
Stationary Deterministic Policies for Constrained MDPs with Multiple Rewards,
Costs, and Discount Factors

Dmitri Dolgov and Edmund Durfee
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109

{ddolgov, durfee}@umich.edu

Abstract

We consider the problem of policy optimization
for a resource-limited agent with multiple time-
dependent objectives, represented as an MDP with
multiple discount factors in the objective function
and constraints. We show that limiting search to sta-
tionary deterministic policies, coupled with a novel
problem reduction to mixed integer programming,
yields an algorithm for finding such policies that is
computationally feasible, where no such algorithm
has heretofore been identified. In the simpler case
where the constrained MDP has a single discount
factor, our technique provides a new way for find-
ing an optimal deterministic policy, where previous
methods could only find randomized policies. We
analyze the properties of our approach and describe
implementation results.

1 Introduction
Markov decision processes[Bellman, 1957] provide a sim-
ple and elegant framework for constructing optimal policies
for agents in stochastic environments. The classical MDP for-
mulations usually maximize a measure of the aggregate re-
ward received by the agent. For instance, in widely-used dis-
counted MDPs, the objective is to maximize the expected
value of a sum of exponentially discounted scalar rewards
received by the agent. Such MDPs have a number of very
nice properties: they are subject to the principle of local op-
timality, according to which the optimal action for a state is
independent of the choice of actions for other states, and the
optimal policies for such MDPs are stationary, deterministic,
and do not depend on the initial state of the system. These
properties translate into very efficient dynamic-programming
algorithms for constructing optimal policies for such MDPs
(e.g.,[Puterman, 1994]), and policies that are easy to imple-
ment in standard agent architectures.
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However, there are numerous domains where the classical
MDP model proves inadequate, because it can be very dif-
ficult to fold all the relevant feedback from the environment
(i.e., rewards the agent receives and costs it incurs) into a sin-
gle scalar reward function. In particular, the agent’s actions,
in addition to producing rewards, might also incur costs that
might be measured very differently from the rewards, making
it hard or impossible to express both on the same scale. For
example, a natural problem for a delivery agent is to maxi-
mize aggregate reward for making deliveries, subject to con-
straints on the total time spent en route. Problems naturally
modeled as constrained MDPs also often arise in other do-
mains: for example, in telecommunication applications (e.g.,
[Lazar, 1983]), where it is desirable to maximize throughput
subject to delay constraints.

Another situation where the classical MDP model is not
expressive enough is where an agent receives multiple re-
ward streams and incurs multiple costs, each with a different
discount factor. For example, the delivery agent could face
a rush-hour situation where the rewards for making deliver-
ies decrease as a function of time (same delivery action pro-
duces lower reward if it is executed at a later time), while
the traffic conditions improve with time (same delivery ac-
tion can be executed faster at a later time). If the rewards de-
crease and traffic conditions improve on different time scales,
the problem can be naturally modeled with two discount fac-
tors, allowing the agent to evaluate the tradeoffs between
early and late delivery. Problems with multiple discount fac-
tors also frequently arise in other domains: for example, an
agent can be involved in several financial ventures with dif-
ferent risk levels and time scales, where a model with multiple
discount factors would allow the decision maker to quantita-
tively weigh the tradeoffs between shorter- and longer-term
investments. Feinberg and Shwartz[1999] describe more ex-
amples and provide further justification for constrained mod-
els with several discount factors.

The price we have to pay for extending the classical model
by introducing constraints and several discount factors is that
stationary deterministic policies are no longer guaranteed to
be optimal[Feinberg and Shwartz, 1994; 1995]. Searching
for an optimal policy in the larger class of non-stationary
randomized policies can dramatically increase problem com-
plexity; in fact, the complexity of finding optimal policies for
this broad class of constrained MDPs with multiple costs, re-



wards, and discount factors is not known, and no solution
algorithms exist (aside from some very special cases[Fein-
berg and Shwartz, 1996]). Furthermore, even if they could be
found, these non-stationary randomized policies might not be
reliably executable by basic agent architectures. For example,
[Paruchuriet al., 2004] described how executing randomized
policies in multiagent systems can be problematic.

