
The Necessity of Syntactic Parsing for Semantic Role Labeling

Vasin Punyakanok Dan Roth Wen-tau Yih
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{punyakan,danr,yih }@uiuc.edu

Abstract

We provide an experimental study of the role of
syntactic parsing in semantic role labeling. Our
conclusions demonstrate that syntactic parse infor-
mation is clearly most relevant in the very first
stage – the pruning stage. In addition, the quality
of the pruning stage cannot be determined solely
based on its recall and precision. Instead it depends
on the characteristics of the output candidates that
make downstream problems easier or harder. Mo-
tivated by this observation, we suggest an effective
and simple approach of combining different seman-
tic role labeling systems through joint inference,
which significantly improves the performance.

1 Introduction
Semantic parsing of sentences is believed to be an important
task toward natural language understanding, and has imme-
diate applications in tasks such information extraction and
question answering. We studysemantic role labeling (SRL)
in which for each verb in a sentence, the goal is to identify all
constituents that fill a semantic role, and to determine their
roles, such as Agent, Patient or Instrument, and their adjuncts,
such as Locative, Temporal or Manner.

The PropBank project[Kingsbury and Palmer, 2002],
which provides a large human-annotated corpus of seman-
tic verb-argument relations, has enabled researchers to apply
machine learning techniques to improve SRL systems[Gildea
and Palmer, 2002; Chen and Rambow, 2003; Gildea and
Hockenmaier, 2003; Pradhanet al., 2003; Surdeanuet al.,
2003; Pradhanet al., 2004; Xue and Palmer, 2004]. However,
most systems rely heavily on the full syntactic parse trees.
Therefore, the overall performance of the system is largely
determined by the quality of the automatic syntactic parsers
of which state of the art[Collins, 1999; Charniak, 2001] is
still far from perfect.

Alternativelyshallowsyntactic parsers (i.e., chunkers and
clausers), although not providing as much information as a
full syntactic parser, have been shown to be more robust in
their specific task[Li and Roth, 2001]. This raises the very
natural and interesting question of quantifying the necessity
of the full parse information to semantic parsing and whether

it is possible to use only shallow syntactic information to
build an outstanding SRL system.

Although PropBank is built by adding semantic annota-
tion to the constituents on syntactic parse trees in Penn Tree-
bank, it is not clear how important syntactic parsing is for
building an SRL system. To the best of our knowledge, this
problem was first addressed by Gildea and Palmer[2002].
In their attempt of using limited syntactic information, the
parser wasvery shallow– clauses were not available and only
chunks were used. Moreover, the pruning stage in[Gildea
and Palmer, 2002] was too strict since only chunks are con-
sidered as argument candidates, meaning that over 60% of
the arguments were not treated as candidates. As a result,
the overall recall in their approach was very low. As we will
demonstrate later, high recall of the pruning stage is in fact
essential to a quality SRL system.

Using only the shallow parse information in an SRL system
has largely been ignored until the recent CoNLL-04 shared
task competition[Carreras and M̀arquez, 2004]. In this com-
petition, participants were restricted to only shallow parse
information for their SRL systems. As a result, it became
clear that the performance of the best shallow parse based sys-
tem[Haciogluet al., 2004] is only 10% in F1 below the best
system that uses full parse information[Pradhanet al., 2004].
In addition, there has not been a true quantitative compari-
son with shallow parsing. First, the CoNLL-04 shared task
used only a subset of the data for training. Furthermore, its
evaluation treats the continued and referential tags differently,
which makes the performance metric stricter and the results
worse. Second, an SRL system is usually complicated and
consists of several stages. It is still unknown how much and
where precisely the syntactic information helps the most.

The goal of this study is twofold. First, we make a fair
comparison between SRL systems which use full parse trees
and those exclusively using shallow syntactic information.
This brings forward a better analysis on the necessity of full
parsing in the SRL task. Second, to relieve the dependency of
the SRL system on the quality of automatic parsers, we im-
prove semantic role labeling significantly by combining sev-
eral SRL systems based on different state-of-art full parsers.

To make our conclusions applicable to general SRL sys-
tems, we adhere to a widely used two step system architec-
ture. In the first step, the system is trained to identify argu-
ment candidates for a given verb predicate. In the second step,



the system classifies the argument candidate into their types.
In addition, it is also common to use a simple procedure to
prune obvious non-candidates before the first step, and to use
post-processing inference to fix inconsistent predictions after
the second step. We also employ these two additional steps.

