1

First-Order Logical Filtering

Afsaneh Shirazi and Eyal Amir
Computer Science Department, University of Illinois at U-C
Urbana, IL 61801, USA hajiamin,eya}@cs.uiuc.edu

Abstract

Logical filteringis the process of updating a belief
state (set of possible world states) after a sequence
of executed actions and perceived observations. In
general, it is intractable in dynamic domains that
include many objects and relationships. Still, po-
tential applications for such domains (e.g., seman-
tic web, autonomous agents, and partial-knowledge
games) encourage research beyond immediate in-
tractability results.

In this paper we present polynomial-time algo-
rithms for filtering belief states that are encoded
as First-Order Logic (FOL) formulae. We sidestep
previous discouraging results, and show that our
algorithms are exact in many cases of interest.
These algorithms accept belief states in full FOL,
which allows natural representation with explicit
references to unidentified objects, and partially
known relationships. Our algorithms keep the en-
coding compact for important classes of actions,
such as STRIPS actions. These results apply to
most expressive modeling languages, such as par-
tial databases and belief revision in FOL.

Introduction

propositional belief states (sets of statB&nir and Russell,
2004 with actions and observations has shown thactfil-
tering is tractable when belief states are representecaspr
sitional formulae, and certain natural assumptions are met
Still, many domains have propositional encodings that are
too large or are not possible (e.g., large numbers of ohjects
unknown number of objects, and observations with partial
knowledge about identity of objects).

In this paper we present tractable algorithms and theoret-
ical results for updating belief states that are represkinte
First-Order Logic (FOL). These representations permielhel
states of infinite sizes, uncertainty about the number of ob-
jects and their identity, and observations that do not misti
guish between some objects. It also enables more compact
representations than those of propositional logic.

We show that when actions map states 1:1, then we can
update FOL belief-state formulae efficiently (linear tinme i
the representation size), after prior compilation. We also
show that the representation remains of bounded polyno-
mial size for two classes of actions, including those for
which actions have simple case preconditions and actions
with STRIPS-like preconditions (non-conditional, and ob-
served success/failure). For those we also present filter-
ing algorithms that do not require precompilation for ef-
ficient update. This is in surprising contrast to the com-
mon belief that FOL cannot be used efficiently for rep-

Many everyday scenarios are dynamic and partially obsentesenting and updating partial knowledp#inslett, 1990;
able: a robot in one room cannot see the state of anothddn and Reiter, 199]

room, a camera overlooking a bookshelf cannot detect the On the way to these contributions we form the foundations
title of a book that is obscured, and one cannot readily oband provide a theory for FOL belief update. We relate deter-
serve the amount of money an agent has. Many application®inistic Situation Calculu$Reiter, 2001 with a first-order

in such domains compute information about the current worldransition modelBlass and Gurevich, 2000 There, every
state belief statei.e., set of possible states or a distribution belief state is a set of FOL models over the FOL language of
over such a set) after actions and observations. This comp@ State. We show that filtering such belief states can be cap-
tation is callediltering (also, state estimation, belief update, tured exactly bydeduction in FOL.if the result of the filtering

and database progression). They use this information temaks definable in FOL (this is the best we can hope[fan and
decisions, answer questions, and explore.

Reiter, 1997). Also, we show that deduction can be carried

Filtering is intractable in general for discrete domainsout one time step at a time.

[Eiter and Gottlob, 1992 and much research is dedicated Most work related to ours is limited to the propositional

to its approximation in stochastic domains (e[§oyen and

Koller, 1999). Still, these approximations introduce un- 1999).

case (e.g.[Amir and Russell, 2003; Boyen and Koller,
Important exceptions ar¢Cravo et al, 2001;

bounded errors many times, take unbounded computatioBixon and Wobcke, 1993First-Order AGM belief revision),
time in others, and are not usable in most deterministic dofWinslett, 1990 (belief update and revision in simple sub-
mains. Recent progress on logical methods for filtering oftlasses of FOL), anfLin and Reiter, 1997 (progression in

Situation Calculus). The important difference that we draw Generally, the values of relations and functions in a dy-
with these works is that ours provides efficient inferenae pr namic world will vary from one situation to the next. Rela-
cedures, while others focus on the use of general-purpese thtions whose truth values vary from situation to situatioa ar

orem provers, and intractability results.

2 Semantics of First-Order Filtering

In this section, we study logical filtering with first-ordensc-
tures. Afirst-order languagehas as nonlogical symbols, the
variables, the function symbols and the predicate symlols.

calledrelational fluents They are denoted by predicate sym-
bols taking a situation term as their last argument. Same ar-
gument is true about functions.