In this paper, therefore, we focus on finding optimal sta-
tionary deterministic policies for MDPs with multiple re-
wards, costs, and discount factors. This problem has been
studied before and has been proven to be NP-complete by
Feinberg[2000], who formulated it as a non-linear and non-
convex mathematical program. Unfortunately, aside from
intractable techniques of general non-convex optimization,
these problems have heretofore not been practically solvable.

Our contribution in this paper is to present an approach to
solving this problem that reduces it to a mixed-integer lin-
ear program – a formulation that, while still NP-complete,
has available a wide variety of very efficient solution algo-
rithms and tools that make it practical to often find optimal
stationary deterministic policies. As we will show, moreover,
our approach can also be fruitfully employed for the subclass
of MDPs that have multiple costs, but only a single reward
function and discount factor. For these problems, linear pro-
gramming can, in polynomial time, find optimal stationary
randomized policies[Kallenberg, 1983; Heyman and Sobel,
1984], but the problem of finding optimal stationary deter-
ministic policies is NP-complete[Feinberg, 2000], with no
implementable solution algorithms existing previously (aside
from the general non-linear optimization techniques). We
show that our integer-programming-based approach finds op-
timal stationary deterministic policies, which can then be
compared empirically to optimal randomized policies.

In the remainder of this paper, we first (in Section 2) es-
tablish a baseline by briefly reviewing techniques for solv-
ing unconstrained MDPs. In Section 3, we move on to con-
strained MDPs, and present our approach to solving con-
strained MDPs with a single reward, multiple costs, and one
discount factor for the rewards and costs. We next expand this
to the case with multiple rewards and costs, and several dis-
count factors, in Section 4. Section 5 provides some empirical
evaluations and observations, and Section 6 discusses our re-
sults and some thoughts about applying the same techniques
to other flavors of constrained MDPs.

2 Background: Unconstrained MDPs
An unconstrained, stationary, discrete-time, fully-observable
MDP can be defined as a 4-tuple〈S,A, p, r〉, whereS = {i}
is a finite set of states the agent can be in;A = {a} is a finite
set of actions the agent can execute;p : S × A × S 7→ [0, 1]
is the stochastic (

∑
j piaj = 1) transition function (piaj is the

probability the agent goes to statej if it executes actiona in
statei); r : S × A 7→ R is the bounded reward function (the
agent gets a reward ofria for executing actiona in statei).

A solution to an MDP is a policy (a procedure for selecting
an action in every state) that maximizes some measure of ag-
gregate reward. In this paper we will focus on MDPs with the
total expected discounted reward optimization criterion, but

our results can be extended to other optimization criteria (as
discussed in Section 6). A policy is said to beMarkovian(or
history-independent) if the choice of action does not depend
on the history of states and actions encountered in the past,
but only on the current state and time. If, in addition to that,
the policy does not depend on time, it is calledstationary(by
definition, a stationary policy is always Markovian). Adeter-
ministic policy always prescribes the execution of the same
action in a state, while arandomizedpolicy chooses actions
according to a probability distribution.

A stationary randomized policyπ can be described as a
mapping of states to probability distributions over actions:
π : S × A 7→ [0, 1], whereπia defines the probability that
the agent will execute actiona when it encounters statei. A
deterministic policy can be viewed as a degenerate case of a
randomized policy for which there is only one action for each
state that has a nonzero probability of being executed.

A policy π and the initial conditionsα : S 7→ [0, 1] that
specify the probability distribution over the state space at time
0 (the agent starts in statei with probabilityαi) together de-
termine the evolution of the system and the total expected
discounted reward the agent will receive:

Uγ(π, α) =
∞∑

t=0

∑
i,a

γtϕi(t)πiaria, (1)

whereϕi(t) refers to the probability of being in statei at time
t, andγ ∈ [0, 1) is the discount factor.

It is well-known (e.g.,[Puterman, 1994]) that, for an un-
constrained MDP with the total expected discounted reward
optimization criterion, there always exists an optimal policy
π∗ that is stationary, deterministic, anduniformly-optimal,
where the latter term means that the policy is optimal for
all initial probability distributions over the starting state (i.e.,
Uγ(π∗, α) ≥ Uγ(π, α) ∀π, α).

