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Abstract

Active learning reduces the amount of manually an-
notated sentences necessary when training state-of-
the-art statistical parsers. One popular method,un-
certainty sampling, selects sentences for which the
parser exhibits low certainty. However, this method
does not quantify confidence about the current sta-
tistical model itself. In particular, we should be
less confident about selection decisions based on
low frequency events. We present a novel two-
stage method which first targets sentences which
cannot be reliably selected using uncertainty sam-
pling, and then applies standard uncertainty sam-
pling to the remaining sentences. An evaluation
shows that this method performs better than pure
uncertainty sampling, and better than an ensemble
method based on bagged ensemble members only.

1 Introduction
State-of-the-art parsers[Collins, 1997; Charniak, 2000] re-
quire large amounts of manually annotated training mate-
rial, such as the Penn Treebank[Marcus et al., 1993], to
achieve high performance levels. However, creating such la-
belled data sets is costly and time-consuming. Active learning
promises to reduce this cost by requesting only highly infor-
mative examples for human annotation. Methods have been
proposed that estimate example informativity by the degree
of uncertainty of a single learner as to the correct label of an
example[Lewis and Gale, 1994] or by the disagreement of a
committee of learners[Seunget al., 1992]. This paper is con-
cerned with reducing the manual annotation effort necessary
to train a state-of-the-art lexicalised parser[Collins, 1997].

Uncertainty-based sampling has been successfully applied
to the same problem problem[Hwa, 2000]. Here, sentences
are selected for manual annotation when the entropy over the
probability distribution of competing analyses is high. En-
tropy quantifies the degree of uncertainty as to the correct
analysis of a sentence.

A problem with active learning methods such as uncer-
tainty sampling is that they have no method for dealing with
the consequences of low counts. For example, the parse tree
probability of the most likely reading in a peaked distribution

may depend on a probability which has been unreliably es-
timated from an as yet rarely observed event. In this case,
the model would indicate certainty about a particular analysis
where indeed it is not confident. In general, we would like to
place less confidence in selection decisions based on entropy
over probability distributions involving low frequency events.
However, sentences whose predicted parse was selected on
the basis of infrequent events may well be informative. Since
entropy will not in itself always allow us to reliably select
such examples for labelling, we need to consider other mech-
anisms.

We propose a novel two-stage method which first selects
unparsable sentences according to a bagged parser, and ap-
plies uncertainty sampling to the remaining sentences using a
fully trained parser. Evaluation shows that this method per-
forms better than single parser uncertainty sampling, and bet-
ter than an ensemble method with bagged ensemble members.

To explain our results, we show empirically that entropy
and f-measure are negatively correlated. Thus, selection ac-
cording to entropy tends to acquire annotations of sentences
with low f-measure under the current model. An oracle-
based experiment demonstrates that preferably selecting low
f-measure sentences is indeed beneficial and explains why un-
certainty sampling is successful in general. Furthermore, we
find that exactly those sentences which our proposed meth-
ods targets show no such correlation between entropy and f-
measure. In other words, entropy will not reliably identify in-
formative examples from this subset, even though these sen-
tences have below average f-measure and should be particu-
larly useful. These findings help to explain why the proposed
method is a successful strategy.

2 Active Learning Methods
Popular methods for active learning estimate example infor-
mativity with the uncertainty of a single classifier or the dis-
agreement of an ensemble of classifiers.

Uncertainty-based sampling(or tree entropy) chooses ex-
amples with high entropy of the probability distribution for a
single parser[Hwa, 2000]:

f te
M (s, τ) = −

∑
t∈τ

PM (t|s) log PM (t|s) (1)

whereτ is the set of parse trees assigned to sentences by
a stochastic parser with parameter modelM . Less spiked



distributions have a higher entropy and indicate uncertainty
of the parse model as to the correct analysis. Thus, it will be
useful to know their true parse tree.