In our comparison between the systems using shallow and
full syntactic information, we found the most interesting re-
sult is that while each step of the system using shallow in-
formation exhibits very good performance, the overall per-
formance is significantly inferior to the system that uses full
information. This necessity of full parse information is es-
pecially noticeable at the pruning stage. In addition, we pro-
duce a state-of-the-art SRL system by combining of different
SRL systems based on two (potentially noisy) automatic full
parsers[Collins, 1999; Charniak, 2001].

The rest of the paper is organized as follows. Section 2
gives a brief description of the semantic role labeling task
and the PropBank corpus. Section 3 introduces the general
architecture of an SRL system, including the features used in
different stages. The detailed experimental comparison be-
tween using full parsing and shallow parsing is provided in
Section 4, where we try to explain why and where the full
parse information contributes to SRL. Inspired by the result,
we suggests an approach that combines different SRL sys-
tems based on joint inference in Section 5. Finally, Section 6
concludes this paper.

2 Semantic Role Labeling (SRL) Task
The goal of the semantic-role labeling task is to discover the
verb-argument structure for a given input sentence. For exam-
ple, given a sentence “ Ileft my pearls to my daughter-in-law
in my will”, the goal is to identify different arguments of the
verb left which yields the output:

[A0 I] [V left ] [A1 my pearls] [A2 to my daughter-in-law]
[AM-LOC in my will ].

Here A0 represents theleaver, A1 represents thething left,
A2 represents thebenefactor, AM-LOC is an adjunct indicat-
ing the location of the action, and V determines the verb. In
addition, each argument can be mapped to a constituent in its
corresponding syntactic full parse tree.

Following the definition of the PropBank and CoNLL-
2004 shared task, there are six different types of arguments
labeled as A0-A5 and AA. These labels have different seman-
tics for each verb as specified in the PropBank Frame files. In
addition, there are also 13 types of adjuncts labeled as AM-
adj whereadj specifies the adjunct type. In some cases, an
argument may span over different parts of a sentence, the la-
bel C-arg is used to specify the continuity of the arguments,
as shown in the example below.

[A1 The pearls] , [A0 I] [V said] , [C-A1 were left to my
daughter-in-law].

Moreover in some cases, an argument might be a relative pro-
noun that in fact refers to the actual agent outside the clause.
In this case, the actual agent is labeled as the appropriate argu-
ment type,arg, while the relative pronoun is instead labeled
as R-arg. For example,

[A1 The pearls] [R-A1 which] [A0 I] [V left] , [A2 to my
daughter-in-law] are fake.

The distribution of these argument labels is fairly unbal-
anced. In the official release of PropBank I, core arguments
(A0–A5 and AA) occupy 71.26%, where the largest parts are
A0 (25.39%) and A1 (35.19%). The rest portion is mostly
the adjunct arguments (24.90%). The continued (C-arg) and
referential (R-arg) arguments are relatively fewer, occupying
1.22% and 2.63% respectively. For more definitions of Prop-
Bank and the semantic role labeling task, readers can refer
to [Kingsbury and Palmer, 2002] and[Carreras and M̀arquez,
2004].

3 SRL System Architecture
Our SRL system consists of four stages:pruning, argument
identification, argument classification, andinference. In par-
ticular, the goal of pruning and argument identification is to
identify argument candidates for a given verb predicate. The
system only classifies the argument candidate into their types
in the stage of argument classification. Linguistic and struc-
tural constraints are incorporated in the inference stage to re-
solve inconsistent global predictions. This section describes
how we build these four stages, including the features used in
training the classifiers.

3.1 Pruning
When the full parse tree of a sentence is available, only the
constituents in the parse tree are considered as argument can-
didates. In addition, our system exploits the heuristic rules
introduced by Xue and Palmer[2004] to filter out simple con-
stituents that are very unlikely to be arguments. The heuristic
is a recursive process starting from the verb of which argu-
ments to be identified. It first returns the siblings of the verb
as candidates; then it moves to the parent of the verb, and col-
lects the siblings again. The process goes on until it reaches
the root. In addition, if a constituent is aPP (propositional
phrase), its children are also collected.