Definition 2.3 (Successor State Axioms)Successor state
axiomsis defined for either a relational fluent or a functional
fluent. A successor state axiom forasary relational fluent

0-ary function symbol is calledonstant Note that among P iS a sentence of the form:

the binary predicate symbols must be the equality syrebol
We define theermsand formulas by the generalized induc-
tive definition. Variables and functions are terms. Predica
are atomic formulas.

A first-order languages a language in which the symbols

Poss(a(z1:n),8) = Yy1,. .., YVYm
(P(Y1:m, do(a(x1.0), 8)) & suCCpa(T1m, Y1:m, 5))
whereq is an action symbol, anducc, o(T1:n, Y1:m,) 1S
a formula that is uniform ins and whose free variables are
amongry, ..., Ty, Y1, - - -, Ym, S- We define a successor state

and formulas are as described above. We now turn to a dexjom for a functional fluent in a similar way.

scription of the semantics of first-order languagesstiic-
ture S for a first-order language consists of:

1. |S|, the nonemptyniverseor domainof the structures.

The elements ofS| are called théndividualsof S.

2. For eachm-ary predicate symbgh, p° C |S|*. These

tuples of the universe are those tuples on whichtrue.

3. For each-ary function symbolf, f° : [S|” — |S]. (In
particular, for each constaate® is an individual ofS)
When a sentence is true in a structureS, we denote it

by =5 1. For example, suppose that in structéte|S| =
{B, R}, for predicaten, in® = {(B, R)}, for constanCS-R
cs-R = {R}, and for constan€S-B CS-B = {B}. This
world has a CS roomdS-R, a CS book €S-B, and a predi-
catein which indicates whether a book is in a room. By this
definition, sentencén(CS-B, CS-Ris true inS.

We define logical filtering using situation calculus. The
one that we use is compatible with thasic action theory
of [Reiter, 2001. The basic action theory has the fofn=
Y UDgs UDgp UDyna UDs, Where:

3} are the foundational axioms for situations.

D, is a set of successor state axioms.

D, is a set of action precondition axioms.

Duna 1S @ set of unique name axioms for actions.
A(@) # A(y) . A@) = Aly) =7 =7
whereA and. A’ are action symbols.

tences that araniformin sg

Definition 2.1 (Uniform Formula). A formula isuniform
in s if s is the only term of sort situation mentioned by that
formula.

We define precondition axioms and successor state axioms

as a part of basic action theory as follows.

Definition 2.2 (Action Precondition Axioms). An action

precondition axiom is a sentence of the fotm:
Poss(a(x1.,), 8) < precondy (1.5, 5)

wherea is an n-ary action symbol, angrecond, (z1.,, s) iS

a formula that is uniform ins and whose free variables are

amongzy, ..., Ty, S.

121., is the abbreviation foz1, . . ., z»

D, (the initial database) is a finite set of first-order sen-

All changes to the world are the result of named ac-
tions. An action may be parameterized. For example,
move(b, 1, o) Stands for the action of moving objdctrom
roomr; to roomry. The intended interpretation is that situa-
tions are finite sequences of actions, @nf, s) denotes the
sequence formed by adding actiarto the sequences In
other wordsdo(a, s) is the successor situation resulting from
performing the actiom. We use situation calculus as foun-
dations and semantics. Later (section 3 onwards) we do not
mention it because we always focus on belief states. How-
ever, it is used in the proofs of theorems and our results are
applicable to it.

Example Consider a book keeper robot who lives in a
world consisting of rooms. When the robotis in a room, it can
make observations about the books in that room. It can move
a book between rooms, it can return a book to the library
from an arbitrary room or it can put a borrowed book in a
room. So possible actions areove(b, r1,r2), return(b,r)
or borrow(b, r). The actions which are executable in a world
state can change the value of different predicates or fomsti
Predicates areoom(r), book(b) or in(b,r). There are no
functional fluents except constants.

We define a precondition axiom and a successor state ax-
iom for actionmove and skip the others.

e Precondition Axiom:
Poss(move(b,r1,72), s) < book(b, s) Aroom(ry, s) A
room(ra, s) Ain(b,r1, s)
e Successor State Axioms:
Poss(move(b,r1,72),8) =
Vo' 1’ (in(b',r', do(move(b,r1,12),5)) <
(0 =b)A (" =r1)) = false

The definition of progression and filtering semantics are as
follows.

Definition 2.4 (Transition Relation of Structures). For an
action theoryD and a structureS, we define a transition re-

lation Rp (S, a, S’) as follows. We define a predicate corresponding to each relational flu-
_ ' no_ ent whose truth value does not depend on the situation. The
Rp = {(S,a(u1.n), ") | Es precondq(ui.,),|S"| =15, snapshot of system at timeonly shows the truth values of

5 = {{s1.m) €15 =g succy q(Ut:ns S1:m) 1, predicates. The truth values of predicates would changewhi
s a1 moving from one situation to the next. We represent predi-
7 ={(s1:m>5) € 1S™ cates with the same symbol as relational fluents but with dif-
Es succy,q(Uiin, S1:ms Sr) }} ferent arity.