Ensemble-based methods for active learning select exam-
ples for which an ensemble of classifiers shows a high de-
gree of disagreement.Kullback-Leibler divergence to the
meanquantifies ensemble disagreement[Pereiraet al., 1993;
McCallum and Nigam, 1998]. It is the average Kullback-
Leibler divergence between each distribution and the mean
of all distributions:

fkl
M(s, τ) =

1
k

∑
M∈M

D(PM ||Pavg) (2)

where M denotes the set ofk ensemble models,Pavg

is the mean distribution over ensemble members inM,
Pavg =

∑
M PM (t|s)/k, andD(·||·) is KL-divergence, an

information-theoretic measure of the difference between two
distributions. It will be useful to acquire the manual annota-
tion of sentences with a highKL-divergence to the mean. This
metric has been applied for active learning in the context of
text classification[McCallum and Nigam, 1998].

3 A Novel Two-Stage Selection Method

Acquiring the correct analysis of a sentence of which the pre-
dicted analysis was selected on the basis of infrequent events
may well be informative. Since entropy itself will not allow
us to reliably select such examples for labelling, we need to
consider other mechanisms. A simple, but effective method is
to eliminate some infrequent events from the parsing model.
Simply bagging the current training set, and retraining the
parser on this set allows to identify such examples for la-
belling.

Bagging is a general machine learning technique that re-
duces variance of the underlying training methods[Breiman,
1996]. It aggregates estimates from classifiers trained on
bootstrap replicates (bags) of the original training data. Cre-
ating a bootstrap replicate entails sampling with replacement
n examples from a training set ofn examples. A bootstrap
replicate will not only perturb all event counts to some de-
gree, but will inevitably eliminate some of the low frequency
event types.

The proposed method operates in two stages. We first
select sentences which are unparsable according to a single
bagged version of the parser, but (possibly) parsable under the
current fully trained model. From the remaining sentences,
we select those with the highest entropy as determined by the
fully trained model. We can express this formally as follows:

f two
M,M ′(s, τ) = max(f te

M (s, τM ), failure(s,M ′)) (3)

wheref te
M is tree entropy according to a fully trained model

M , defined in (1). The functionfailure(s,M ′) returns infin-
ity when sentences is parsable given bagged parser model
M ′, and 0 otherwise.

4 Experimental Setup
For our experiment, we employ a state-of-the-art lexicalised
parser[Collins, 1997].1 We employ default settings without
expending any effort to optimise parameters towards the con-
siderably smaller training sets involved in active learning.

In common with almost all active learning research, we
compare the efficacy of different selection methods by per-
forming simulation experiments. We label sentences of sec-
tions 02 - 22 from the Penn WSJ treebank[Marcuset al.,
1993], ignoring sentences longer than 40 words.

We report the average over a 5-fold cross-validation to en-
sure statistical significance of the results. In a single fold,
we randomly sample (without replacement) an initial labelled
training set of a fixed size – 500 or 2,000 sentences, depend-
ing on the experiment – and a test set of 1,000 sentences. The
remaining sentences constitute the global pool of unlabelled
sentences (ca. 37,000 sentences). For a realistic experiment,
we tag the test set with the TnT part-of-speech tagger as in-
put for the parser[Brants, 2000]. We train TnT on 30,000
sentences in the global resource. In a 5-fold cross-validation,
the parser has 88.8% labelled precision and 88.6% labelled
recall, when trained on 37k sentences and applied to test sets
of 1,000 sentences.2

We randomly sample (without replacement) a subset of
1,000 sentences from the global pool in each iteration. From
this subset, 100 sentences are selected for manual annotation
according to the current sample selection method. Then, an-
notated sentences are added to the training set.

For consistent comparison across methods, we evaluate test
set performance of a single parser trained on the entirety of
the labeled training data at each step, regardless of the selec-
tion method being a single or an ensemble method.

Length balanced sampling For situations such as active
learning for parsing, the sentences in question need a variable
number of labelling decisions. This may confound sample
selection metrics and it is therefore necessary to normalise.
For example, tree entropy may be directly normalised by sen-
tence length[Hwa, 2000], or by the binary logarithm of the
number of parser readings[Hwa, 2001].

