
First-Order Logical Filtering

Afsaneh Shirazi and Eyal Amir
Computer Science Department, University of Illinois at U-C

Urbana, IL 61801, USA{hajiamin,eyal}@cs.uiuc.edu

Abstract
Logical filtering is the process of updating a belief
state (set of possible world states) after a sequence
of executed actions and perceived observations. In
general, it is intractable in dynamic domains that
include many objects and relationships. Still, po-
tential applications for such domains (e.g., seman-
tic web, autonomous agents, and partial-knowledge
games) encourage research beyond immediate in-
tractability results.
In this paper we present polynomial-time algo-
rithms for filtering belief states that are encoded
as First-Order Logic (FOL) formulae. We sidestep
previous discouraging results, and show that our
algorithms are exact in many cases of interest.
These algorithms accept belief states in full FOL,
which allows natural representation with explicit
references to unidentified objects, and partially
known relationships. Our algorithms keep the en-
coding compact for important classes of actions,
such as STRIPS actions. These results apply to
most expressive modeling languages, such as par-
tial databases and belief revision in FOL.

1 Introduction
Many everyday scenarios are dynamic and partially observ-
able: a robot in one room cannot see the state of another
room, a camera overlooking a bookshelf cannot detect the
title of a book that is obscured, and one cannot readily ob-
serve the amount of money an agent has. Many applications
in such domains compute information about the current world
state (belief state, i.e., set of possible states or a distribution
over such a set) after actions and observations. This compu-
tation is calledfiltering (also, state estimation, belief update,
and database progression). They use this information to make
decisions, answer questions, and explore.

Filtering is intractable in general for discrete domains
[Eiter and Gottlob, 1992], and much research is dedicated
to its approximation in stochastic domains (e.g.,[Boyen and
Koller, 1998]). Still, these approximations introduce un-
bounded errors many times, take unbounded computation
time in others, and are not usable in most deterministic do-
mains. Recent progress on logical methods for filtering of

propositional belief states (sets of states)[Amir and Russell,
2003] with actions and observations has shown thatexactfil-
tering is tractable when belief states are represented as propo-
sitional formulae, and certain natural assumptions are met.
Still, many domains have propositional encodings that are
too large or are not possible (e.g., large numbers of objects,
unknown number of objects, and observations with partial
knowledge about identity of objects).

In this paper we present tractable algorithms and theoret-
ical results for updating belief states that are represented in
First-Order Logic (FOL). These representations permit belief
states of infinite sizes, uncertainty about the number of ob-
jects and their identity, and observations that do not distin-
guish between some objects. It also enables more compact
representations than those of propositional logic.

We show that when actions map states 1:1, then we can
update FOL belief-state formulae efficiently (linear time in
the representation size), after prior compilation. We also
show that the representation remains of bounded polyno-
mial size for two classes of actions, including those for
which actions have simple case preconditions and actions
with STRIPS-like preconditions (non-conditional, and ob-
served success/failure). For those we also present filter-
ing algorithms that do not require precompilation for ef-
ficient update. This is in surprising contrast to the com-
mon belief that FOL cannot be used efficiently for rep-
resenting and updating partial knowledge[Winslett, 1990;
Lin and Reiter, 1997].

On the way to these contributions we form the foundations
and provide a theory for FOL belief update. We relate deter-
ministic Situation Calculus[Reiter, 2001] with a first-order
transition model[Blass and Gurevich, 2000]. There, every
belief state is a set of FOL models over the FOL language of
a state. We show that filtering such belief states can be cap-
tured exactly bydeduction in FOL, if the result of the filtering
is definable in FOL (this is the best we can hope for[Lin and
Reiter, 1997]). Also, we show that deduction can be carried
out one time step at a time.

Most work related to ours is limited to the propositional
case (e.g.,[Amir and Russell, 2003; Boyen and Koller,
1998]). Important exceptions are[Cravo et al., 2001;
Dixon and Wobcke, 1993] (First-Order AGM belief revision),
[Winslett, 1990] (belief update and revision in simple sub-
classes of FOL), and[Lin and Reiter, 1997] (progression in

Situation Calculus). The important difference that we draw
with these works is that ours provides efficient inference pro-
cedures, while others focus on the use of general-purpose the-
orem provers, and intractability results.

2 Semantics of First-Order Filtering

In this section, we study logical filtering with first-order struc-
tures. Afirst-order languagehas as nonlogical symbols, the
variables, the function symbols and the predicate symbols.A
0-ary function symbol is calledconstant. Note that among
the binary predicate symbols must be the equality symbol=.
We define thetermsand formulas by the generalized induc-
tive definition. Variables and functions are terms. Predicates
are atomic formulas.

A first-order languageis a language in which the symbols
and formulas are as described above. We now turn to a de-
scription of the semantics of first-order languages. Astruc-
tureS for a first-order language consists of:

1. |S|, the nonemptyuniverseor domainof the structureS.
The elements of|S| are called theindividualsof S.