There are several standard ways of solving such MDPs
(e.g., [Puterman, 1994]); some use dynamic programming
(value or policy iteration), others, which are much better
suited for constrained problems, reduce MDPs to linear pro-
grams (LPs). A discounted MDP can be formulated as the fol-
lowing LP [D’Epenoux, 1963; Kallenberg, 1983] (this max-
imization LP is the dual to the more-commonly used mini-
mization LP in the value function coordinates):

max
∑
i,a

riaxia

∣∣∣∣∣∣
∑

a

xja − γ
∑
i,a

xiapiaj = αj ,

xia ≥ 0.

(2)

The set of optimization variablesxia is often called theoc-
cupation measureof a policy, wherexia can be interpreted
as the total expected discounted number of times actiona is
executed in statei. Then,

∑
a xia gives the total expected dis-

countedflow through statei, and the constraints in the above
LP can be interpreted as the conservation of flow through
each of the states. An optimal policy can be computed from a
solution to the above LP as:

πia = xia/
∑

a

xia. (3)

Although this appears to lead to randomized policies, in the
absence of external constraints, and if we use strictly positive



initial conditions (αi > 0), a basic feasible solution to this
LP always maps to a deterministic policy that is uniformly-
optimal[Puterman, 1994; Kallenberg, 1983]. This LP (2) for
the unconstrained MDP serves as the basis for solving con-
strained MDPs that we discuss next.

3 Constrained MDPs

Suppose that the agent, besides getting rewards for executing
actions, also incurs costs:ck : S × A 7→ R, k ∈ [1,K],
whereck

ia is the cost of typek incurred for executing actiona
in statei (e.g., actions might take time and consume energy,
in which case we would say that there are two types of costs).
Then, a natural problem to pose is to maximize the expected
discounted reward subject to some upper bounds on the to-
tal expected discounted costs. Let us label the total expected
discounted cost of typek ∈ [1,K] as:

Ck
γ (π, α) =

∞∑
t=0

∑
i,a

γtϕi(t)πiack
ia. (4)

Then, we can abstractly write the optimization problem with
cost constraints as

max
π

Uγ(π, α)
∣∣ Ck

γ (π, α) ≤ ĉk, (5)

whereĉk is the upper bound on the cost of typek. If this prob-
lem is feasible, then there always exists an optimal stationary
policy, and it can be computed as a solution to the following
LP [Kallenberg, 1983; Heyman and Sobel, 1984]:

max
∑
i,a

riaxia

∣∣∣∣∣∣∣∣∣∣∣

∑
a

xja − γ
∑
i,a

xiapiaj = αj ,∑
i,a

ck
iaxia ≤ ĉk,

xia ≥ 0.

(6)

Therefore, constrained MDPs of this type can be solved in
polynomial time, i.e., adding constraints with the same dis-
count factor does not increase the complexity of the MDP.
However, due to the addition of constraints, the problem (5),
in general, will not have uniformly-optimal policies. Further-
more, the LP (6) will yield randomized policies, which (as
argued in Section 1) are often more difficult to implement
than deterministic ones.

Thus, it can be desirable to compute optimal solutions to
(5) from the class of stationary deterministic policies. This,
however, is a much harder problem: Feinberg[2000] studied
this problem, showed that it is NP-complete (using a reduc-
tion similar to [Filar and Krass, 1994]), and reduced it to a
mathematical program by augmenting (6) with the following
constraint, ensuring that only onexia per state is nonzero:

|xia − xia′ | = xia + xia′ (7)
However, the resulting program (6,7) is neither linear nor con-
vex, and thus presents significant computational challenges.

We show how (5) can be reduced to a mixed integer linear
program (MILP) that is equivalent to (6,7). This is benefi-
cial because MILPs are well-studied (e.g.,[Wolsey, 1998]),
and there exist efficient implemented algorithms for solving
them. Our reduction uses techniques similar to the ones em-
ployed in[Dolgov and Durfee, 2004b], where an MDP with

limited non-consumable resources is reduced to a MILP. The
following proposition provides the basis for our reduction.

Proposition 1 Consider an MDP〈S,A, p, r, α〉, a policyπ,
its corresponding occupation measurex (givenα), a constant
X ≥ xia ∀i ∈ S, a ∈ A, and a set of binary variables∆ia =
{0, 1}, ∀i ∈ S, a ∈ A.