We use the following method to control for sentence length
in sample selection: Given a batch sizeb, we randomly sam-
ple b sentences from the pool and record the numberel of
selected examples for sentence lengthl. Then, for all lengths
l = 1, 2, . . . 40, we select from all sentences in the pool of
lengthl the el examples with the highest score according to
our sample selection metric. Of course, the union of these
sets will haveb examples again. Since we randomly sampled
the batch from the pool, we may assume that the batch dis-
tribution reflects the pool distribution, in particular wrt. the
distribution of sentence lengths.

1We use the flexible reimplementation of the parser by Dan
Bikel, developed at the University of Pennsylvania[Bikel, 2004]. It
can be obtained athttp://www.cis.upenn.edu/˜dbikel/

2It would be desirable for methodological reasons to automati-
cally tag the global resource, too. However, our corpus split scheme
does not leave enough disjoint training material for the tagger, so we
use the gold standard tags for the pool sentences.
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Figure 1: A random sampling learning curve. The maximal
training set has 37k sentences (630k constituents). The num-
ber of constituents is given on a log scale.

This method effectively reproduces the sentence length
profile of the original corpus by construction and therefore
guards against the selection of sentence length biased sub-
sets. Furthermore, it is equally applicable for all metrics and
allows a direct comparison between metrics. Note that this
method is applicable in general for the sample selection of
sequential data where one may expect to find correlation be-
tween sample length and score.

Relevant evaluation measures Active learning for parsing
is typically evaluated in terms of achieving a given f-measure
for some amount of labelling expenditure. The cost of acquir-
ing manually annotated training material is given in terms of
the number of constituents. F-measure itself is a composite
term, being composed of precision and recall[Black et al.,
1991]. Fig. 1 shows a learning curve for a random sampling
experiment. We see that precision and recall do not increase
at the same rate. For this reason, it may well be advantageous
to aggressively increase recall with minimal impact on pre-
cision (formulate stronger: still want to increase precision).
One way of achieving this is to pursue sentences which can-
not be parsed.

5 Results

The experiments in this section address the following ques-
tions. Is it generally useful to select unparsable sentences for
manual annotation? What is the gain of using the novel two-
stage method over a state-of-the-art uncertainty-based sam-
ple selection method? Given that the two-stage method has
a bagged component, how does it compare against a state-
of-the-art ensemble-based method which employs bagged en-
semble members?
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Figure 2: Comparison of f-measure learning curves. Number
of constituents is given on a log scale.

Method Cost Reduction
random 23200 N/A
entropy/unparsed 16100 30.6%
unparsed 16400 29.4%
entropy 24500 -5.7%

Table 1: Annotation cost to reach 80% f-measure, and reduc-
tion over random sampling.

Including/excluding unparsed sentences In this experi-
ment, we compare methods which do or do not include un-
parsed sentences in the batch of selected examples. Acquiring
the correct parse tree of an unparsable sentence increases the
size of the model structure of the grammar and, presumably,
helps to increase coverage in the test set.

A very simple method,unparsed, preferably includes un-
parsed pool sentences in the batch. Should the number of
unparsed sentences fall short of the batch size, we randomly
sample parsable sentences from the pool to fill the batch. By
contrast,entropy only selects parsable sentences with high
entropy. The methodentropy/unparsed preferably selects
unparsed pool sentences, and fills the batch with high entropy
examples. We may view this method as being composed of a
binary parsability component, and a gradual uncertainty com-
ponent. The baseline israndom, a parser trained on ran-
domly sampled training sets of different sizes.

We start with an initial training set of 500 randomly sam-
pled sentences, containing 8,400 labeled constituents and
continue for 10 rounds until 1,500 sentences have been sam-
pled (ca. 26k constituents). Here, as in all subsequent experi-
ments we employ length balanced sampling, cf. Sec. 4.

Methodsunparsed and entropy/unparsed perform con-
sistently better thanrandom (Fig. 2). Note that their per-
formance is nearly identical until more than 20k constituents
have been labelled. Methodentropy performs consistently
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Figure 3: The new two-stage method versus state-of-the-art
uncertainty sampling.