2. For eachn-ary predicate symbolp, pS ⊆ |S|n. These
tuples of the universe are those tuples on whichp is true.

3. For eachn-ary function symbolf , fS : |S|n → |S|. (In
particular, for each constante, eS is an individual ofS)

When a sentenceψ is true in a structureS, we denote it
by |=S ψ. For example, suppose that in structureS, |S| =
{B,R}, for predicatein, inS = {〈B,R〉}, for constantCS-R,
CS-RS = {R}, and for constantCS-B, CS-BS = {B}. This
world has a CS room (CS-R), a CS book (CS-B), and a predi-
catein which indicates whether a book is in a room. By this
definition, sentencein(CS-B, CS-R) is true inS.

We define logical filtering using situation calculus. The
one that we use is compatible with thebasic action theory
of [Reiter, 2001]. The basic action theory has the formD =
Σ ∪ Dss ∪ Dap ∪ Duna ∪ Ds0

where:
• Σ are the foundational axioms for situations.
• Dss is a set of successor state axioms.
• Dap is a set of action precondition axioms.
• Duna is a set of unique name axioms for actions.
A(−→x) 6= A′(−→y) , A(−→x) = A(−→y) ⇒ −→x = −→y
whereA andA′ are action symbols.

• Ds0
(the initial database) is a finite set of first-order sen-

tences that areuniform in s0

Definition 2.1 (Uniform Formula). A formula isuniform
in s if s is the only term of sort situation mentioned by that
formula.

We define precondition axioms and successor state axioms
as a part of basic action theory as follows.

Definition 2.2 (Action Precondition Axioms). An action
precondition axiom is a sentence of the form:1

Poss(a(x1:n), s) ⇔ preconda(x1:n, s)
wherea is an n-ary action symbol, andpreconda(x1:n, s) is
a formula that is uniform ins and whose free variables are
amongx1, . . . , xn, s.

1x1:n is the abbreviation forx1, . . . , xn

Generally, the values of relations and functions in a dy-
namic world will vary from one situation to the next. Rela-
tions whose truth values vary from situation to situation are
calledrelational fluents. They are denoted by predicate sym-
bols taking a situation term as their last argument. Same ar-
gument is true about functions.

Definition 2.3 (Successor State Axioms).Successor state
axiomsis defined for either a relational fluent or a functional
fluent. A successor state axiom for ann-ary relational fluent
p is a sentence of the form:
Poss(a(x1:n), s) ⇒ ∀y1, . . . ,∀ym

(p(y1:m, do(a(x1:n), s)) ⇔ succp,a(x1:n, y1:m, s))

wherea is an action symbol, andsuccp,a(x1:n, y1:m, s) is
a formula that is uniform ins and whose free variables are
amongx1, . . . , xn, y1, . . . , ym, s. We define a successor state
axiom for a functional fluent in a similar way.

All changes to the world are the result of named ac-
tions. An action may be parameterized. For example,
move(b, r1, r2) stands for the action of moving objectb from
roomr1 to roomr2. The intended interpretation is that situa-
tions are finite sequences of actions, anddo(a, s) denotes the
sequence formed by adding actiona to the sequencess. In
other words,do(a, s) is the successor situation resulting from
performing the actiona. We use situation calculus as foun-
dations and semantics. Later (section 3 onwards) we do not
mention it because we always focus on belief states. How-
ever, it is used in the proofs of theorems and our results are
applicable to it.

Example Consider a book keeper robot who lives in a
world consisting of rooms. When the robot is in a room, it can
make observations about the books in that room. It can move
a book between rooms, it can return a book to the library
from an arbitrary room or it can put a borrowed book in a
room. So possible actions aremove(b, r1, r2), return(b, r)
or borrow(b, r). The actions which are executable in a world
state can change the value of different predicates or functions.
Predicates areroom(r), book(b) or in(b, r). There are no
functional fluents except constants.

We define a precondition axiom and a successor state ax-
iom for actionmove and skip the others.
• Precondition Axiom:
Poss(move(b, r1, r2), s) ⇔ book(b, s)∧room(r1, s)∧
room(r2, s) ∧ in(b, r1, s)

• Successor State Axioms:
Poss(move(b, r1, r2), s) ⇒
∀b′, r′ (in(b′, r′, do(move(b, r1, r2), s)) ⇔

(((b′ = b) ∧ (r′ = r1)) ⇒ false
∧((b′ = b) ∧ (r′ = r2)) ⇒ true
∧(¬((b′ = b) ∧ (r′ = r1))

∧¬((b′ = b) ∧ (r′ = r2))) ⇒ in(b′, r′, s)))

The definition of progression and filtering semantics are as
follows.

Definition 2.4 (Transition Relation of Structures). For an
action theoryD and a structureS, we define a transition re-

lation RD(S, a, S′) as follows.

RD = {〈S, a(u1:n), S′〉 | |=S preconda(u1:n), |S′| = |S|,

pS′

= {〈s1:m〉 ∈ |S|m| |=S succp,a(u1:n, s1:m)},

fS′

= {〈s1:m, sr〉 ∈ |S|m+1|

|=S succf,a(u1:n, s1:m, sr)}}

We use[x/v] as a notion of substitution in whichx is a
vector of variables andv is a vector of variables and constants.
[x/v] is a shorthand for[x1/v1, . . .] in which [x1/v1] means
replacing all instances of symbolx1 by symbolv1.