3.2 Argument Identification
The argument identification stage utilizes binary classifica-
tion to identify whether a candidate is an argument or not.
When full parsing is available, we train and apply the binary
classifiers on the constituents supplied by the pruning stage.
When only shallow parsing is available, the system does not
have the pruning stage, and also does not have constituents to
begin with. Therefore, conceptually the system has to con-
sider all possible subsequences (i.e., consecutive words) in a
sentence as potential argument candidates. We avoid this by
using a learning scheme by first training two classifiers, one
to predict the beginnings of possible arguments, and the other
the ends. The predictions are combined to form argument
candidates that do not violate the following constraints.

1. Arguments cannot cover the predicate.

2. Arguments cannot overlap with the clauses (they can be
embedded in one another).

3. If a predicate is outside a clause, its arguments cannot be
embedded in that clause.



The features used in the full parsing and shallow parsing
settings are described as follows.

Features when full parsing is available
Most of the features used in our system are standard features
which include

• Predicate and POS tag of predicatefeatures indicate
the lemma of the predicate verb and its POS tag.

• Voice feature indicates passive/active voice of the predi-
cate.

• Phrase typefeature provides the phrase type of the con-
stituent.

• Head word and POS tag of the head wordfeature pro-
vides the head word and its POS tag of the constituent.
We use rules introduced by Collins[1999] to extract this
feature.

• Position feature describes if the constituent is before or
after the predicate relative to the position in the sentence.

• Path records the traversal path in the parse tree from the
predicate to the constituent.

• Subcategorization feature describes the phrase struc-
ture around the predicate’s parent. It records the imme-
diate structure in the parse tree that expands to its parent.

We also use the following additional features.

• Verb classfeature is the class of the active predicate de-
scribed in PropBank Frames.

• Lengths of the target constituent, in the numbers of
words and chunks separately.

• Chunk tells if the target argument is, embeds, overlaps,
or is embedded in a chunk with its type.

• Chunk pattern encodes the sequence of chunks from
the current words to the predicate.

• Chunk pattern length feature counts the number of
chunks in the argument.

• Clause relative position feature is the position of the
target word relative to the predicate in the pseudo-parse
tree constructed only from clause constituent. There
are four configurations—target constituent and predicate
share the same parent, target constituent parent is an an-
cestor of predicate, predicate parent is an ancestor of tar-
get word, or otherwise.

• Clause coveragedescribes how much of the local clause
(from the predicate) is covered by the target argument.

• NEG feature is active if the target verb chunk hasnot
or n’t .

• MOD feature is active when there is a modal verb in the
verb chunk. The rules of theNEG andMOD features
are used in a baseline SRL system developed by Erik
Tjong Kim Sang[Carreras and M̀arquez, 2004].

Features when only shallow parsing is available
Features used are similar to those used by the system with full
parsing except those that need full parse trees to generate. For
these types of features, we either try to mimic the features
with some heuristics rules or discard them. The details of
these features are as follows.

• Phrase typeuses a simple heuristics to identify only VP,
PP, and NP.

• Head word and POS tag of the head wordare the
rightmost word for NP, and leftmost word for VP and
PP.

• Shallow-Path records the traversal path in the pseudo-
parse tree constructed only from the clause structure and
chunks.

• Shallow-Subcategorizationfeature describes the chunk
and clause structure around the predicate’s parent in the
pseudo-parse tree.

• Syntactic frame features are discarded.

3.3 Argument Classification
This stage assigns the final argument labels to the argument
candidates supplied from the previous stage. A multi-class
classifier is trained to classify the types of the arguments sup-
plied by the argument identification stage. In addition, to re-
duce the excessive candidates mistakenly output by the pre-
vious stage, the classifier can also classify the argument as
NULL (meaning “not an argument”) to discard the argument.

The features used here are the same as those used in the
argument identification stage. However, when full parsing
are available, an additional feature introduced by Xue and
Palmer[2004] is used.

• Syntactic frame describes the sequential pattern of the
noun phrases and the predicate in the sentence.