We usez/v] as a notion of substitution in which is a Supposg thaZD_ = {gl’v'v' ' ’grg‘. is the set of al:c con-b |
vector of variables andis a vector of variables and constants, Stants and pre |cater;s.h e define a new set o hsym oIS
[/v] is a shorthand fofz, /vy, .. .] in which [z; /v;] means . = /{9_1’ .-, g, } sucht ayi(y}:n) = gi(}/ltn)[?’/?] Ml
replacing all instances of symbe| by symbolv;. {Z}D/P]t |sfa SZ‘?rtTa”‘_j fo_ftgl/t!_ha " g;)//gr]- txve V'te"‘;P a;_
Definition 2.5 (Logical Filtering Semantics). Leto be a set © Sl ol predicates in situatiehan as the set of predi-

; ; . cates in situatiodo(a, s).
of first-order structures. We refer to it dselief state The We filter a belief-state formula as follows. (We reuse

filtering of a sequence of actions (ground or not) and obser-p;;...11(.) for filtering a belief-state formula.) Lep be a
vations{(ay, 01, ...,a, 0:) is defined as followse(refers to belief state formulag(u.,.) be a grounded actioin(¥) be
RS em'pty sequence).. the set of logical consequencesbf(i.e. formulae¢ such

1. Filter[e](0) = ; that¥ = ¢), andCn’ () be the set of logical consequences

2. Filterla)(0) ={5"| § € 0, (5,4,5') € Rop, of ¥ in the languaget. We write Cn’(¥), whenL is aset

@ = Qz/v] L£(L)
3. Filter[o](c) = 1S € o | g o; of symbolsto meanC'n*~\") (¥).
4. Filter[{a;,0i,...,a¢,0:)](0) = 1. Filter ‘ _ P’ ond
Filter[{aiy1,0i11,...,at,04)] e [al(m.n)](w (On™ (% A preconda (uszn)A
(Filter[o;](Filter]a;](o))). /\ YY1im, Py (Y1:m) & succp, o(Uimn, Y1:m)A
We call Step progression witlu and Step 3iltering with o. i

. . Y m v N ! m) = 2 & 3 s Ylims ,
3 Filtering of FOL Formulae /\ Yrm¥% fi(yrm) = 2 & succs, a(Uin, yrm: 2))) /)
In the above definition, filtering is applied to a set of first- 2 Fjjter[o](y) = ¥ Ao 1)
order structures. In this section we use FOL to represent be- _ _ _ o _

lief states and we update this representation without eixpli When we filter with actior: we assert implicitly that its pre-

reference to the structures in a belief state. condition held in the last world state. If the action is nogex
)) cutable on the belief state, the new belief state would (sefal
3.1 FOL Theories and Belief States which indicates an empty set. We prove in the following the-

A belief state formulas a first-order theory (possibly infinite) orem that this definition of filtering approximates the seman
that represents belief state. A structure is in belief stated tics of definition 2.5.
only if it satisfies the belief state formula. The use of athieo Theorem 3.1. Lety be a belief state formula and be an
instead of a formula is required because the set of firstrordeyction, then
consequences of a first-order formula is infinite and may not pjjter(a)({s | |=, ¥}) C {s'| s Filter[a](y)}
be representable by a FOL formula.

For simplicity, we use the same logical connectives that we
have for FOL formulas. The meaning of those connectives on [| jn and Reiter, 1997 showed that progression is not al-

PROOF SeesectionA.l ®

first-order theories is as follows: ways first-order definable. However, they proved that pro-
If ¢, 4 are theories of infinite size, then gression always exists as a set of second order sentences for
e p Ay willmeany U 4. o finite initial databases. Therefore, the two sides in theore
e o Vo willmean{a Vv | a € ¢, 8 € ¢} (similar to 31 gre not equivalent since formula (1) is in FOL. In other
de-morgan law). _ _ words, FOL is not strong enough to model the progression of
 Whenever applying negatiom) we will assume thap the initial database. However, the following corollary wiso
is a finite theory (thus, a logical formula) that the two sides of theorem 3.1 would be equal if the pro-

e Same ford (can replacé] with a new constant symbol) gressjon of a database is FOL definable.

