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Abstract

We consider the problem of policy optimization
for a resource-limited agent with multiple time-
dependent objectives, represented as an MDP with
multiple discount factors in the objective function
and constraints. We show that limiting search to sta-
tionary deterministic policies, coupled with a novel
problem reduction to mixed integer programming,
yields an algorithm for finding such policies that is
computationally feasible, where no such algorithm
has heretofore been identified. In the simpler case
where the constrained MDP has a single discount
factor, our technique provides a new way for find-
ing an optimal deterministic policy, where previous
methods could only find randomized policies. We

However, there are numerous domains where the classical
MDP model proves inadequate, because it can be very dif-
ficult to fold all the relevant feedback from the environment
(i.e., rewards the agent receives and costs it incurs) into a sin-
gle scalar reward function. In particular, the agent’s actions,
in addition to producing rewards, might also incur costs that
might be measured very differently from the rewards, making
it hard or impossible to express both on the same scale. For
example, a natural problem for a delivery agent is to maxi-
mize aggregate reward for making deliveries, subject to con-
straints on the total time spent en route. Problems naturally
modeled as constrained MDPs also often arise in other do-
mains: for example, in telecommunication applications (e.g.,
[Lazar, 1988), where it is desirable to maximize throughput
subject to delay constraints.

Another situation where the classical MDP model is not

analyze the properties of our approach and describe

implementation results. expressive enough is where an agent receives multiple re-

ward streams and incurs multiple costs, each with a different
] discount factor. For example, the delivery agent could face
1 Introduction a rush-hour situation where the rewards for making deliver-

Markov decision processd8ellman, 1957 provide a sim-  ies decrease as a fur)c'gio_n of time (same deIivery action pro-
ple and elegant framework for constructing optimal policiesduces lower reward if it is executed at a later time), while
for agents in stochastic environments. The classical MDP forthe traffic conditions improve with time (same delivery ac-
mulations usua”y maximize a measure of the aggregate rél.on can be exe-CUted faster a.t a later tlme). If the tjewards de-
ward received by the agent. For instance, in widely-used discrease and traffic conditions improve on different time scales,
counted MDPs, the objective is to maximize the expectedhe problem can be naturally modeled with two discount fac-
value of a sum of exponentially discounted scalar reward$ors, allowing the agent to evaluate the tradeoffs between
received by the agent. Such MDPs have a number of Ver?arly and late dellvery.' Prqblems with multlple discount fac-
nice properties: they are subject to the principle of local op1ors also frequently arise in other domains: for example, an
timality, according to which the optimal action for a state is @gent can be involved in several financial ventures with dif-
independent of the choice of actions for other states, and thi€rentrisk levels and time scales, where a model with multiple
optimal policies for such MDPs are stationary, deterministic,discount factors would allow the decision maker to quantita-
and do not depend on the initial state of the system. Thestvely weigh the tradeoffs between shorter- and longer-term
properties translate into very efficient dynamic-programmingnvestments. Feinberg and Shwel1899 describe more ex-
algorithms for constructing optimal policies for such MDPs @mples and provide further justification for constrained mod-
(e.g.,[Puterman, 1993, and policies that are easy to imple- €ls with several discount factors.

ment in standard agent architectures. The price we have to pay for extending the classical model
by introducing constraints and several discount factors is that

tional, and by the DARPA/IPTO COORDINATORSs program and the Etatlortl_ary I([jgtgrrtr)llnlstlc gogﬁles «?re {lgglé(l).nglggegguaraﬂteed to
Air Force Research Laboratory under Contract No. FA8750-05-C-; € optimall-einberg an wartz, ’ earching

0030. The views and conclusions contained in this document arfPr @n optimal policy in the larger class of non-stationary
those of the authors, and should not be interpreted as representifigndomized policies can dramatically increase problem com-
the official policies, either expressed or implied, of the Defense Ad-plexity; in fact, the complexity of finding optimal policies for
vanced Research Projects Agency or the U.S. Government. this broad class of constrained MDPs with multiple costs, re-
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wards, and discount factors is not known, and no solutiorour results can be extended to other optimization criteria (as
algorithms exist (aside from some very special cd&@sn-  discussed in Section 6). A policy is said to Markovian(or
berg and Shwartz, 1996 Furthermore, even if they could be history-independeitf the choice of action does not depend
found, these non-stationary randomized policies might not ben the history of states and actions encountered in the past,
reliably executable by basic agent architectures. For exampléut only on the current state and time. If, in addition to that,
[Paruchuriet al., 2004 described how executing randomized the policy does not depend on time, it is calldtionary(by
policies in multiagent systems can be problematic. definition, a stationary policy is always Markovian).d&ter-