3.4 Inference
The purpose of this stage is to incorporate some prior lin-
guistic and structural knowledge, such as “arguments do not
overlap” or “each verb takes at most one argument of each
type.” This knowledge is used to resolve any inconsistencies
of argument classification in order to generate final legiti-
mate predictions. We use the inference process introduced
by Punyakanoket al. [2004]. The process is formulated as
an integer linear programming (ILP) problem that takes as
inputs the confidences over each type of the arguments sup-
plied by the argument classifier. The output is the optimal so-
lution that maximizes the linear sum of the confidence scores
(e.g., the conditional probabilities estimated by the argument
classifier), subject to the constraints that encode the domain
knowledge.

4 The Necessity of Syntactic Parsing
We study the necessity of syntactic parsing experimentally by
observing the effects of using full parsing and shallow pars-
ing at each stage of an SRL system. In Section 4.1, we first
describe how we prepare the data, as well as the basic system
including features and the learning algorithm. The compar-
ison of full parsing and shallow parsing on the three stages
(excluding the inference stage) is presented in the reversed
order (Sections 4.2, 4.3, 4.4).

4.1 Experimental Setting
We use PropBank sections 02 through 21 as training data, and
section 23 as testing. In order to apply the standard CoNLL-



04 evaluation script, our system conforms to both the input
and output format defined in the shared task.

The CoNLL-04 evaluation metric is slightly more re-
stricted since an argument prediction is only considered cor-
rect when all itscontinuedarguments (C-arg) are correct and
referential arguments (R-arg) are included – these require-
ments are often absent in previous SRL systems, given that
they only occupy a very small percentage of the data. To pro-
vide a fair comparison, we also report the performance when
discarding continued and referential arguments. Following
the notation used in[Xue and Palmer, 2004], this evaluation
metric is referred as “argM+”, which considers all the core ar-
guments and adjunct arguments. We note here that all the per-
formance reported excludes V label which usually improves
the overall performance if included.

The goal of the experiments in this section is to under-
stand the effective contribution of full parsing versus shal-
low parsing using only the part-of-speech tags, chunks, and
clauses. In addition, we also compare performance when us-
ing the correct (gold standard) versus using automatic parse
data. The automatic full parse trees are derived using Char-
niak’s parser[Charniak, 2001] (version 0.4). In automatic
shallow parsing, the information is generated by a state-
of-the-art POS tagger[Even-Zohar and Roth, 2001], chun-
ker [Punyakanok and Roth, 2001], and clauser[Carreras and
Màrquez, 2003].

The learning algorithm used is a variation of the Winnow
update rule incorporated in SNoW[Roth, 1998; Roth and
Yih, 2002], a multi-class classifier that is tailored for large
scale learning tasks. SNoW learns a sparse network of linear
functions, in which the targets (argument border predictions
or argument type predictions, in this case) are represented as
linear functions over a common feature space. It improves
the basic Winnow multiplicative update rule in several ways.
For example, a regularization term is added, which has the ef-
fect of trying to separate the data with a large margin separa-
tor [Grove and Roth, 2001; Hanget al., 2002] and voted (av-
eraged) weight vector is used[Freund and Schapire, 1999].

Experimental evidences have shown that SNoW activa-
tions correlate with the confidence of the prediction and can
provide an estimate of probability to be used for both argu-
ment identification and inference. We use the softmax func-
tion [Bishop, 1995] to convert raw activation to conditional
probabilities. Specifically, if there aren classes and the raw
activation of classi is acti, the posterior estimation for class
i is

score(i) = pi =
eacti∑

1≤j≤n eactj
.

4.2 Argument Classification
To evaluate the performance gap between full parsing and
shallow parsing in argument classification, we assume the
argument boundaries are known, and only train classifiers
to classify the labels of these arguments. In this stage, the
only difference betweenfull parsing andshallow parsingis
the construction of three full parsing features:path, sub-
categorizationand syntactic frame. As described in Sec-
tion 3, path andsubcategorizationcan be approximated by
shallow-path and shallow-subcategorizationusing chunks

and clauses. However, it is unclear how to mimic the syn-
tactic frame feature since it relies on the internal structure of
a full parse tree. Therefore, it does not have a corresponding
feature in the shallow parsing case.

Table 1 reports the experimental results of argument clas-
sification when argument boundaries are known. Although
full parsing features seem to help when using the gold stan-
dard data, the difference in F1 is only 0.32% and 0.13% for
the CoNLL-2004 and ArgM+ evaluation respectively. When
the automatic (full and shallow) parsers are used, the gap is
smaller.