Thus, in the rest of the paper, whenever we say "belief stat%) .
formula”, we refer to a FOL theory, unless sanctioned otherCorollary 3.2. Let ¢ be a first-order belief state formula.
wise as above. From now on, we assume that our first-orddf FOL can represent the progression gfafter performing

language has no function symbols except constants. actiona, then

griage has no fneion sy P Filterlal({s | k. v}) = {s' | v Filtera)(u)}
3.2 Basic Algorithm From this point, we assume that progression is
In this section, we show how we can progress an initialfirst-order definable. Our basic algorithm computes
database represented by a logical formula after applying &'ilter[{a1, 01, ..., a:, 0:)](¢) by iteratively applying filtering
single action or observation. The result of progression is af a belief-state formula with an action and an observation.
new database that progression algorithm can use afterwardst setsv, = ¢ andy; = Filter|o;](Filter|a;](v¥i—1))

recursively fori > 0 using the equations defined above. This(L is a fresh constant symbol.)
It can beFilter[a](y) is finite.

algorithm is correct, as shown by corollary 3.2.
implemented using a first-order consequence finder.

3.3 Sequences of Actions and Observations

This section shows that iterative applications of progogss
steps lose no information. Thus, we can throw away the pr

forming each action.

We break our action theor into two parts, the initial
databaseD,, and the res®D,. Therefore, D = D, U D,
Now we define the language of an action theory as follows.

Definition 3.3. The language oD, £(D), is a set of first-

order formulae whose predicate and function symbols occur

in D.

For instance, ifD;,
put(A, A) andVz3y put(x,y) are inL(D
is not.

In progression we assume that a ground actias per-
formed, and we are looking for a set of sentenfes that
can serve as a new initial databasg genotes the situation
termdo(a, s)). Unfortunately{Lin and Reiter, 199l7showed
thatD,_ is not always first-order definable.

= put(A, B) A Vx box(x), then
s0) butbox (A, B)

We deflne}‘ as the set of first-order sentences unn‘ormto

in s, entailed byD If we useF,, instead ofD;_, for every
first-order sentence about the future 0f,, Fs, UDy =0
iff D = 4. The following theorem states this result.

Note that the intersection of all consequences of the actio

theory with£(D, U {s,}) is uniformins,.

Theorem 3.4. Let Dy be an action theory, and define
Dy, D,, D) as follows.

Dy = Cn(DyoU{s1 =do(a1,50)}) NL(DyU{s1})
Dy = Cn(DiU{s2 =do(az,s1)}) NL(DyU{s2})
D), = Cn(DoU {s1 =do(as,so),s2 = do(az,s1)})

NL(Dy U {s2})

(a1 and ay are two actions inD,, not necessarily different.
S0, s1 andss do not occur inDy.) Then Dy = D5,

PROOF SeesectionA.2 H

For instance in our book keeper example, if
Dy, is {book(B,sg), room(R, sp),in(B,R, so)} and
the first action is return(B,R), D, would be

{book(B, s1),room(R, s1), ~in(B,R, s1)}.

4 Factored Inference

Several distribution properties hold for logical filteringVe
can decompose the filtering of a formyalong logical con-
nectivesa, v, -, V, 3.

Theorem 4.1. Leta be an action, and lep, ¢ be first-order
formulae. Then,
1. Filterlal(p V) =

Filter[a](y) V Filter[a)(v)

)
2. = Filterlal(p A1) = Filter[a](y) A Filter[a](y)
3. | Filterla](—y) < —Filter[a](¢) A Filter[a](TRUE)
4. Filter[a](3z p(v)) = 3z Filter[a](¢(L))(L /2]

3, 4 hold only when

We can say something stronger for actions that agtess
mutationson the structures in which they are executable.

Definition 4.2 (Permuting Actions). Actiona is permuting
(1:2) if for every structureS’ there is at most on§' such that

: S, We ®Rp(S,a,8").
vious database and start working with the new one after per- p(5;a, 5')

Domains that only include permuting actions are called
permutation domains

Theorem 4.3 (Distribution for Permutation Domains). Let
a be a permuting action, and let, ¢) be formulae. Then,

1. Filterlal(p V v¥) = Filter[a](y) V Filter[a](v)

2. Filterla](¢ A) = Filter[a]() A Filter[a](v)

3. Filter[a](—y) = —Filter|a](¢) A Filter[a](TRUE)

4. Filter[a](3z ¢(x)) = 3z Filter(a](¢(L))L/a]

We can decompose every first-order formula into a set of
single literals by using distribution properties proveaad
For instanceyz (¢(x) A ¢(z)) is equivalent tove ¢(z) A
Vx () so rule 2 can break it into two parts. Alse —(x)
is equivalent to-3z ¢(z) so rule 3 and rule 4 can be used,
andvz (p(z) Vip(x)) is equivalent to-3z (—p(x) A —ep(z))
so rule 3, rule 4, and rule 2 can be used.