Definition 2.5 (Logical Filtering Semantics). Letσ be a set
of first-order structures. We refer to it asbelief state. The
filtering of a sequence of actions (ground or not) and obser-
vations〈a1, o1, . . . , at, ot〉 is defined as follows (ǫ refers to
the empty sequence).

1. Filter[ǫ](σ) = σ;
2. Filter[a](σ) = {S′ | S ∈ σ, 〈S, â, S′〉 ∈ RD,

â = a[x/v]}
3. Filter[o](σ) = {S ∈ σ | |=S o};
4. Filter[〈ai, oi, . . . , at, ot〉](σ) =

Filter[〈ai+1, oi+1, . . . , at, ot〉]
(Filter[oi](Filter[ai](σ))).

We call Step 2progression witha and Step 3filtering with o.

3 Filtering of FOL Formulae
In the above definition, filtering is applied to a set of first-
order structures. In this section we use FOL to represent be-
lief states and we update this representation without explicit
reference to the structures in a belief state.

3.1 FOL Theories and Belief States
A belief state formulais a first-order theory (possibly infinite)
that represents belief state. A structure is in belief stateif and
only if it satisfies the belief state formula. The use of a theory
instead of a formula is required because the set of first-order
consequences of a first-order formula is infinite and may not
be representable by a FOL formula.

For simplicity, we use the same logical connectives that we
have for FOL formulas. The meaning of those connectives on
first-order theories is as follows:

If ϕ, ψ are theories of infinite size, then
• ϕ ∧ ψ will meanϕ ∪ ψ.
• ϕ ∨ ψ will mean {α ∨ β| α ∈ ϕ, β ∈ ψ} (similar to

de-morgan law).
• Whenever applying negation (¬) we will assume thatϕ

is a finite theory (thus, a logical formula)
• Same for∃ (can replace∃ with a new constant symbol)
Thus, in the rest of the paper, whenever we say ”belief state

formula”, we refer to a FOL theory, unless sanctioned other-
wise as above. From now on, we assume that our first-order
language has no function symbols except constants.

3.2 Basic Algorithm
In this section, we show how we can progress an initial
database represented by a logical formula after applying a
single action or observation. The result of progression is a
new database that progression algorithm can use afterwards.

We define a predicate corresponding to each relational flu-
ent whose truth value does not depend on the situation. The
snapshot of system at timet only shows the truth values of
predicates. The truth values of predicates would change while
moving from one situation to the next. We represent predi-
cates with the same symbol as relational fluents but with dif-
ferent arity.

Suppose thatP = {g1, . . . , gr} is the set of all con-
stants and predicates. We define a new set of symbols
P ′ = {g′1, . . . , g

′
r} such thatg′i(y1:n) = gi(y1:n)[P/P′] where

[P/P ′] is a shorthand for[g1/g′1, ..., gr/g
′
r]. We viewP as

the set of predicates in situations, andP ′ as the set of predi-
cates in situationdo(a, s).

We filter a belief-state formula as follows. (We reuse
Filter· for filtering a belief-state formula.) Letψ be a
belief state formula,a(u1:n) be a grounded action,Cn(Ψ) be
the set of logical consequences ofΨ (i.e. formulaeφ such
thatΨ |= φ), andCnL(Ψ) be the set of logical consequences
of Ψ in the languageL. We writeCnL(Ψ), whenL is aset
of symbols, to meanCnL(L)(Ψ).

1. F ilter[a(u1:n)](ψ) = (CnP′

(ψ ∧ preconda(u1:n)∧
∧

i

∀y1:m, p
′
i(y1:m) ⇔ succpi,a(u1:n, y1:m)∧

∧

i

∀y1:m∀z, f ′i(y1:m) = z ⇔ succfi,a(u1:n, y1:m, z)))[P′/P]

2. F ilter[o](ψ) = ψ ∧ o (1)

When we filter with actiona we assert implicitly that its pre-
condition held in the last world state. If the action is not exe-
cutable on the belief state, the new belief state would be false
which indicates an empty set. We prove in the following the-
orem that this definition of filtering approximates the seman-
tics of definition 2.5.

Theorem 3.1. Let ψ be a belief state formula anda be an
action, then
Filter[a]({s | |=s ψ}) ⊆ {s′ | |=s′ Filter[a](ψ)}

PROOF See section A.1

[Lin and Reiter, 1997] showed that progression is not al-
ways first-order definable. However, they proved that pro-
gression always exists as a set of second order sentences for
finite initial databases. Therefore, the two sides in theorem
3.1 are not equivalent since formula (1) is in FOL. In other
words, FOL is not strong enough to model the progression of
the initial database. However, the following corollary shows
that the two sides of theorem 3.1 would be equal if the pro-
gression of a database is FOL definable.

Corollary 3.2. Let ψ be a first-order belief state formula.
If FOL can represent the progression ofψ after performing
actiona, then
Filter[a]({s | |=s ψ}) = {s′ | |=s′ Filter[a](ψ)}

From this point, we assume that progression is
first-order definable. Our basic algorithm computes
Filter[〈a1, o1, ..., at, ot〉](ψ) by iteratively applying filtering
of a belief-state formula with an action and an observation.
It setsψ0 = ψ and ψi = Filter[oi](Filter[ai](ψi−1))

recursively fori > 0 using the equations defined above. This
algorithm is correct, as shown by corollary 3.2. It can be
implemented using a first-order consequence finder.