In this paper, therefore, we focus on finding optimal sta-ministic policy always prescribes the execution of the same
tionary deterministic policies for MDPs with multiple re- action in a state, while eandomizedpolicy chooses actions
wards, costs, and discount factors. This problem has beeaccording to a probability distribution.

studied before and has been proven to be NP-complete by A stationary randomized policy can be described as a

Feinberg[200d, who formulated it as a non-linear and non- mapping of states to probability distributions over actions:

convex mathematical program. Unfortunately, aside fromy . S x A — [0, 1], wherer;, defines the probability that

intractable techniques of general non-convex optimizationthe agent will execute actianwhen it encounters staie A

these problems have heretofore not been practically solvablgleterministic policy can be viewed as a degenerate case of a
Our contribution in this paper is to present an approach teandomized policy for which there is only one action for each

solving this problem that reduces it to a mixed-integer lin-state that has a nonzero probability of being executed.

ear program — a formulation that, while still NP-complete, o policy « and the initial conditions: : S — [0, 1] that

has available a wide variety of very efficient solution algo-gpecify the probability distribution over the state space at time

rithms and tools that make it practical to often find optimal (the agent starts in statewith probability ;) together de-

stationary deterministic polic[es. As we will show, moreover, tarmine the evolution of the system and the total expected
our approach can also be fruitfully employed for the subclasgjiscounted reward the agent will receive:

of MDPs that have multiple costs, but only a single reward ey
function and discount factor. For these problems, linear pro- _ to,. e
gramming can, in polynomial time, find optimal stationary Uy (@) ZZW #ilt)miaria, @)
randomized policiesKallenberg, 1983; Heyman and Sobel, . - .
1984, but thg prob?em of find%ng optimalystationary deter- Wherew; (t) refers to the probability of being in statat time
ministic policies is NP-completfFeinberg, 2000 with no t, an_dy € [0,1) is the discount factor.
implementable solution algorithms existing previously (aside It is well-known (e.g.,[Puterman, 1994 that, for an un-
from the general non-linear optimization techniques). Weconstrained MDP with the total expected discounted reward
show that our integer-programming-based approach finds ofPtimization criterion, there always exists an optimal policy
timal stationary deterministic policies, which can then be7" that is stationary, deterministic, anthiformly-optimaJ
compared empirically to optimal randomized policies. where the latter term means that the policy is optimal for
In the remainder of this paper, we first (in Section 2) es-all initial probability distributions over the starting state (i.e.,
tablish a baseline by briefly reviewing techniques for solv-U~ (7"; @) = Uy (7, ) V7, ).
ing unconstrained MDPs. In Section 3, we move on to con- There are several standard ways of solving such MDPs
strained MDPs, and present our approach to solving confe.g., [Puterman, 199%; some use dynamic programming
strained MDPs with a single reward, multiple costs, and ondvalue or policy iteration), others, which are much better
discount factor for the rewards and costs. We next expand thisuited for constrained problems, reduce MDPs to linear pro-
to the case with multiple rewards and costs, and several diggrams (LPs). A discounted MDP can be formulated as the fol-
count factors, in Section 4. Section 5 provides some empiricdbwing LP [D’Epenoux, 1963; Kallenberg, 19B&his max-
evaluations and observations, and Section 6 discusses our figiization LP is the dual to the more-commonly used mini-
sults and some thoughts about applying the same techniquészation LP in the value function coordinates):

t=0 i,a

to other flavors of constrained MDPs. Z Tja— Z TiaDiaj = O
. maxz TiaZia a i,a l (2)
2 Background: Unconstrained MDPs ia Zig > 0.