If x and∆ satisfy the following conditions∑
a

∆ia ≤ 1, ∀i ∈ S, (8)

xia/X ≤ ∆ia, ∀i ∈ S, a ∈ A (9)

then, for all statesi that, underπ andα, have a nonzero prob-
ability of being visited (

∑
a xia > 0), π is deterministic, and

the following holds:
∆ia = 1 ⇔ xia > 0 (10)

Proof: Consider a statei∗ that, under policyπ and initial dis-
tribution α, has a nonzero probability of being visited, i.e.,∑

a xi∗a > 0. Then, since the occupation measure is non-
negative, there must be at least one action in this state that
has a non-zero occupation measure:

∃a∗ ∈ A s.t. xi∗a∗ > 0.

Then, (9) forces∆i∗a∗ = 1, which, due to (8), forces zero
values for all other∆’s for statei∗:

∆i∗a = 0 ∀a 6= a∗.

Given (9), this, in turn, means that the occupation measure for
all other actions has to be zero:

xi∗a = 0 ∀a 6= a∗,

which, per (3), translates into the fact that the policyπ is de-
terministic and∆ia = 1 ⇔ xia > 0. �

Proposition 1 immediately leads to the following MILP
whose solution yields optimal stationary deterministic poli-
cies for (5):

max
∑

i

∑
a

xiaria

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a

xja − γ
∑
i,a

xiapiaj = αj ,∑
i,a

ck
iaxia ≤ ĉk,

∑
a

∆ia ≤ 1,

xia/X ≤ ∆ia,

xia ≥ 0, ∆ia ∈ {0, 1},

(11)

whereX can be computed in polynomial time by, for exam-
ple, solving the LP (2) with the objective function replaced
by max

∑
i,a xia and settingX to its maximum value.

The above reduction to an MILP is most valuable for do-
mains where it is difficult to implement a randomized sta-
tionary policy because of an agent’s architectural limitations.
It is also of interest for domains where such limitations are
not present, as it can be used for evaluating the quality vs.
implementation-difficulty tradeoffs between randomized and
deterministic policies during the agent-design phase.

4 Constrained MDPs with Multiple Discounts
We now turn our attention to the more general case of MDPs
with multiple streams of rewards and costs, each with its own



discount factorγn, n ∈ [1, N ]. The total expected reward is
a weighted sum of theN discounted reward streams:

U(π, α) =
∑

n

βnUγn
(π, α) =

∑
n

βn

∞∑
t=0

∑
i,a

γt
nϕi(t)πiarn

ia

whereβn is the weight of thenth reward stream that is defined
by the reward functionrn : S×A 7→ R. Similarly, each of the
K total expected costs is a weighted sum ofN cost streams:

Ck(π, α) =
∑

n

βknCk
γn

(π, α) =
∑
n,i,a

βkn

∞∑
t=0

γt
nϕi(t)πiackn

ia

whereβkn is the weight of thenth discounted stream of cost
of typek, defined by the cost functionckn : S ×A 7→ R.

Notice that in this MDP with multiple discount factors, we
haveN reward functions andKN cost functions (unlike the
constrained MDP from the previous section that had1 andK
reward and cost functions, respectively).

Our goal is to maximize the total weighted discounted re-
ward, subject to constraints on weighted discounted costs:

max
π

U(π, α)
∣∣ Ck(π, α) ≤ ĉk, ∀k ∈ [1,K]. (12)

Feinberg and Shwartz[1994; 1995] developed a general
theory of constrained MDPs with multiple discount factors
and demonstrated that, in general, optimal policies are nei-
ther deterministic nor stationary. However, except for some
special cases[Feinberg and Shwartz, 1996], there are no im-
plementable algorithms for finding optimal policies for such
problems. Because of this, and given the complexity of im-
plementing non-stationary randomized policies (even if we
could find them), it is worthwhile to consider the problem
of constructing optimal stationary deterministic policies for
such MDPs. Feinberg[2000] showed that finding optimal
policies that belong to the class of stationary (randomized or
deterministic) policies is an NP-complete task. He also for-
mulated the problem of finding optimal stationary policies as
the following mathematical program (again, based on (eq. 6)):