In permutation domains, we decompose the formula down
a set of grounded first-order single literals, and fortiitig
a single literal we use formula (1).

Our factored filtering (FF) algorithm for permutation do-
mains is presented in Figure 1. It relies on theorems 3.2,
2.1, and 4.3. The number of different grounded single lisera
Would be finite, if the number of objects is finite. Therefore,
we can calculate filtering of all single literals as a prepss:
ing step and retrieve it later in finite domains.

Note that the arguments of these literals are either the con-
stants associated to existential quantifiers or the cotsstan
which are mentioned in the initial belief state, the set of ax
ioms or the observations.

PROCEDURE FRai, 0:) < ;< »%)
Vi, a; an actionp; an observationy a belief-state formula.
1. ift =0, returny.
2. returno. A FF-Step:,
precondq, A FF({a;, Oi>0<i§(t71)’w))'

PROCEDURE FF-Step(y)
a an actionay a belief-state formula.

1. if ¢ is a single literal, then return Single-Literal-Filterilag
V).

2. else, use distribution properties, call FF-Step reeahgion
sub-formulas ofp.

Figure 1: Filtering of a FOL formula when all the actions are
permuting actions.

Theorem 4.4. The algorithm FF is correct, and if the filtering
of all single literals are given, the algorithm FF would rum i
time O(|precond, A v|), wherey is a belief state formula.

Our factored filtering algorithm uses consequence finding
tools. Since it is part of preprocessing, it does not affeet t

runtime of the system. In open systems the time is differentPROCEDURE UCFilter(a;, 0:),_ ;1)
since new objects may be added during the operation of theyi, a; an actionp; an observation) a belief-state formula.
system. In these systems filtering of new single literalsikho 1. ift = 0, returny.

be computed while system is running. 2. Y11 = UCFilter((ai, 0i)o i< (s—1)¥)-
3. returno: A Filter-True@:) A UCStepg., precondq, Ai—1).
5 Filtering Algorithms for Different Domains PROCEDURE Filter-True()

Our naive filtering algorithm uses consequence finding toolsa an action.])
which do not scale to large domains. The following theoren] 1. poss(a) = (condi = (p; < ¢:)) an instantiated successor
suggests a different reasoning procedure. state axiom{ < 7 < k).

2. 5=
Theorem 5.1. Leta be an actiony) be a belief state formula, 3. for aﬁl <i,j <k,
and ®(¢1.,) be a first-order logical formula whose atomic (a) if ¢; = true, addcase; = p; to S
subformulas are among;, . . ., ¢,. Then, (b) elseif¢; = false, addcase; = —p; to S
. (c) elseif unifiablég;, ¢;), add
Filter[a](¢) = {®(p1.n)| FOL formulad, ((cond; A condj) = (pi < D)) mgu(ei.é;) 105
¥ A precond, | ®(succy, q,- -, succp, o)} (2) (d) elseif unifiablégp;, —¢,), add ‘

((cond; A cond;) = (pi < ﬁpj))mgu(¢i,¢j) toS
(e) elseifp; = Vz q(z), ¢; = q(t), add
(cond; A cond;) = (—p; Vpj)t0 S

In this formula, all possiblebs should be considered. In
general, generating alts is impossible because there are in-

finitely many such®s. In the following sections, we pro- (f) elseif¢; = 3z q(x), ¢; = q(t), add
vide simpler closed-form solutions for two special cases o (cond; A cond;) = (p; V —p;) 10 S
dynamic domains. These give rise to practical(polynomial] 4. return/\ . .

algorithms.

PROCEDURE UCStep(1))
5.1 Unit-Case Successor State Axioms a an actions) a belief-state formula.

. . . 1. if ¢ is a single literal, then
By definition of successor state axioms, for every pair o_f ac (@) poss(a) = (cond: = (p; < ;) an instantiated
tions and predicates exactly one successor state axioro-is pr successor state axiorh € i < k).
vided. The successor state axiom for actioand predicate (b) S =0 -
p; can be rewritten as: (c) foralll < i<k,

_ i, if unifiable(e;,), add
Poss(a(z1.m),8) = YY1, -y, Vym (i(Y1.m, do(a, s)) < (cases = Pi)mguta, i 10 S

(casel = ¢}) A ... A (case = o) ii. elseif unifiablde;, —)), add
A(=casel A ... A —caselt) = plith) (case; = —pi)mgu(s;,v) 105
. (d) return/\%S ®.
Whe_recase{ is of the form(y;, = z;,) A ... A (Y = z5,) 2. else, use distribution properties, call UCStep recetgion
(variablex;, is an argument of actiomand variabley;, is an sub-formulae of).
argument of predicatp) and each variable assignment sat-
isfies at most one of the cases. A successor state axiom is Figure 2: Unit-Case Filtering.