An unconstrained, stationary, discrete-time, fully-observablélhe set of optimization variables,, is often called theoc-
MDP can be defined as a 4-tugl§, A, p, r), whereS = {i} cupation measuref a policy, wherez;, can be interpreted

is a finite set of states the agent can bedn= {a} is afinite  as the total expected discounted number of times acitiisn

set of actions the agent can execuyte;S x A x S — [0, 1] executed in staté Then,)  z;, gives the total expected dis-

is the stochasticy_ j Piaj = 1) transition function,,; isthe  countedflow through staté, and the constraints in the above
probability the agent goes to statéf it executes actior in LP can be interpreted as the conservation of flow through
statei); r : S x A — R is the bounded reward function (the €ach of the states. An optimal policy can be computed from a

agent gets a reward of,, for executing actiom in statei). solution to the above LP as:
A solution to an MDP is a policy (a procedure for selecting Tia = Tia/ Z Tig- 3)
an action in every state) that maximizes some measure of ag- a

gregate reward. In this paper we will focus on MDPs with theAlthough this appears to lead to randomized policies, in the
total expected discounted reward optimization criterion, buabsence of external constraints, and if we use strictly positive



initial conditions ¢; > 0), a basic feasible solution to this limited non-consumable resources is reduced to a MILP. The
LP always maps to a deterministic policy that is uniformly- following proposition provides the basis for our reduction.
optimal[Puterman, 1994; Kallenberg, 1983 his LP (2) for
the unconstrained MDP serves as the basis for solving co
strained MDPs that we discuss next.

Proposition 1 Consider an MDR(S, A, p, r, ), a policy,
s corresponding occupation measurégivena), a constant
X >ux,,Vi€S,a € A, and a set of binary variabled;, =
{0,1}, Vi€ S,a € A.

3 Constrained MDPs If z and A satisfy the following conditions

Suppose that the agent, besides getting rewards for executing d AL <1, Vies, (8)
actions, also incurs costg® : S x A — R, k € [1, K], a

whereck, is the cost of typé: incurred for executing actiom Tia/X < DNig, Vi€S,a€A 9)

in statei (e.g., actions might take time and consume energyshen, for all states that, underr anda, have a nonzero prob-

in which case we would say that there are two types of COStS)abiIity of being visited ¥ 2, > 0), 7 is deterministic, and
Then, a natural problem to pose is to maximize the expecteghe following holds: ¢

discounted reward subject to some upper bounds on the to-

tal expected discounted costs. Let us label the total expected Aia =1 ia > 0 (10)
discounted cost of typk € [1, K] as: Proof: Consider a stat& that, under policyr and initial dis-
oo tribution «, has a nonzero probability of being visited, i.e.,
Ch(ma) =YY A'ei(t)miack,. (4 >, m~a > 0. Then, since the occupation measure is non-
=0 ia negative, there must be at least one action in this state that
Then, we can abstractly write the optimization problem withhas a non-zero occupation measure:
cost constraints as Ja* € A St Tpegr > 0.
max Uy (7, @) | CE(r,a) <2, (5)  Then, (9) forces\;-,- = 1, which, due to (8), forces zero
wherec is the upper bound on the cost of typdf this prob- values for all otheAAs for state:™: .
lem is feasible, then there always exists an optimal stationary o irfa=0 Vaga. .
policy, and it can be computed as a solution to the followingGiven (9), this, in turn, means that the occupation measure for
LP [Kallenberg, 1983; Heyman and Sobel, 1p84 all other actions has to be zero:
ZTirg =0 Va #a*,
Lja — TiaPiaj = Qj, . . ..
Za: ja =7 %: T which, per (3), translates into the fact that the policig de-
’ terministic and\,, = 1 < z,;, > 0.1
maXZ”“'xm Zcfaxm <, (6) Proposition 1 immediately leads to the following MILP
e i,a whose solution yields optimal stationary deterministic poli-
Ziq > 0. cies for (5):
Therefore, constrained MDPs of this type can be solved in Z Zja — Z TiaPiaj = O
polynomial time, i.e., adding constraints with the same dis- a ia
count factor does not increase the complexity of the MDP. Z ko ok
However, due to the addition of constraints, the problem (5), 2 Cia%ia = s
in general, will not have uniformly-optimal policies. Further- maxz Z TiaTia | " (11)
more, the LP (6) will yield randomized policies, which (as o ZAW <1,
argued in Section 1) are often more difficult to implement P
than deterministic ones. Zia) X < Aig
Thus, it can be desirable to compute optimal solutions to Tia >0, A e {01},