3.3 Sequences of Actions and Observations
This section shows that iterative applications of progression
steps lose no information. Thus, we can throw away the pre-
vious database and start working with the new one after per-
forming each action.

We break our action theoryD into two parts, the initial
databaseDs0

and the restDg. Therefore,D = Dg ∪ Ds0
.

Now we define the language of an action theory as follows.

Definition 3.3. The language ofD, L(D), is a set of first-
order formulae whose predicate and function symbols occur
in D.

For instance, ifDs0
= put(A,B) ∧ ∀x box(x), then

put(A,A) and∀x∃y put(x, y) are inL(Ds0
) but box(A,B)

is not.
In progression we assume that a ground actiona is per-

formed, and we are looking for a set of sentencesDsa
that

can serve as a new initial database (sa denotes the situation
termdo(a, s)). Unfortunately[Lin and Reiter, 1997] showed
thatDsa

is not always first-order definable.
We defineFsa

as the set of first-order sentences uniform
in sa entailed byD. If we useFsa

instead ofDsa
, for every

first-order sentenceψ about the future ofsa, Fsa
∪ Dg |= ψ

iff D |= ψ. The following theorem states this result.
Note that the intersection of all consequences of the action

theory withL(Dg ∪ {sa}) is uniform insa.

Theorem 3.4. Let D0 be an action theory, and define
D1,D2,D

′
2 as follows.

D1 = Cn(D0 ∪ {s1 = do(a1, s0)}) ∩ L(Dg ∪ {s1})

D2 = Cn(D1 ∪ {s2 = do(a2, s1)}) ∩ L(Dg ∪ {s2})

D′
2 = Cn(D0 ∪ {s1 = do(a1, s0), s2 = do(a2, s1)})

∩L(Dg ∪ {s2})

(a1 and a2 are two actions inD0, not necessarily different.
s0, s1 ands2 do not occur inDg.) Then ,D2 = D′

2.

PROOF See section A.2

For instance in our book keeper example, if
Ds0

is {book(B, s0), room(R, s0), in(B,R, s0)} and
the first action is return(B,R), Ds1

would be
{book(B, s1), room(R, s1),¬in(B,R, s1)}.

4 Factored Inference
Several distribution properties hold for logical filtering. We
can decompose the filtering of a formulaϕ along logical con-
nectives∧,∨,¬, ∀, ∃.

Theorem 4.1. Leta be an action, and letϕ, ψ be first-order
formulae. Then,

1. Filter[a](ϕ ∨ ψ) ≡ Filter[a](ϕ) ∨ Filter[a](ψ)
2. |= Filter[a](ϕ ∧ ψ) ⇒ Filter[a](ϕ) ∧ Filter[a](ψ)
3. |= Filter[a](¬ϕ) ⇐ ¬Filter[a](ϕ)∧Filter[a](TRUE)
4. Filter[a](∃x ϕ(x)) ≡ ∃x Filter[a](ϕ(L))[L/x]

(L is a fresh constant symbol.) 3, 4 hold only when
Filter[a](ϕ) is finite.

We can say something stronger for actions that act asper-
mutationson the structures in which they are executable.

Definition 4.2 (Permuting Actions). Actiona is permuting
(1:1) if for every structureS′ there is at most oneS such that
RD(S, a, S′).

Domains that only include permuting actions are called
permutation domains.

Theorem 4.3 (Distribution for Permutation Domains). Let
a be a permuting action, and letϕ, ψ be formulae. Then,

1. Filter[a](ϕ ∨ ψ) ≡ Filter[a](ϕ) ∨ Filter[a](ψ)
2. Filter[a](ϕ ∧ ψ) ≡ Filter[a](ϕ) ∧ Filter[a](ψ)
3. Filter[a](¬ϕ) ≡ ¬Filter[a](ϕ) ∧ Filter[a](TRUE)
4. Filter[a](∃x ϕ(x)) ≡ ∃x Filter[a](ϕ(L))[L/x]

We can decompose every first-order formula into a set of
single literals by using distribution properties proved above.
For instance,∀x (ϕ(x) ∧ ψ(x)) is equivalent to∀x ϕ(x) ∧
∀x ψ(x) so rule 2 can break it into two parts. Also∀x ¬ϕ(x)
is equivalent to¬∃x ϕ(x) so rule 3 and rule 4 can be used,
and∀x (ϕ(x)∨ψ(x)) is equivalent to¬∃x (¬ϕ(x)∧¬ψ(x))
so rule 3, rule 4, and rule 2 can be used.

In permutation domains, we decompose the formula down
to a set of grounded first-order single literals, and for filtering
a single literal we use formula (1).

Our factored filtering (FF) algorithm for permutation do-
mains is presented in Figure 1. It relies on theorems 3.2,
4.1, and 4.3. The number of different grounded single literals
would be finite, if the number of objects is finite. Therefore,
we can calculate filtering of all single literals as a preprocess-
ing step and retrieve it later in finite domains.

Note that the arguments of these literals are either the con-
stants associated to existential quantifiers or the constants
which are mentioned in the initial belief state, the set of ax-
ioms or the observations.