calledunit-case successor state axidfrit can be rewritten in
a form where every! (1 < j <; + 1) is a unit clause.
We break a unit-case successor state axiom into multipl

instantiated axioms. Instantiated Successor state axioms the belief state formula, and the distribution properti@s loe

. X used). Consequentlyp(subsuccl, ..., subsucck) is either

predicatep; are: . equivalent to that literal or a tautology. A tautology is aish
e Poss(a(z1:n), s) = (pi(Y1:m,do(a, s)) < ¢?)[yg‘/x-g] of size two when unit-case successor state axioms are used.

forall1 <j <l Therefore, we can compute all desiréd in a finite number

o Poss(a(1.m),8) = Yyram (—casel A...A-casel’) = of steps.

. (pi(ylﬂrh do(a, S)) ~ ¢li+1)))) .
ly] /x]] is the substitution correspondingdase’ (y] andz] Theorem 5.2. Letk be the number of successor state axioms
are sequences of variables). This process is céltledking after breaking into cases, andbe the belief state formula. If
into cases Note that all instantiated successor state axiom&ach predicate has arity at mo&, then algorithm UCFilter
are in the formPoss(a) = (cond; = (p; < ¢;)) where in returns the filtering of) with actiona in t|m§O(R “k>+R- '
some of themrond; is true ¢ is an enumeration of all instan- & - [A precond, |). The length of new belief state formula is
tiated successor state axioms of action O(R-k*>+ Rk - ¢ A precond,)).

Figure 2 shows the unit-case filtering (UCFilter) algo- _ _
rithm. This algorithm is applicable on permutation do- Corollary 5.3. Given a sequence ofactions and observa-
mains whose successor state axioms are unit-case. TH®@nS, algorithm UCFilter returns the filtering af, in time
algorithm UCFilter is actually a way to compute every O(t*- R"- k"' +t- R* - k' - [¢o[). The length of belief state
®(subsuccl, . .., subsucck) in formula (2). In permutation ~ formula aftert step isy, = O(t - R* - k' + R" - k" - [).
domains, the head of entailment in formula (2) is a singte lit (If the length of all observations and preconditions of ant
eral (action precondition can be considered as a conjunct tare negligible compared to the length of belief state foajul

5.2 STRIPS Domains

In STRIPS domains every action has no conditional effetts. |
means that the value of each predicate either changes to tru
changes to false, or remains the same. STRIPS actions a
not necessarily permuting. Consequently STRIPS success
state axioms can not be treated by algorithm UCFilter eve
though they are unit-case. Successor state axioms in STRIR
domains are of the form:

Poss(a(x1:m),8) = YY1, .-, YYm (0i(y1.m,do(a, s)) <
(casel = @) A ... A (caseli = k)
A(=casel A ... A ﬁcaseé"') = pi(Y1:m, S))

where¢?! (j < ;) is either true or false.

A STRIPS action affects some of the instantiated predi
cates and keeps the value of the others. We refer to the set
affected instantiated predicates as &ff(

Eff(a) = {p(')| actiona affects every instance @{ v')}

wherev is a sequence of variables and constant symbols.
The first-order STRIPS filtering (FOSF) algorithm is pre-

sented in figure 3. The belief state formula which is an in-

put to this algorithm should be in the foratv*¢ (EAFOL)

PROCEDURE FOSRG;, 0i) ;%)
Vi, a; an actionp; an observation and a belief state formulao;
élndq/) in EAFOL
re 1. ift =0, returny.
2. return Move-Quat{o; A FO-STRIPS-Stept;,
10!’ Move-Quangreconda, A FOSF(ai, 01) ;< ;_1)%))))

'S 2Moves all the quantifiers to the front with fresh variable e

PROCEDURE FO-STRIPS-Step())
a an actiong) = 3*V* A, ¢; a belief-state formula.
1. if ¢ = 3z ¢(x), returnIz FO-STRIPS-Step(¢p(L)) L/« 2
2. elseifyy =V ¢(x), returnvz FO-STRIPS-Step{¢(x))
3. else,
(a) ' « split every clause i into pure literal clauses
(b) E < all clauses iny’ with any literal in Eff()
(c) S « all clauses in)’ with no literal in Eff(a)
d)ifE#£0
for all I € Eff(a)
E — resolve-outl, E)
() o= /\ciEEUS Ci
() Efft(a) « literals affected to true
(9) Eff~(a) < literals affected to false

(h) returng A A\ cei+ (o) P(V) A Apoyeeti- o) P(V)-

(EAFOL is a first-order formula in which there is no existen-
tial quantifier inside a universal one). A clause in the cius
form of ¢ would be splitted into multiple instantiated clauses
if one of its literals has some instances in Effand some out
of Eff(a). This step is calledplitting into pure literal clauses
We split every clausg(z) V ¢ in which some instantiations
of p(x) are affected and some are not, into:

) Ve, ... plv) Ve,
((z£viN... Nz #v)=px))V e}

wherep(vy), ..., p(v,) are in Eff@). Note that we treaf(x #
v A... ANz #v,.) = p(x)) as a single literal.