Full Parsing Shallow Parsing
Gold 91.32 91.00
Auto 90.93 90.69

Gold (ArgM+) 90.67 91.54
Auto (ArgM+) 90.87 90.93

Table 1: The accuracy of argument classification when argu-
ment boundaries are known

Lesson When the argument boundaries are known, the per-
formance of the full paring systems is about the same as the
shallow parsing system.

4.3 Argument Identification

Argument identification is an important stage that effectively
reduces the number of argument candidates after pruning.
Given an argument candidate, an argument identifier is a
binary classifier that decides whether or not the candidate
should be considered as an argument. To evaluate the influ-
ence of full parsing in this stage, the candidate list used here
is the pruning results on the gold standard parse trees.

Similar to the argument classification stage, the only differ-
ence between full-parse and shallow-parse is the use ofpath
andsubcategorizationfeatures. Again, we replace them with
shallow-pathandshallow-subcategorizationwhen the binary
classifier is trained using the shallow parsing information.

Table 2 reports the performance of the argument identifier
on the test set using the direct predictions of the trained binary
classifier. The recall and precision of the full parsing system
are around 2 to 3 percents higher than the shallow parsing
system on the gold standard data. As a result, the F1 score
is 2.5% higher. The performance on automatic parse data is
unsurprisingly lower, but the difference between full parsing
and shallow parsing is relatively the same. In terms of filter-
ing efficiency, around 25% of the examples are predicted as
positive. In other words, both argument identifiers filter out
around 75% of the argument candidates after pruning.

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 96.53 93.57 95.03 93.66 91.72 92.68
Auto 94.68 90.60 92.59 92.31 88.36 90.29

Table 2: The performance of argument identification after
pruning (based on the gold standard full parse trees)



Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 92.13 95.62 93.84 88.54 94.81 91.57
Auto 89.48 94.14 91.75 86.14 93.21 89.54

Table 3: The performance of argument identification after
pruning (based on the gold standard full parse trees) and with
threshold=0.1

Since the recall in argument identification sets the upper
bound of the recall in argument classification, in practice, the
threshold that predicts examples as positive is usually low-
ered to allow more positive predictions. That is, a candidate is
predicted as positive when its probability estimation is larger
than the threshold. Table 3 shows the performance of the ar-
gument identifiers when the threshold is 0.1.

Since argument identification is just an intermediate step
of a complete system, a more realistic evaluation method is to
see how each final system performs. Table 4 and Table 5 re-
port the final results in recall, precision, and F1 in CoNLL and
ArgM+ metrics. The F1 difference is about 4.5% when using
the gold standard data. However, when automatic parsers are
used, shallow-parse is in fact slightly better. This may be due
to the fact that shallow parsers are more accurate in chunk or
clause predictions compared to a regular full parser[Li and
Roth, 2001].

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 88.81 89.35 89.08 84.19 85.03 84.61
Auto 84.21 85.04 84.63 86.17 84.02 85.08

Table 4: The CoNLL-04 evaluation of the overall system per-
formance when pruning (using the gold standard full parse
trees) is available

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 89.02 89.57 89.29 84.46 85.31 84.88
Auto 84.38 85.38 84.87 86.37 84.36 85.35

Table 5: ArgM+ performance of the overall system when
pruning (using the gold standard full parse trees) is available

Lesson Full parsing helps in argument identification. How-
ever, when the automatic shallow parser is more accurate than
the full parser, using the full parsing information may not
have advantages over shallow parsing.

4.4 Pruning
As shown in the previous two subsections, the performance
difference of full parsing and shallow parsing is not large
when the pruning information is given. We conclude that the
main contribution of the full parse is in the pruning stage.
Since the shallow parsing system does not have enough in-
formation for the pruning heuristics, we train two word based
classifiers to replace the pruning stage. One classifier is
trained to predict whether a given word is the start (S) of an

argument; the other classifier is to predict the end (E) of an
argument. If the product of probabilities of a pair of S and E
predictions is larger than a predefined threshold, then this pair
is considered as an argument candidate. The pruning compar-
ison of using the classifiers and heuristics is shown in Table 6.