Method Cov Prec Rec Fm
random 95.8 82.0 78.6 80.3
entropy/unparsed 98.3 82.9 81.2 82.1
unparsed 98.5 82.4 80.9 81.7
entropy 94.4 82.8 77.6 80.1

Table 2: Parseval values for different metrics after 25,000
constituents have been annotated.

worse thanrandom.
Methods unparsed and entropy/unparsed reduce the

amount of labeled constituents necessary to achieve 80% f-
measure by around 30% as compared torandom, while en-
tropy actually increases the cost by 5.7% (Tab. 1).

We also compare performance across methods for the same
amount of annotation effort. Tab. 2 shows precision, recall,
and f-measure after labelling 25k constituents. Methodsun-
parsedandentropy/unparsedhave considerably higher cov-
erage thanrandom, entropy has lower coverage. While all
methods show comparable values for precision, they differ
decidedly in their recall values. The two methods which
aggressively pursue unparsed sentences,unparsed and en-
tropy/unparsed, have more than 3% points higher recall than
entropy, and accordingly higher f-measures thanrandom
andentropy.

These results confirm the importance of including unparsed
sentences. Doing so helps achieving better coverage and a
higher recall value which directly translates into higher f-
measure. Accordingly, all of the following experiments will
include unparsed sentences in the batch. The negative re-
sult for the purely entropy-based method shows clearly that
a naive application of uncertainty sampling may have adverse
consequences. It is extremely important to consider which
phenomena a selection method is targeting.
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Figure 4: The new two-stage method versus a state-of-the-art
ensemble-based method.

Method Cost Reduction
random 115600 N/A
two stage 77900 32.6%
entropy/unparsed 86700 25.0%

Table 3: Annotation cost to reach 85.5% f-measure, and re-
duction over random sampling.

A two-stage selection method The novel method addresses
problems with sentences which cannot be reliably selected
with popular active learning methods. Therefore, we expect a
gain in performance. Methodtwo stagepreferably includes
sentences which are unparsable according to a parser trained
on a bagged version of the current training set. Then, the
batch is filled with (parsable) sentences which have high en-
tropy according to a second, fully trained parser.

Given that composite methods which preferably select un-
parsed sentences perform nearly uniformly well, we will now
use a considerably larger initial training set in order to be
able to observe differences between these methods. We start
with 2,000 sentences (34k constituents), and continue for 30
rounds until a total of 5,000 sentences has been sampled
(ca. 87k constituents).

Method two stageperforms consistently better than both
random and entropy/unparsed (Fig. 3). It reduces the
amount of labelled data necessary to reach 85.5% f-measure
by 32.6% as compared torandom (Tab. 3). The central re-
sult of this paper is that, to reach this level,two stagereduces
the number of constituents by 8,800 constituents against the
state-of-the-art methodentropy/unparsed: a reduction by a
further 10.1%. Also, it has consistently higher precision and
recall thanentropy/unparsedafter the labelling of 80k con-
stituents (Tab. 4).
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Figure 5: Comparison of f-measure learning curves. Number
of constituents is given on a log scale.

Method Cov Prec Rec Fm
random 99.0 85.1 84.0 84.5
two stage 99.7 86.0 85.2 85.6
entropy/unparsed 99.6 85.7 84.9 85.3

Table 4: Parseval values for different metrics after 80,000
constituents have been annotated.

An ensemble method We now compare performance of
the new method against a state-of-the-art ensemble method,
namely the KL-divergence to the mean for an ensemble ofn
bagged parsers, cf. Subsec. 2. The methodkl-div/unparsed
preferably selects unparsed pool sentences, and fills the batch
with sentences having a high mean KL-divergence. (We con-
sider a sentence as unparsed when at least one of the ensemble
members fails to deliver an analysis.) As in the previous ex-
periment, we start with 2,000 sentences and continue for 30
rounds. We set the ensemble size ton = 5.

Fig. 4 shows ensemble methodkl-div/unparsed to per-
form better thantwo stage until 57k constituents. Af-
ter this point, two stage performs clearly better thankl-
div/unparsed. This is actually a surprising result, given that
both methods perform similar jobs: They select unparsable
sentences according to one or more bagged parsers, and then
apply an information-theoretic measure, either entropy or
KL-divergence. We conjecture that, after having filtered the
difficult examples in the first stage, the second stage should
make use of the information to be had from a fully trained
parser. At any rate, our proposed method is conceptually
simpler and also quicker to compute than an ensemble-based
method.