PROCEDURE FF(〈ai, oi〉0<i≤t,ψ)
∀i, ai an action,oi an observation,ψ a belief-state formula.

1. if t = 0, returnψ.
2. returnot∧ FF-Step(at,

precondat∧ FF(〈ai, oi〉0<i≤(t−1),ψ)).

PROCEDURE FF-Step(a,ψ)
a an action.ψ a belief-state formula.

1. if ψ is a single literal, then return Single-Literal-Filtering(a,
ψ).

2. else, use distribution properties, call FF-Step recursively on
sub-formulas ofψ.

Figure 1: Filtering of a FOL formula when all the actions are
permuting actions.

Theorem 4.4.The algorithm FF is correct, and if the filtering
of all single literals are given, the algorithm FF would run in
timeO(|preconda ∧ ψ|), whereψ is a belief state formula.

Our factored filtering algorithm uses consequence finding
tools. Since it is part of preprocessing, it does not affect the

runtime of the system. In open systems the time is different
since new objects may be added during the operation of the
system. In these systems filtering of new single literals should
be computed while system is running.

5 Filtering Algorithms for Different Domains
Our naive filtering algorithm uses consequence finding tools
which do not scale to large domains. The following theorem
suggests a different reasoning procedure.

Theorem 5.1. Leta be an action,ψ be a belief state formula,
and Φ(ϕ1:n) be a first-order logical formula whose atomic
subformulas are amongϕ1, . . . , ϕn. Then,

Filter[a](ψ) ≡ {Φ(p1:n)| FOL formulaΦ,

ψ ∧ preconda |= Φ(succp1,a, . . . , succpn,a)} (2)

In this formula, all possibleΦs should be considered. In
general, generating allΦs is impossible because there are in-
finitely many suchΦs. In the following sections, we pro-
vide simpler closed-form solutions for two special cases of
dynamic domains. These give rise to practical(polynomial)
algorithms.

5.1 Unit-Case Successor State Axioms
By definition of successor state axioms, for every pair of ac-
tions and predicates exactly one successor state axiom is pro-
vided. The successor state axiom for actiona and predicate
pi can be rewritten as:

Poss(a(x1:n), s) ⇒ ∀y1, . . . ,∀ym (pi(y1:m, do(a, s)) ⇔

(case1i ⇒ φ1
i) ∧ . . . ∧ (caseli

i ⇒ φli
i)

∧(¬case1i ∧ . . . ∧ ¬caseli
i) ⇒ φli+1

i)

wherecasej
i is of the form(yj1 = xj1) ∧ . . . ∧ (yjk

= xjk
)

(variablexj1 is an argument of actiona and variableyj1 is an
argument of predicatep) and each variable assignment sat-
isfies at most one of the cases. A successor state axiom is
calledunit-case successor state axiomif it can be rewritten in
a form where everyφj

i (1 ≤ j ≤ li + 1) is a unit clause.
We break a unit-case successor state axiom into multiple

instantiated axioms. Instantiated successor state axiomsfor
predicatepi are:
• Poss(a(x1:n), s) ⇒ (pi(y1:m, do(a, s)) ⇔ φj

i)[yj

i /xj

i]

for all 1 ≤ j ≤ li
• Poss(a(x1:n), s) ⇒ ∀y1:m (¬case1i ∧ . . .∧¬caseli

i) ⇒
(pi(y1:m, do(a, s)) ⇔ φli+1)

[yj
i /x

j
i] is the substitution corresponding tocasej

i (yj
i andxj

i
are sequences of variables). This process is calledbreaking
into cases. Note that all instantiated successor state axioms
are in the formPoss(a) ⇒ (condi ⇒ (pi ⇔ φi)) where in
some of themcondi is true (i is an enumeration of all instan-
tiated successor state axioms of actiona).

Figure 2 shows the unit-case filtering (UCFilter) algo-
rithm. This algorithm is applicable on permutation do-
mains whose successor state axioms are unit-case. The
algorithm UCFilter is actually a way to compute every
Φ(subsucc1a, . . . , subsucc

k
a) in formula (2). In permutation

domains, the head of entailment in formula (2) is a single lit-
eral (action precondition can be considered as a conjunct to

PROCEDURE UCFilter(〈ai, oi〉0<i≤t,ψ)
∀i, ai an action,oi an observation,ψ a belief-state formula.

1. if t = 0, returnψ.
2. ψt−1 = UCFilter(〈ai, oi〉0<i≤(t−1),ψ).
3. returnot∧ Filter-True(at)∧UCStep(at, precondat∧ψt−1).

PROCEDURE Filter-True(a)
a an action.

1. poss(a)⇒ (condi ⇒ (pi ⇔ φi)) an instantiated successor
state axiom (1 ≤ i ≤ k).