Full Parsing Classifier th=0.04
Prec Rec F1 Prec Rec F1

Gold 25.94 97.27 40.96 29.58 97.18 45.35
Auto 22.79 86.08 36.04 24.68 94.80 39.17

Table 6: The performance of pruning

Amazingly, the classifier pruning strategy seems better
than the heuristics. With about the same recall, the classifiers
achieve higher precision. However, to really compare sys-
tems using full parsing and shallow parsing, we still need to
see the overall performance. We build two semantic role sys-
tems based on full parsing and shallow parsing. The full pars-
ing system follows the pruning, argument identification, ar-
gument classification, and inference stages, as described ear-
lier. For the shallow parsing system, pruning is replaced by
the word-based pruning classifiers, and the rest stages are de-
signed only to use shallow parsing information as described
in previous sections. Table 7 and Table 8 show the overall
performance in the two evaluation methods.

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 88.81 89.35 89.08 75.34 75.28 75.31
Auto 77.09 75.51 76.29 75.48 67.13 71.06

Table 7: The CoNLL-04 evaluation of the overall system per-
formance

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 89.02 89.57 89.29 75.35 75.20 75.27
Auto 77.09 75.57 76.32 75.54 67.14 71.09

Table 8: ArgM+ performance of the overall system

As indicated in the tables, the gap in F1 between the full
parsing and shallow parsing systems enlarges to more than
13% on the gold standard data. At first glance, this result
seems to contradict our conclusion in Section 4.3. After all,
if the pruning stage of the shallow parsing SRL system per-
forms equally well or even better, the overall performance gap
in F1 should be small.

After we carefully examine the output of the word-based
classifier pruning, we realize that it in fact filters out “easy”
candidates, and leaves examples that are difficult to the later
stages. To be specific, these argument candidates often over-
lap and differ only with one or two words. On the other
hand, the pruning heuristics based on full parsing never out-
puts overlapping candidates. The following argument iden-
tification stage can be thought of as good in discriminating
different types of candidates.



Lesson The most crucial contribution of full parsing is in
pruning. The internal tree structure helps significantly in dis-
criminating argument candidates, which makes the work easy
to the following stages.

5 Combine Different SRL Systems
The empirical study in Section 4 indicates the performance
of an SRL system primarily depends on the very first stage
– pruning, which is derived directly from the full parse trees.
This also means that in practice the quality of the syntactic
parser is decisive to the quality of the SRL system. To im-
prove semantic role labeling, one possible way is to combine
different SRL systems through a joint inference stage, given
that the systems are derived using different full parse trees.

To test this idea, we first build two SRL systems that use
Collins’ parser1 and Charniak’s parser respectively. In fact,
these two parsers have noticeably different output. Applying
punning heuristics on the output of Collins’ parser produces
a list of candidates with 81.05% recall. Although this number
is significantly lower that 86.08% recall produced by Char-
niak’s parser, the union of the two candidate lists still signif-
icantly improves recall to 91.37%. We construct the two sys-
tems by implementing the first three stages, namely pruning,
argument identification, and argument classification. When
a testing sentence is given, a joint inference stage is used to
resolve the inconsistency of the output of argument classifi-
cation in these two systems.

We first briefly describe the inference procedure introduced
by Punyakanoket al. [2004]. Formally speaking, the argu-
ment classifier attempts to assign labels to a set of arguments,
S1:M , indexed from 1 toM . Each argumentSi can take any
label from a set of argument labels,P, and the indexed set
of arguments can take a set of labels,c1:M ∈ PM . If we
assume that the argument classifier returns an estimated con-
ditional probability distribution,Prob(Si = ci), then, given a
sentence, the inference procedure seeks an global assignment
that maximizes the following objective function,

ĉ1:M = argmax
c1:M∈PM

M∑
i=1

Prob(Si = ci), (1)

subject to linguistic and structural constraints. In other words,
this objective function reflects the expected number of correct
argument predictions, subject to the constraints.