6 Understanding the New Method
Acquiring the annotation of objectively difficult sentences
should improve the parser. We employ an oracle-based ex-

Sentences F-measure Pearson
parsable 4,919 83.9% −0.37
unreliable 112 71.5% 0.05

Table 5: Average f-measure and correlation coefficients be-
tween entropy and f-measure

periment to test this claim. Methodoracle selects sentences
whose preferred parse tree (according to the current gram-
mar) has low f-measure as determined against a gold-standard
tree. Fig. 5 shows that methodoracle performs consistently
better than our best result, the newtwo stagemethod. This
suggests that a selection method which successfully targets
difficult sentences (low f-measure) will perform well.

In another experiment, we train the parser on a randomly
sampled training set of 2,000 sentences, and apply it to a test
set of 5,000 sentences. We are interested in the degree of
correlation between the variables f-measure (preferred tree
against gold-standard tree) and tree entropy. A correlation
analysis over all 4,919parsablesentences shows that the two
variables are indeed (negatively) correlated, cf. Tab. 5. Pear-
son’s coefficient is−0.37. Given the size of the considered
data set, correlation is highly significant (p = 0.01). Selec-
tion according to entropy will thus tend to pick low f-measure
sentences. Given the observation from the oracle experiment
that it is beneficial to target low f-measure sentences, this
finding explains why entropy is a useful selection method.

If we now apply a bagged version of the parser to the same
test set, more sentences become unparsable since we elimi-
nate some infrequent parse events. Focusing on the 112un-
reliable sentences which are parsable under a fully trained
model, but not under a bagged model, we find a Pearson co-
efficient between entropy and f-measure close to 0 (Tab. 5).
In other words, entropy and f-measure are uncorrelated, and
entropy cannot reliably select difficult examples within this
class of sentences. What is more, the average f-measure
within theseunreliable sentences is more than 12 percent-
age points below average, indicating that acquiring their true
parse trees will be particularly useful.

Note that the first stage of our new method targets exactly
these kind of unreliable sentences. The above experiments
demonstrate why the new method is indeed successful.

7 Related Work
Preferably selecting high entropy examples has been shown
to be an effective method for parsing[Hwa, 2000]. Selecting
unparsed sentences has been previously suggested because of
their high uncertainty, e.g. in[Thompsonet al., 1999]. How-
ever, to the best of our knowledge, this effect has not been
quantified before. Bagging ensemble members (or alterna-
tively random perturbation of event counts) has been explored
in the context of active learning by[Argamon-Engelson and
Dagan, 1999; McCallum and Nigam, 1998]. In particu-
lar, Argamon-Engelson and Dagan have indicated that these
methods target low frequency events. Bagging (and boost-
ing) a parser ensemble has been employed to increase parser
performance[Henderson and Brill, 2000]. However, the ap-
plication of a bagged parser ensemble to active learning is



new. Density estimation has been suggested as a method
to guard against selecting of outliers, e.g[McCallum and
Nigam, 1998; Tanget al., 2002]. This approach is orthog-
onal to our suggested new method, and combining the two
may well result in even better performance.

8 Conclusion
We demonstrated a number of points in this paper. First, we
investigated the effect of targeting unparsed sentences. This
is a simple, but very effective way to increase labelled re-
call and thereby f-measure. This method has been used im-
plicitly before, but to our knowledge the effect of this strat-
egy has not been quantified previously. Secondly, we pre-
sented a novel, two-stage method which particularly targets
sentences which cannot be reliably selected using popular ac-
tive learning methods. We showed that the proposed method
works better than uncertainty sampling alone. Also it com-
pares favourably against a state-of-the-art ensemble method
based on bagging. Finally, an oracle-based experiment indi-
cated that targeting (objectively) difficult sentences is a good
strategy. Furthermore, we demonstrated that entropy and f-
measure are significantly correlated in general. However,
they are uncorrelated for exactly the class of sentences of
which our new method takes care. This explains why the new
two-stage method performs well. In future work, we would
like to investigate if the proposed two-stage method can be
applied to applications other than parsing.
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