The new clausal form af is divided into two parts, clauses
with no literal in Eff(@) and clauses that have at least one
literal in Eff(a). The first part directly goes to the new belief

2L is a fresh constant that does not appear in the language

Figure 3: First-Order STRIPS Filtering.

a CS book and an ECE book, and our belief state formula is
in(CS-B, CS-RA in(ECE-B, ECE-R. ECE department needs
the CS book for a while, so the book keeper moves it to ECE
room. The action ist = move(CS-B, CS-R, ECER (This
example has unit-case successor state axioms.)

First, we add precondition to belief state formula. The
new belief state isin(CS-B, CS-R A in(ECE-B, ECE-R A
book(CS-B) A room(CS-R A room(ECE-R. We calculate the
filtering of all the single literals of the belief state fortau
separately and compute the result by using distributiop-pro
erties. What follows is the formula for one of these literals

state formula. The algorithm adds all the consequences ¢fased on the algorithm presented before.

the second part in which no affected literals exist, to th& ne
belief state formula. All literals in Eff() are also added to
new belief state formula as their values can be determine
unconditionally after applying the action.

Theorem 5.4. Given actiona, observationo, and be-
lief state formulay in EAFOL, algorithm FOSF returns
the filtering of ¢ with o and o in time O(R - |E| -
min((EL)2" |Eff(a)[2!Z17) + |¢|) whereE is the set of
all clauses with any literal in Ef() after splitting into pure
literal clauses and each clause has length at nidst

Theorem 5.5. If ¢ is in 2-FO-CNF then the time complexity
of FOSF after filtering one action i9(|Eff(a)| - |E|* + |¥]).
The formula length i©(|Eff(a)| + |E|? + []).

Extended Example

Filter[move(CS-B, CS-R, ECER(in(ECE-B, ECE-R) =

d in(CS-B, ECE-RA —in(CS-B, CS-RA in(ECE-B, ECE-R

Now suppose that instead of applying an action we filter the
belief state based on an observation. The robot enters the CS
room and observes that there is only one book in the room.
The perfect filtering algorithm guarantees that in such£ase
the book is the same book that the robot has put in the room
before.

Assume that the belief state formulaiis(CS-B, CS-RA
in(ECE-B, ECE-R. The observation igz in(x,CS-R = = =
TheBook Filter|o](¢)) = TheBook = CS-Bso we can replace
every instance ofheBookin the new belief state formula by
CS-B

Consider our previous book-keeping robot. Suppose thatwg Conclusions
have two rooms, a CS room and an ECE room, and two book?, . . ,
n this paper we presented semantics and methodology for fil-

2A first-order formula is in k-FO-CNF if in clausal form the siz
of each clause is at most k.

tering in domains that include many objects whose idendity i
not certain. We generalized this problem to filtering withLtFO

formulae. We showed that this problem is solvable in poly- To prove =g Filterlal(vy) we need to show
nomial time when actions map states 1:1, or the actions athat ¢ A precond,(ui.n) A N; YY1m, Pi(Yim) &
STRIPS. We showed that 1:1 actions allow us to filter first-succy, o(t1m, Y1:m) A N VWim2, fl(y1m) = 2 &
order belief state formulae in linear time (in the size of-rep succy, o(Urm, Y1:m, z) With S as structure forP’ and
resentation), if we can perform a precompilation step. Whery as structure forP. In other words the truth as-
actions are STRIPS or Unit'Case, we can filter these belieéignment S’ to all predicates in some situation satis-
state formulae efficiently without precompilation. In somefies this formula together with the truth assignmesit
cases, we showed that the belief state formulae is guaantegy all predicates in following situation. It is not sat-
to remain compactly represented. Those cases permitrfiteri isfying this formula only if one of the conjuncts),

of actions and observations indefinitely in polynomial time j-ccond, (uy.,,), Yyrom, Py (Y1om) < 5UCp, (Ui, Y1im), OF

(in the number of predicates and objects). As a result, we cagy,,. v T (Y1im) = 2 & succy, o(Urm, y’l’:m’ 2)is falsified.

use our algorithm for many interesting applications, sueh aThis in not the case for first two by our choice $f

semantic web, autonomous agents, robot motion control, and Assume by contradiction that this is the case for some
partial knowledge games. i. Then, the truth assignments sanction th.,,) <
sucep, o(U1:n, Y1:m) does not hold. From the way we defined
R this is never the case. This contradicts our assumption.