2. S = ∅
3. for all 1 ≤ i, j ≤ k,

(a) if φi = true, addcasei ⇒ pi to S
(b) elseifφi = false, addcasei ⇒ ¬pi toS
(c) elseif unifiable(φi, φj), add

((condi ∧ condj)⇒ (pi ⇔ pj))mgu(φi,φj) toS
(d) elseif unifiable(φi,¬φj), add

((condi ∧ condj)⇒ (pi ⇔ ¬pj))mgu(φi,φj) to S
(e) elseifφi = ∀x q(x), φj = q(t), add

(condi ∧ condj)⇒ (¬pi ∨ pj) to S
(f) elseifφi = ∃x q(x), φj = q(t), add

(condi ∧ condj)⇒ (pi ∨ ¬pj) to S
4. return

∧
ϕ∈S ϕ.

PROCEDURE UCStep(a,ψ)
a an action.ψ a belief-state formula.

1. if ψ is a single literal, then
(a) poss(a) ⇒ (condi ⇒ (pi ⇔ φi)) an instantiated

successor state axiom (1 ≤ i ≤ k).
(b) S = ∅
(c) for all 1 ≤ i ≤ k,

i. if unifiable(φi, ψ), add
(casei ⇒ pi)mgu(φi,ψ) to S

ii. elseif unifiable(φi,¬ψ), add
(casei ⇒ ¬pi)mgu(φi,ψ) to S

(d) return
∧
ϕ∈S ϕ.

2. else, use distribution properties, call UCStep recursively on
sub-formulae ofψ.

Figure 2: Unit-Case Filtering.

the belief state formula, and the distribution properties can be
used). Consequently,Φ(subsucc1a, . . . , subsucc

k
a) is either

equivalent to that literal or a tautology. A tautology is at most
of size two when unit-case successor state axioms are used.
Therefore, we can compute all desiredΦs in a finite number
of steps.

Theorem 5.2. Letk be the number of successor state axioms
after breaking into cases, andψ be the belief state formula. If
each predicate has arity at mostR, then algorithm UCFilter
returns the filtering ofψ with actiona in timeO(R · k2 +R ·
k · |ψ ∧ preconda|). The length of new belief state formula is
O(R · k2 +R · k · |ψ ∧ preconda|).

Corollary 5.3. Given a sequence oft actions and observa-
tions, algorithm UCFilter returns the filtering ofψ0 in time
O(t2 ·Rt · kt+1 + t ·Rt · kt · |ψ0|). The length of belief state
formula aftert step isψt = O(t · Rt · kt+1 + Rt · kt · |ψ0|).
(If the length of all observations and preconditions of actions
are negligible compared to the length of belief state formula)

5.2 STRIPS Domains
In STRIPS domains every action has no conditional effects. It
means that the value of each predicate either changes to true,
changes to false, or remains the same. STRIPS actions are
not necessarily permuting. Consequently STRIPS successor
state axioms can not be treated by algorithm UCFilter even
though they are unit-case. Successor state axioms in STRIPS
domains are of the form:

Poss(a(x1:n), s) ⇒ ∀y1, . . . ,∀ym (pi(y1:m, do(a, s)) ⇔

(case1i ⇒ φ1
i) ∧ . . . ∧ (caseli

i ⇒ φli
i)

∧(¬case1i ∧ . . . ∧ ¬caseli
i) ⇒ pi(y1:m, s))

whereφj
i (j ≤ li) is either true or false.

A STRIPS action affects some of the instantiated predi-
cates and keeps the value of the others. We refer to the set of
affected instantiated predicates as Eff(a).
Eff(a) = {p(−→v)| actiona affects every instance ofp(−→v)}

wherev is a sequence of variables and constant symbols.
The first-order STRIPS filtering (FOSF) algorithm is pre-

sented in figure 3. The belief state formula which is an in-
put to this algorithm should be in the form∃∗∀∗φ (EAFOL)
(EAFOL is a first-order formula in which there is no existen-
tial quantifier inside a universal one). A clause in the clausal
form of φ would be splitted into multiple instantiated clauses
if one of its literals has some instances in Eff(a) and some out
of Eff(a). This step is calledsplitting into pure literal clauses.
We split every clausep(x) ∨ ϕ in which some instantiations
of p(x) are affected and some are not, into:

{p(v1) ∨ ϕ , . . . , p(vr) ∨ ϕ ,
((x 6= v1 ∧ . . . ∧ x 6= vr) ⇒ p(x)) ∨ ϕ}

wherep(v1), . . . , p(vr) are in Eff(a). Note that we treat((x 6=
v1 ∧ . . . ∧ x 6= vr) ⇒ p(x)) as a single literal.

The new clausal form ofφ is divided into two parts, clauses
with no literal in Eff(a) and clauses that have at least one
literal in Eff(a). The first part directly goes to the new belief
state formula. The algorithm adds all the consequences of
the second part in which no affected literals exist, to the new
belief state formula. All literals in Eff(a) are also added to
new belief state formula as their values can be determined
unconditionally after applying the action.

Theorem 5.4. Given action a, observationo, and be-
lief state formulaψ in EAFOL, algorithm FOSF returns
the filtering of ψ with a and o in time O(R · |E| ·

min((|E|
2)2

|Eff(a)|
, |Eff(a)|2|E|·R) + |ψ|) whereE is the set of

all clauses with any literal in Eff(a) after splitting into pure
literal clauses and each clause has length at mostR.