(5) from the class of stationary deterministic policies. This, : A
however, is a much harder problem: Feinbktg0d studied ~ WhereX can be computed in polynomial time by, for exam-
this problem, showed that it is NP-complete (using a reducP!e solving the LP (2) with the objective function replaced
tion similar to[Filar and Krass, 199%, and reduced it to a bY max)_; , #ia @nd settingX to its maximum value.
mathematical program by augmenting (6) with the following The above reduction to an MILP is most valuable for do-
constraint, ensuring that only ong, per state is nonzero: ~ mains where it is difficult to implement a randomized sta-
|Tia — Tiar| = Tia + Tiar @) tionary policy because of an agent’s architectural limitations.

. . . . It is also of interest for domains where such limitations are
However, the resulting program (6,7) is neither linear nor con-

vex, and thus presents significant computational challengesnOt present, as it can be used for evaluating the quality vs.

' ) . -2 ~"implementation-difficulty tradeoffs between randomized and
We show how (5) can be reduced to a mixed integer linéagq e ministic policies during the agent-design phase.

program (MILP) that is equivalent to (667/\)/. This is bg)neﬂ-

cial because MILPs are well-studied (e.gNolsey, 1998), . . . .

and there exist efficient implemented (algorithm)é for solving4 Constrained MDPs with Multiple Discounts

them. Our reduction uses techniques similar to the ones enWe now turn our attention to the more general case of MDPs

ployed in[Dolgov and Durfee, 2004bwhere an MDP with  with multiple streams of rewards and costs, each with its own



discount factory,,, n € [1, N]. The total expected reward is  Because of the synchronization of the different occupation
a weighted sum of th&/ discounted reward streams: measures and the constraint that forces deterministic policies,

00 this program (13,14) is non-linear and non-convex, and is thus
U(r, ) =Y Buly, (m0) =Y Ba > > vhei(t)miary,  very difficult to solve.

n n t=0 i,a For finding optimal stationary deterministic policies, we
wheres, is the weight of thei" reward stream that is defined Present a reduction of the program (12) to a linear integer
by the reward function” : Sx A — R. Similarly, each ofthe ~Program thatis equivalent to (13,14). Just like in the previous
K total expected costs is a weighted sum\btost streams: ~ Section, this reduction to an MILP allows us to exploit a wide

oo array of efficient solution techniques and tools. Our reduction
Ch(r,a) = Z 5kn05n (m,a) = Z Bien Z 7t @i(t)miackn  is based on the following proposition.
n nyi,a t=0 Proposition 2 Consider an MDP(S, A, p,r, ) with sev-
wherey,, is the weight of the:™ discounted stream of cost eral discount factorsy,, n € [1,N], a set of policies
of typek, defined by the cost functiaff™ : S x A — R. 7™, n € [1, N] with their corresponding occupation mea-
Notice that in this MDP with multiple discount factors, we suresz™ (policy 7™ and discount factoty,, definexz™), a con-
have N reward functions and N cost functions (unlike the stantX > z7 Vn € [1, N],i € S,a € A, and a set of binary
constrained MDP from the previous section that hahdx ~ variablesA;, = {0, 1}.

reward and cost functions, respectively). If z™ and A satisfy the following conditions
Our goal is to maximize the total weighted discounted re- ZAia <1, Vies, (15)
ward, subject to constraints on weighted discounted costs: o
max U (m,a) | C*(r,a) <2, Vke[l,K]. (12) 27 /X < Aja, Vn€[l,N],i €S,a€ A, (16)