When there are two or more argument classifiers from dif-
ferent SRL systems, a joint inference procedure can take the
output estimated probabilities for these candidates as input,
although some candidates may refer to the same phrases in
the sentence. For example, Figure 1 shows the two can-
didate sets for a fragment of a sentence, “..., traders say,
unable to cool the selling panic in both stocks and fu-
tures.” In this example, system A has two argument candi-
dates,a1 = “traders” anda4 = “the selling panic in both
stocks and futures”; system B has three argument candidates,
b1 = “traders”,b2 = “the selling panic”, andb3 = “in both
stocks and futures”.

1We use the Collins’ parser implemented by Bikel [2004].

..., traders say, unable to cool the selling panic in both stocks and futures.

a1a1 a4

a2 a3

b1 b2 b3

b4

Figure 1: The output of two SRL systems: system A has two
candidates,a1 = “traders” anda4 = “the selling panic in
both stocks and futures”; system B has three argument candi-
dates,b1 = “traders”,b2 = “the selling panic”, andb3 = “in
both stocks and futures”. In addition, we create two phantom
candidatesa2 anda3 for system A that correspond tob2 and
b3 respectively, andb4 for system B that corresponds toa4.

If we throw all these variables together into the inference
procedure, then the final prediction will be more likely dom-
inated by the system that has more candidates, which is sys-
tem B in this example. The reason is because our objective
function is the sum of the probabilities of all the candidate
assignments.

This bias can be corrected by the following observation.
Although system A only has two candidates,a1 anda4, it can
be treated as it also has two additionalphantomcandidates,a2

anda3, wherea2 andb2 refer to the same phrase, and so doa3

andb3. Similarly, system B has a phantom candidateb4 that
corresponds toa4. Because system A does not really generate
a2 anda3, we can assume that these two phantom candidates
are predicted asNULL (i.e., not an argument). We assign the
same prior distribution to each phantom candidate. In partic-
ular, the probability of thenull class is set to be 0.55 based on
empirical tests, and the probabilities of the rest classes are set
based on their occurrence frequencies in the training data.

Tables 9 and 10 report the performance of individual sys-
tems, as well as the joint system. The joint system based on
this straightforward strategy significantly improves the per-
formance compared to the two original SRL systems in both
recall and precision, and thus achieves a much higher F1.

6 Conclusions

In this paper, we make a fair comparison between the SRL
systems using full parse trees and using only shallow syn-
tactic information. What we found confirms the necessity of
full parsing for the SRL problem. In particular, this informa-
tion is the most crucial in the pruning stage of the system,
and relatively less important to the following stages. Inspired
by this observation, we proposed an effective and simple ap-
proach that combines different SRL systems through a joint
inference stage. The combined system significantly improves
the performance compared to the original systems.



Prec Rec F1

Collins’ Parse 75.92 71.45 73.62
Charniak’s Parse 77.09 75.51 76.29
Combined Result 80.53 76.94 78.69

Table 9: The performance in CoNLL-04’s evaluation of indi-
vidual and combined SRL systems

Prec Rec F1

Collins’ Parse 75.87 71.36 73.54
Charniak’s Parse 77.09 75.57 76.32
Combined Result 80.56 76.99 78.73

Table 10: The performance in argM+’s evaluation of individ-
ual and combined SRL systems

Acknowledgments
We thank Dav Zimak, Kevin Small, and the anonymous ref-
erees for their useful comments. We are also grateful to Dash
Optimization for the free academic use of Xpress-MP. This
research is supported by the Advanced Research and Devel-
opment Activity (ARDA)’s Advanced Question Answering
for Intelligence (AQUAINT) Program, a DOI grant under the
Reflex program, and an ONR MURI Award.

References
[Bikel, 2004] Dan Bikel. Intricacies of Collins’ parsing

model.Computational Linguistics, 30(4), December 2004.

[Bishop, 1995] C. Bishop. Neural Networks for Pattern
Recognition, chapter 6.4: Modelling conditional distribu-
tions, page 215. Oxford University Press, 1995.

[Carreras and M̀arquez, 2003] X. Carreras and L. M̀arquez.
Phrase recognition by filtering and ranking with percep-
trons. InProc. of RANLP-2003, 2003.

[Carreras and M̀arquez, 2004] X. Carreras and L. M̀arquez.
Introduction to the conll-2004 shared tasks: Semantic role
labeling. InProc. of CoNLL-2004, 2004.

[Charniak, 2001] E. Charniak. Immediate-head parsing for
language models. InProceedings of the 39th Annual
Meeting of the Association of Computational Linguistics,
Toulouse, France, 2001.