We wish to thank Megan Nance for useful discussions o The same argument is true for functions. Thus, we get that

related topics. We also wish to acknowledge support from S Filter[a](). ~ ® _ o

DAF Air Force Research Laboratory Award FA8750-04-2-A.2 Proof of Theorem 3.4: Progression Possibility
0222 (DARPA REAL program). PrROOF We show that the two sets of world structures have
the same elements. We first show that the left-hand side of the
equality is contained in the right-hand side.

Take¢ € Dy. We show thatp should be inD,. We can
plug the definition ofD; in the definition ofDs.

Do Cn(Cn(Do U {81 = do(al, So)}) n [,(Dg U {81}))

NL(Dy U {s2})

C Cn(Cn(Do U {s1 =do(a1,s0)})) N L(Dg U {s2})
= Cn(DoU{s1 =do(ai,s0)}) N L(DyU {s2})

In other words D, C Dj.

For the opposite direction (showing the right-hand side is
contained in the left-hand side), suppose that D). We
show thatp €7 D,.

From the definition ofD;, we know thatp € D) iff Dy U
{81 = do(aq, s0), 52 = d0(2a2,81)} E ¢. So, with the same
explanation, we show thd®; U {sy = do(az, s1)} * ¢.

7 Acknowledgements

References

[Amir and Russell, 2003 Eyal Amir and Stuart Russell. Logical
filtering. In1JCAI '03, pages 75-82. MK, 2003.

[Blass and Gurevich, 20D0A. Blass and Y. Gurevich. Background,
Reserve, and Gandy Machines. In P. Clote and H. Schwicht-
enberg, editorsComputer Science Logic (Proceedings of CSL
2000) volume 1862 o£.NCS pages 1-17. Springer, 2000.

[Boyen and Koller, 1998 Xavier Boyen and Daphne Koller.
Tractable inference for complex stochastic processesPrdg.
UAI '98, pages 33-42. MK, 1998.

[Cravoet al, 2001 Maria R. Cravo, Jao P. Cachopo, Ana C. Ca-
chopo, and J&o P. Martins. Permissive belief revision. ERIA,
pages 335-348, 2001.

[Dixon and Wobcke, 1993 Simon Dixon and Wayne Wobcke. The

implementation of a first-order logic agm belief revisiorstgm.
In ICTAI, pages 40-47, 1993.

[Eiter and Gottlob, 1992 T. Eiter and G. Gottlob. On the complex-
ity of propositional knowledge base revision, updates, @nh-
terfactuals AlJ, 57(2-3):227-270, 1992.

[Lin and Reiter, 199F7 Fangzhen Lin and Ray Reiter.
Progress a DatabasalJ, 92(1-2):131-167, 1997.

[Reiter, 2001 Raymod ReiterkKnowledge In Action: Logical Foun-

How to

dations for Describing and Implementing Dynamical Systems

MIT Press, 2001.

[Winslett, 1990 Mary-Anne Winslett.
DatabasesCambridge U. Press, 1990.

Updating Logical

A Proofs

A.1 Proof of Theorem 3.1: Filtering Algorithm
PROOF TakeS e Filterla]({s | Es v¥}). We need
to show that=¢ Filter|a)(x). From Definition 2.5 there

should beS such thatS € {s | |=, ¢} and(S,a,S) €
Rp. In other words, there should #&such that=g and

(S, a, S’> € Rp.

¢ € Df
Do U{s1 = do(ay, so), s2 = do(az, s1)} = ¢
Do U{s1 =do(a1,s0)} E (s2 = do(az, s1)) = ¢
On the other hand we know that,
L(Do U {s1 = do(ai, s0)}) L(Do U {so0,51)})
L(Dg U {s0,51)})
L(D5 U {s1,52})
L(Dg U {s1,s2)})
As we know, there is ng; in D, so we can compute the
intersection of the two side of equation.
L(Do U {s1 =do(a1,s0)}) N L(s2 = do(az,s1) = &)
. . . CL(DyU{s1})
Now, by applying Craig’s interpolation theorem for FOL,
we get that there should existac £(D, U {s1}) such that

Dy U {s1 = do(a1,s0)} = vandy = (s2 = do(ag, 51)) =
¢. Fromy € L(D, U s1) andDy U {s1 = do(ai1,s0)} =
we can conclude that € D;. So,
D1 E (s2=
D1U(s2 =do(az,s1)) FE ¢
and the opposite direction is done. B

n

L(s2 = do(az, s1) = ¢)

N

do(az,s1)) = ¢

