted experiments with a view towards validating
four major ideas presented above. The first experiments are
meant to compare the relative size of PSRs and mPSRs. The

second is to test whether the oracle-based algorithm for com-
puting mPSRs finds exact mPSR models. The third is to test
the efficacy of the sample-data based learning algorithm for
mPSRs. Finally, we are also interested in whether using land-
marks, where available, to reset prediction vectors during the
process of computing predictions for long test sequences pro-
vides a measurable benefit. All of these experiments were on
a suite of standard POMDP-based dynamical systems[Cas-
sandra, 1999] that have been used for both POMDP-learning
as well for PSR-learning.

Again, for all of the results presented below, the memories
used for the mPSR models were the most recent observation.

5.1 Comparing PSRs and mPSRs
For PSRs and mPSRs, the size of the model can be measured
both in terms of the number of core tests (µ-core tests), and
in the number of entries in the model parameters. Table 1
compares the sizes of PSR and mPSR models for the suite
of test problems. For mPSRs, the number ofµ-core tests at
each memory is listed. Fully half of the test problems have
landmarks (memories with only oneµ-core test), indicating
that this may be a fairly common situation.

The number of entries in the model parameters are listed
for both PSRs and mPSRs. On three of the problems (Cheese,

Shuttle, and Four-Three) there are significantly fewer entries
needed for the mPSR model than for the PSR model; on three
other problems (Tiger, Bridge, and Paint) there are signifi-
cantly more; and on the two remaining problems there are
approximately an equal number needed. This proves that mP-
SRs can be more compact than PSRs. This also illustrates
that the unless we choose memories wisely, mPSRs can also
be less compact than PSRs.

5.2 Constructing mPSRs from exact predictions
We tested the oracle algorithm for computing mPSRs by pro-
viding access to the true predictions computed analytically
for the test problems. As we mentioned in Section 4.1, this
algorithm is not guaranteed to find allµ-core tests for every
memory. We found that in fact for all the test problems, the
algorithm does indeed find all theµ-core tests and histories
for all the models. We also verified that the resulting mPSR
models were perfect, in the sense that any prediction error
was due to machine round-off error. Furthermore, because
correct sets ofµ-core tests were discovered, all landmarks
were identified.

5.3 Learning mPSRs from samples
Here we present the results of learning mPSR models for all
our dynamical systems. As mentioned above we assumed a
reset. This makes our results directly comparable to the re-
sults of James and Singh[2004] on the same set of problems
under the same reset assumption. We applied the algorithm of
Section 4.2, stopping every so often during learning to test the
model learned so far. For each test of the learned model, we
asked the model to make predictions while tracking the sys-
tem for100, 000 steps (with randomly chosen actions). The
test error reported is the average error in the one-step predic-
tions of the model relative to the true predictions. This is the
same error measure as used in James and Singh[2004].

The results of this testing are presented in Figure 2. We
compare our results to the results for PSR learning for the
same dynamical systems from James and Singh[2004]. Plots
A to D present the results for the systems without any land-
marks, and show the results of PSR and mPSR learning. In
two of these systems, PSR learning is more efficient while
in the other two they are roughly equivalent. We note that
in all of these problems the PSR models are more compact
or equal in size than the mPSR models. Plots E to H are for
systems with landmarks. Here we plot three results: PSR
learning, mPSR learning and mPSR learning with landmarks.
The last algorithm, mPSR learning with landmarks, uses the
mPSR learning algorithm of Section 4.2 but during testing
resets the prediction vector when a landmark memory is en-
countered to the constant prediction for that memory. In three
of the systems corresponding to graphs E, G and H, the size of
the mPSR model is smaller than the PSR model. As we sur-
mised in Section 2 this leads to mPSR learning being more
efficient than PSR learning. In the system for plot F the two
are roughly equivalent as are their sizes. The effect of us-
ing landmarks is most easily seen in plots G and H. Here
mPSR learning without using landmarks is very noisy for if
the system gets off-track in its predictions the error accumu-
lates rapidly as the test sequence lengthens, while using the

landmarks stabilizes the error and gives the best results.

6 Conclusion
In this paper we proposed a new class of models, mPSRs,
that combines memory of past observations and predictions of
future observations into its state representation. We showed
that mPSRs are as expressive as and can be more compact
than PSRs that solely use predictions of future observations
in its state representation. Our preliminary empirical results
showed that in dynamical systems where the mPSR model of
the system is more compact than the PSR model, learning the
mPSR model is more efficient than learning the PSR model.
Finally, we formalized the notion of landmark memories and
demonstrated how to find them and how to exploit them in
making long-term predictions.

As future work, we will explore the interesting challenge
of automatically finding good memories to combine with
predictions of tests to make compact and efficiently learnable
mPSR models.

AcknowledgementsThe research reported in this paper was
supported by NSF grant IIS-0413004. The authors also thank
Rich Sutton for helpful comments.

References
[Cassandra, 1999] A. Cassandra. Tony’s pomdp page.

http://www.cs.brown.edu/research/ai/ pomdp/index.html,
1999.

[Golub and Van Loan, 1996] G.H. Golub and Ch. F.
Van Loan. Matrix Computations. The Johns Hopkins
University Press, 3rd edition, 1996.

[James and Singh, 2004] Michael R. James and Satinder
Singh. Learning and discovery of predictive state repre-
sentations in dynamical systems with reset. InThe 21st
International Conference on Machine Learning, 2004.

[Littmanet al., 2001] Michael L. Littman, Richard S. Sut-
ton, and Satinder Singh. Predictive representations of
state. InAdvances In Neural Information Processing Sys-
tems 14, 2001.

[Rosencrantzet al., 2004] Matthew Rosencrantz, Geoff Gor-
don, and Sebastian Thrun. Learning low dimensional pre-
dictive representations. InThe Twenty-First International
Conference on Machine Learning, 2004.

[Singhet al., 2003] Satinder Singh, Michael L. Littman,
Nicholas K. Jong, David Pardoe, and Peter Stone. Learn-
ing predictive state representations. InThe Twentieth In-
ternational Conference on Machine Learning, 2003.

[Singhet al., 2004] Satinder Singh, Michael R. James, and
Matthew R. Rudary. Predictive state representations, a new
theory for modeling dynamical systmes. In20th Confer-
ence on Uncertainty in Artificial Intelligence, 2004.

[Sutton and Tanner, 2004] R. S. Sutton and B. Tanner.
Temporal-difference networks. InAdvances in Neural In-
formation Processing Systems 17, 2004.