Feinberg and Shwarti1994; 199% developed a general then, the sets of reachable states = {i : 3__ a7, > 0}
theory of constrained MDPs with multiple discount factors d€fined by all occupation measures are the same, e
and demonstrated that, in general, optimal policies are nei™ , ¥n,n’ € [1, N]. Furthermore, allz™ are deterministic
ther deterministic nor stationary. However, except for someonZ", andr?, = W?a/ Vn,n' € [1, N].
special cased-einberg and Shwartz, 190@here are no im- . - e

pect e 9 wartz, 190 ! h Proof: Consider an initial stat&* (i.e., a;« > 0). Follow-

lementable algorithms for finding optimal policies for suc 2 . .
Eroblems. Becguse of this, and ggiverr: the (E)omplexity of imANg the argument of Proposition 1, the policy for that state is

plementing non-stationary randomized policies (even if wed€terministic:
could find them), it is worthwhile to consider the problem 3a” : @itqe >0, Apge = 1; 238, = 0,Ap0q = 0Va # a”

of constructing optimal stationary deterministic policies for This implies that allV occupation measures® must pre-
such MDPs. Feinber200d showed that finding optimal scribe the execution of the same deterministic actitrior
policies that belong to the class of stationary (randomized ostatei*, because alt?, are tied to the sam4,,, via (16).
deterministic) policies is an NP-complete task. He also for- Therefore, all occupation measures correspond to the
mulated the problem of finding optimal stationary policies assame deterministic policy on the initial statgs= {7 : o; >

the following mathematical program (again, based on (eq. 6))0}. We can then expand this statement by induction to all

an — Z 2 Diai = O reachable states. Indeed, clearly the set of stitehat are
Ja "Ly Tialta) 7 reachable froniZ, in one step will be the same for aif".
¢ b Then, by the same argument as aboveglinap to the same
> Bin Y chran, <@, deterministic policy orZ;, and so forthll
max Y Bn > riar, | " It immediately follows from Proposition 2 that the prob-
n ia n n ntl ntl lem of finding optimal stationary deterministic policies for an
zh) Dl =i Y el MDP with weighted discounted rewards and constraints (12)
. >% a can be formulated as the following MILP:
€T.:
R (13) DT = D TiaPiaj = )
This program has an occupation meastitréor each discount @ ha
factorv,, n € [1, N] and expresses the total reward and total Z Bin Z chngn <o
costs as weighted linear functions of these occupation mea- n o

sures. The first set of constraints contains the conservation of max Z Br Z TiaTiq
n i,a

n .
flow constraints for each of th& occupation measures, and Tio/ X < Diq,

the third set of constraints ensures that all occupation mea- ZAm <1,
sures map to the same policy (recall (3)). p
As in the previous section, we can limit the search to deter- x>0, A, € {0,1},
ministic policies by imposing the following additional con- (17)
straint on the occupation measures in ([inberg, 2000 whereX > maxz”, is a constant, as in Proposition 2.

_ Z (x?a + iﬁ?a/) (14) AIt_hough this MILP p_roduces poIici_es_ t_hat are only opti-
mal in the class of stationary deterministic ones, at present

‘ Z (gg;”a - x?a’)
n
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Figure 1: Value of deterministic and randomized policies (a); solution time (b) and profile (c); MDP with two discounts (d).

time there are (to the best of our knowledge) no practical altic policies as functions of the constraint levil,(]), where
gorithms for finding optimal solutions from any larger policy 0 means that only policies that incur zero cost are feasible
(strictest possible constraint), wherdameans that the upper
bound on cost equals the cost of the optimal unconstrained
policy (agent is not constrained at all). The first observation,

class for constrained MDPs with multiple discount factors.

5 Experimental Observations

We have implemented the MILP algorithm for finding opti-
mal stationary deterministic policies for constrained MDPs,
and empirically evaluated it on a class of test problems. |
the following discussion, we focus on the constrained MDP
from Section 3, because these problems are better studie.
and the existing algorithms for finding optimal randomized
policies can serve as benchmarks, whereas there are no $
ternative algorithms for finding policies that are optimal for !

general constrained MDPs with multiple discount factors.