Theorem 5.5. If ψ is in 2-FO-CNF2 then the time complexity
of FOSF after filtering one action isO(|Eff(a)| · |E|2 + |ψ|).
The formula length isO(|Eff(a)| + |E|2 + |ψ|).
Extended Example
Consider our previous book-keeping robot. Suppose that we
have two rooms, a CS room and an ECE room, and two books,

2A first-order formula is in k-FO-CNF if in clausal form the size
of each clause is at most k.

PROCEDURE FOSF(〈ai, oi〉0<i≤t,ψ)
∀i, ai an action,oi an observation andψ a belief state formula.oi
andψ in EAFOL

1. if t = 0, returnψ.
2. return Move-Quana(ot∧ FO-STRIPS-Step(at,

Move-Quan(precondat∧ FOSF(〈ai, oi〉0<i≤(t−1),ψ))))

aMoves all the quantifiers to the front with fresh variable names

PROCEDURE FO-STRIPS-Step(a,ψ)
a an action,ψ = ∃∗∀∗

∧
i ci a belief-state formula.

1. if ψ = ∃x φ(x), return∃x FO-STRIPS-Step(a,φ(L))[L/x]
a

2. elseifψ = ∀x φ(x), return∀x FO-STRIPS-Step(a,φ(x))
3. else,

(a) ψ′ ← split every clause inψ into pure literal clauses
(b) E ← all clauses inψ′ with any literal in Eff(a)
(c) S ← all clauses inψ′ with no literal in Eff(a)
(d) if E 6= ∅

for all l ∈ Eff(a)
E ← resolve-out(l,E)

(e) φ =
∧
ci∈E∪S ci

(f) Eff+(a)← literals affected to true
(g) Eff−(a)← literals affected to false
(h) returnφ ∧

∧
p(v)∈Eff+(a) p(v) ∧

∧
p(v)∈Eff−(a) ¬p(v).

aL is a fresh constant that does not appear in the language

Figure 3: First-Order STRIPS Filtering.

a CS book and an ECE book, and our belief state formula is
in(CS-B, CS-R) ∧ in(ECE-B, ECE-R). ECE department needs
the CS book for a while, so the book keeper moves it to ECE
room. The action isa = move(CS-B, CS-R, ECE-R). (This
example has unit-case successor state axioms.)

First, we add precondition to belief state formula. The
new belief state isin(CS-B, CS-R) ∧ in(ECE-B, ECE-R) ∧
book(CS-B)∧ room(CS-R)∧ room(ECE-R). We calculate the
filtering of all the single literals of the belief state formula
separately and compute the result by using distribution prop-
erties. What follows is the formula for one of these literals
based on the algorithm presented before.

Filter[move(CS-B, CS-R, ECE-R)](in(ECE-B, ECE-R)) ≡
in(CS-B, ECE-R) ∧ ¬in(CS-B, CS-R) ∧ in(ECE-B, ECE-R)

Now suppose that instead of applying an action we filter the
belief state based on an observation. The robot enters the CS
room and observes that there is only one book in the room.
The perfect filtering algorithm guarantees that in such cases
the book is the same book that the robot has put in the room
before.

Assume that the belief state formula isin(CS-B, CS-R) ∧
in(ECE-B, ECE-R). The observation is∀x in(x,CS-R) ⇒ x =
TheBook. Filter[o](ψ) |= TheBook = CS-B, so we can replace
every instance ofTheBookin the new belief state formula by
CS-B.

6 Conclusions
In this paper we presented semantics and methodology for fil-
tering in domains that include many objects whose identity is
not certain. We generalized this problem to filtering with FOL

formulae. We showed that this problem is solvable in poly-
nomial time when actions map states 1:1, or the actions are
STRIPS. We showed that 1:1 actions allow us to filter first-
order belief state formulae in linear time (in the size of rep-
resentation), if we can perform a precompilation step. When
actions are STRIPS or Unit-Case, we can filter these belief
state formulae efficiently without precompilation. In some
cases, we showed that the belief state formulae is guaranteed
to remain compactly represented. Those cases permit filtering
of actions and observations indefinitely in polynomial time
(in the number of predicates and objects). As a result, we can
use our algorithm for many interesting applications, such as
semantic web, autonomous agents, robot motion control, and
partial knowledge games.

7 Acknowledgements
We wish to thank Megan Nance for useful discussions on
related topics. We also wish to acknowledge support from
DAF Air Force Research Laboratory Award FA8750-04-2-
0222 (DARPA REAL program).

References
[Amir and Russell, 2003] Eyal Amir and Stuart Russell. Logical

filtering. In IJCAI ’03, pages 75–82. MK, 2003.

[Blass and Gurevich, 2000] A. Blass and Y. Gurevich. Background,
Reserve, and Gandy Machines. In P. Clote and H. Schwicht-
enberg, editors,Computer Science Logic (Proceedings of CSL
2000), volume 1862 ofLNCS, pages 1–17. Springer, 2000.

[Boyen and Koller, 1998] Xavier Boyen and Daphne Koller.
Tractable inference for complex stochastic processes. InProc.
UAI ’98, pages 33–42. MK, 1998.

[Cravoet al., 2001] Maria R. Cravo, Jõao P. Cachopo, Ana C. Ca-
chopo, and Jõao P. Martins. Permissive belief revision. InEPIA,
pages 335–348, 2001.