[Chen and Rambow, 2003] J. Chen and O. Rambow. Use of
deep linguistic features for the recognition and labeling of
semantic arguments. InProc. of EMNLP-2003, Sapporo,
Japan, 2003.

[Collins, 1999] M. Collins. Head-driven Statistical Models
for Natural Language Parsing.PhD thesis, Computer Sci-
ence Department, University of Pennsylvenia, Philadel-
phia, 1999.

[Even-Zohar and Roth, 2001] Y. Even-Zohar and D. Roth. A
sequential model for multi class classification. InProc.
of the Conference on Empirical Methods for Natural Lan-
guage Processing (EMNLP), pages 10–19, 2001.

[Freund and Schapire, 1999] Y. Freund and R. Schapire.
Large margin classification using the perceptron algo-
rithm. Machine Learning, 37(3):277–296, 1999.

[Gildea and Hockenmaier, 2003] D. Gildea and J. Hocken-
maier. Identifying semantic roles using combinatory cat-
egorial grammar. InProc. of the EMNLP-2003, Sapporo,
Japan, 2003.

[Gildea and Palmer, 2002] D. Gildea and M. Palmer. The ne-
cessity of parsing for predicate argument recognition. In
Proc. of ACL 2002, Philadelphia, PA, 2002.

[Grove and Roth, 2001] A. Grove and D. Roth. Linear
concepts and hidden variables. Machine Learning,
42(1/2):123–141, 2001.

[Haciogluet al., 2004] K. Hacioglu, S. Pradhan, W. Ward,
J. H. Martin, and D. Jurafsky. Semantic role labeling by
tagging syntactic chunks. InProc. of CoNLL-04, 2004.

[Hanget al., 2002] T. Hang, F. Damerau, and D. Johnson.
Text chunking based on a generalization of winnow.Jour-
nal of Machine Learning Research, 2:615–637, 2002.

[Kingsbury and Palmer, 2002] P. Kingsbury and M. Palmer.
From Treebank to PropBank. InProc. of LREC-2002,
Spain, 2002.

[Li and Roth, 2001] X. Li and D. Roth. Exploring evidence
for shallow parsing. InProc. of the Annual Conference
on Computational Natural Language Learning (CoNLL),
pages 107–110, 2001.

[Pradhanet al., 2003] S. Pradhan, K. Hacioglu, W. Ward,
J. Martin, and D. Jurafsky. Semantic role parsing adding
semantic structure to unstructured text. InProc. of ICDM-
2003, 2003.

[Pradhanet al., 2004] S. Pradhan, W. Ward, K. Hacioglu,
J. H. Martin, and D. Jurafsky. Shallow semantic parsing
using support vector machines. InProc. of NAACL-HLT
2004, 2004.

[Punyakanok and Roth, 2001] V. Punyakanok and D. Roth.
The use of classifiers in sequential inference. InNIPS-13,
pages 995–1001, 2001.

[Punyakanoket al., 2004] V. Punyakanok, D. Roth, W. Yih,
and D. Zimak. Semantic role labeling via integer linear
programming inference. InProc. of COLING-2004, 2004.

[Roth and Yih, 2002] D. Roth and W. Yih. Probabilistic
reasoning for entity & relation recognition. InProc. of
COLING-2002, pages 835–841, 2002.

[Roth, 1998] D. Roth. Learning to resolve natural language
ambiguities: A unified approach. InProc. of AAAI, pages
806–813, 1998.

[Surdeanuet al., 2003] M. Surdeanu, S. Harabagiu,
J. Williams, and P. Aarseth. Using predicate-argument
structures for information extraction. InProc. of ACL
2003, 2003.

[Xue and Palmer, 2004] N. Xue and M. Palmer. Calibrat-
ing features for semantic role labeling. InProc. of the
EMNLP-2004, pages 88–94, Barcelona, Spain, 2004.


	Introduction
	Semantic Role Labeling (SRL) Task
	SRL System Architecture
	Pruning
	Argument Identification
	Argument Classification
	Inference

	The Necessity of Syntactic Parsing
	Experimental Setting
	Argument Classification
	Argument Identification
	Pruning

	Combine Different SRL Systems
	Conclusions