In our empirical analysis, we tried to answer the follow-
ing questions: 1) how well do deterministic policies perform,
compared to optimal randomized ones, and 2) what is th
average-case complexity of the resulting MILPs. The answer,
to these questions are obviously domain-dependent, so t
following discussion should not be viewed as a comprehen
sive characterization of the behavior of our algorithms on
constrained MDPs. However, we believe that our experiment&
provide some interesting observations about such problems

We experimented with a large set of randomly-generate
problems and with a more meaningful manually-constructed
domain, which we randomly perturbed in several ways. Thé
big picture resulting from the experiments on the randomly
generated domains was very similar to the one from th

as illustrated in Figure 1a, is that the value of stationary deter-
ministic policies for constrained problems is reasonably close
o optimal. We can also observe that the value of determinis-
jic policies changes in a very discrete manner (i.e., it jumps
1P at certain constraint levels), whereas the value of random-
ized policies changes continuously. This is, of course, only
etural, given that the space of randomized policies is con-
nuous, and randomized policies can gradually increase the
probability of taking “better” actions as cost constraints are
relaxed. On the other hand, the space of deterministic poli-
cies is discrete, and their quality jumps when the constraints
re relaxed to permit the agent to switch to a better action.
hile the number and the size of these jumps in the value
gnction depends on the dynamics of the MDP, the high-level
picture was the same in all of our experiments.
Figure 1b shows the running time of the MILP solver as
function of the constraint level (here and in Figure 1c the
plots contain values averaged over 100 runs, with the error
@ars showing the standard deviation). The data indicates that
ur MILPs (11) have an easy-hard-easy complexity profile,
[though without a sharp phase transition from hard to easy,
1.e., the problems very quickly become hard, and then gradu-
&lly get easier as cost constraints are relaxed.

manually-constructed example, providing a certain measure This complexity profile gives rise to the question regarding
of comfort about the stability and validity of our observations. the source of the difficulty for solving MILPs in the “hard’

For our test domain, we used a simplistic model of antime-consuming to prove the_iroptimality? Fi_gure 1c suggests
autonomous delivery agent, as mentioned in the introducthat the latter is the case, which can be considered as the more

fortunate outcome, since algorithms with such performance
Durfee, 2004b. In the domain, an agent is operating in a Profiles can be successfully used in an anytime manner. The
grid world with delivery sites placed randomly throughout figure contains a plot of the quality of the best solution found
the grid. The agent moves around the grid (incurring smalfS & function of the time bound imposed on the MILP sdiver
negative rewards for every move) and receives positive refor problems in the hardest constraint region (constraint level
wards for making deliveries. The agent's movement is nonvalue of0.13). As the graph shows, very good policies are

tion (based on the multiagent example frdbolgov and

deterministic, and the agent has some probability of gettingiSually produced rather quickly.

stuck in randomly-placed dangerous locations. The agent also Let us conclude with a somewhat intriguing observation
incurs a scalar cost (e.g., time) per move, and the objective i@bout the MILP solution time for constrained MDPs with
to maximize the total expected discounted reward subject teultiple discount factors (Section 4). We generated and
solved a large number of random MDPs with two discount
The results of our experiments are summarizedinFigure1.
Figure la shows the values of randomized and determinis- CPLEX 8.1 on a P4 performed the role of the MILP solver.

an upper bound on the total expected discounted cost.



factors and plotted (after cubic smoothing) the average soabsence of such limitations, the approach is useful in situa-
lution time (shown in Figure 1d). An interesting observationtions where it is desirable to compare the quality of random-
about this plot is that the problem instances where the twazed and deterministic policies, such as when an agent is be-
discount factors are equal (or close) appear to be the hardesty designed for a particular task and it is necessary to weigh
(notice the contours in the;-y, plane). This is counterin- the cost of implementing a more complex policy-execution
tuitive, because such MDPs are equivalent to standard MDPmechanism against the gain in expected performance. For
with one discount factor. A possible explanation might be thajproblem (i), to the best of our knowledge, no feasible algo-
when discount factors are far apart, one of the reward funcrithms have been reported for finding optimal solutions in any
tions dominates the other and the problem becomes simplenteresting policy class, and thus our MILP approach for find-
while when the discount factors are close, the tradeoffs being optimal stationary deterministic policies provides the first
come more complicated (with the equivalence to a standargractical approach to dealing with constrained MDPs with
MDP hidden in the MILP translation). However, this is spec- multiple discount factors.

ulation and the phenomenon deserves a more careful analysis.
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