[Dixon and Wobcke, 1993] Simon Dixon and Wayne Wobcke. The
implementation of a first-order logic agm belief revision system.
In ICTAI, pages 40–47, 1993.

[Eiter and Gottlob, 1992] T. Eiter and G. Gottlob. On the complex-
ity of propositional knowledge base revision, updates, andcoun-
terfactuals.AIJ, 57(2-3):227–270, 1992.

[Lin and Reiter, 1997] Fangzhen Lin and Ray Reiter. How to
Progress a Database.AIJ, 92(1-2):131–167, 1997.

[Reiter, 2001] Raymod Reiter.Knowledge In Action: Logical Foun-
dations for Describing and Implementing Dynamical Systems.
MIT Press, 2001.

[Winslett, 1990] Mary-Anne Winslett. Updating Logical
Databases. Cambridge U. Press, 1990.

A Proofs
A.1 Proof of Theorem 3.1: Filtering Algorithm

PROOF Take Ŝ ∈ Filter[a]({s | |=s ψ}). We need
to show that|=Ŝ Filter[a](ψ). From Definition 2.5 there
should beS such thatS ∈ {s | |=s ψ} and 〈S, â, Ŝ〉 ∈
RD. In other words, there should beS such that|=S ψ and
〈S, â, Ŝ〉 ∈ RD.

To prove |=Ŝ Filter[a](ψ) we need to show
that ψ ∧ preconda(u1:n) ∧

∧
i ∀y1:m, p

′
i(y1:m) ⇔

succpi,a(u1:n, y1:m) ∧
∧

i ∀y1:m∀z, f ′i(y1:m) = z ⇔

succfi,a(u1:n, y1:m, z) with Ŝ as structure forP ′ and
S as structure forP. In other words the truth as-
signment Ŝ to all predicates in some situation satis-
fies this formula together with the truth assignmentS
to all predicates in following situation. It is not sat-
isfying this formula only if one of the conjunctsψ,
preconda(u1:n), ∀y1:m, p′i(y1:m) ⇔ succpi,a(u1:n, y1:m), or
∀y1:m∀z, f ′i(y1:m) = z ⇔ succfi,a(u1:n, y1:m, z)is falsified.
This in not the case for first two by our choice ofS.

Assume by contradiction that this is the case for some
i. Then, the truth assignments sanction thatp′i(y1:m) ⇔
succpi,a(u1:n, y1:m) does not hold. From the way we defined
R this is never the case. This contradicts our assumption.
The same argument is true for functions. Thus, we get that
|=Ŝ Filter[a](ψ).

A.2 Proof of Theorem 3.4: Progression Possibility
PROOF We show that the two sets of world structures have
the same elements. We first show that the left-hand side of the
equality is contained in the right-hand side.

Takeφ ∈ D2. We show thatφ should be inD′
2. We can

plug the definition ofD1 in the definition ofD2.
D2 = Cn(Cn(D0 ∪ {s1 = do(a1, s0)}) ∩ L(Dg ∪ {s1}))

∩L(Dg ∪ {s2})

⊆ Cn(Cn(D0 ∪ {s1 = do(a1, s0)})) ∩ L(Dg ∪ {s2})

= Cn(D0 ∪ {s1 = do(a1, s0)}) ∩ L(Dg ∪ {s2})

In other words,D2 ⊆ D′
2.

For the opposite direction (showing the right-hand side is
contained in the left-hand side), suppose thatφ ∈ D′

2. We
show thatφ ∈? D2.

From the definition ofD′
2, we know thatφ ∈ D′

2 iff D0 ∪
{s1 = do(a1, s0), s2 = do(a2, s1)} |= φ. So, with the same
explanation, we show thatD1 ∪ {s2 = do(a2, s1)} |=? φ.

φ ∈ D′
2

D0 ∪ {s1 = do(a1, s0), s2 = do(a2, s1)} |= φ

D0 ∪ {s1 = do(a1, s0)} |= (s2 = do(a2, s1))⇒ φ

On the other hand we know that,
L(D0 ∪ {s1 = do(a1, s0)}) = L(D0 ∪ {s0, s1)})

⊆ L(Dg ∪ {s0, s1)})

L(s2 = do(a2, s1)⇒ φ) = L(D′
2 ∪ {s1, s2})

⊆ L(Dg ∪ {s1, s2)})

As we know, there is nosi in Dg so we can compute the
intersection of the two side of equation.
L(D0 ∪ {s1 = do(a1, s0)}) ∩ L(s2 = do(a2, s1) ⇒ φ)

⊆ L(Dg ∪ {s1})
Now, by applying Craig’s interpolation theorem for FOL,

we get that there should exist aγ ∈ L(Dg ∪ {s1}) such that
D0 ∪ {s1 = do(a1, s0)} |= γ andγ |= (s2 = do(a2, s1)) ⇒
φ. Fromγ ∈ L(Dg ∪ s1) andD0 ∪ {s1 = do(a1, s0)} |= γ
we can conclude thatγ ∈ D1. So,

D1 |= (s2 = do(a2, s1))⇒ φ

D1 ∪ (s2 = do(a2, s1)) |= φ

and the opposite direction is done.