max
∑

n

βn

∑
i,a

rn
iaxn

ia

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a

xn
ja − γn

∑
i,a

xn
iapiaj = αj ,∑

n

βkn

∑
i,a

ckn
ia xn

ia ≤ ĉk,

xn
ia/

∑
a

xn
ia = xn+1

ia /
∑

a

xn+1
ia ,

xn
ia ≥ 0,

(13)
This program has an occupation measurexn for each discount
factorγn, n ∈ [1, N ] and expresses the total reward and total
costs as weighted linear functions of these occupation mea-
sures. The first set of constraints contains the conservation of
flow constraints for each of theN occupation measures, and
the third set of constraints ensures that all occupation mea-
sures map to the same policy (recall (3)).

As in the previous section, we can limit the search to deter-
ministic policies by imposing the following additional con-
straint on the occupation measures in (13)[Feinberg, 2000]:∣∣∣ ∑

n

(
xn

ia − xn
ia′

)∣∣∣ =
∑

n

(
xn

ia + xn
ia′

)
(14)

Because of the synchronization of the different occupation
measures and the constraint that forces deterministic policies,
this program (13,14) is non-linear and non-convex, and is thus
very difficult to solve.

For finding optimal stationary deterministic policies, we
present a reduction of the program (12) to a linear integer
program that is equivalent to (13,14). Just like in the previous
section, this reduction to an MILP allows us to exploit a wide
array of efficient solution techniques and tools. Our reduction
is based on the following proposition.

Proposition 2 Consider an MDP〈S,A, p, r, α〉 with sev-
eral discount factorsγn, n ∈ [1, N ], a set of policies
πn, n ∈ [1, N ] with their corresponding occupation mea-
suresxn (policyπn and discount factorγn definexn), a con-
stantX ≥ xn

ia ∀n ∈ [1, N ], i ∈ S, a ∈ A, and a set of binary
variables∆ia = {0, 1}.

If xn and∆ satisfy the following conditions∑
a

∆ia ≤ 1, ∀i ∈ S, (15)

xn
ia/X ≤ ∆ia, ∀n ∈ [1, N ], i ∈ S, a ∈ A, (16)

then, the sets of reachable statesIn = {i :
∑

a xn
ia > 0}

defined by all occupation measures are the same, i.e.,In =
In′

, ∀n, n′ ∈ [1, N ]. Furthermore, allπn are deterministic
onIn, andπn

ia = πn′

ia ∀n, n′ ∈ [1, N ].

Proof: Consider an initial statei∗ (i.e.,αi∗ > 0). Follow-
ing the argument of Proposition 1, the policy for that state is
deterministic:
∃a∗ : xn

i∗a∗ > 0,∆i∗a∗ = 1; xn
i∗a = 0,∆i∗a = 0 ∀a 6= a∗

This implies that allN occupation measuresxn must pre-
scribe the execution of the same deterministic actiona∗ for
statei∗, because allxn

ia are tied to the same∆ia via (16).
Therefore, all occupation measuresxn correspond to the

same deterministic policy on the initial statesI0 = {i : αi >
0}. We can then expand this statement by induction to all
reachable states. Indeed, clearly the set of statesI1 that are
reachable fromI0 in one step will be the same for allxn.
Then, by the same argument as above, allxn map to the same
deterministic policy onI1, and so forth.�

It immediately follows from Proposition 2 that the prob-
lem of finding optimal stationary deterministic policies for an
MDP with weighted discounted rewards and constraints (12)
can be formulated as the following MILP:

max
∑

n

βn

∑
i,a

rn
iaxn

ia

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a

xn
ja − γn

∑
i,a

xn
iapiaj = αj ,∑

n

βkn

∑
i,a

ckn
ia xn

ia ≤ ĉk,

xn
ia/X ≤ ∆ia,∑
a

∆ia ≤ 1,

xn
ia ≥ 0,∆ia ∈ {0, 1},

(17)
whereX ≥ max xn

ia is a constant, as in Proposition 2.
Although this MILP produces policies that are only opti-

mal in the class of stationary deterministic ones, at present



0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

300

350

400

450

500

Absolute Value (sample run)

constraint level

po
lic

y 
va

lu
e

randomized
deterministic

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200 MILP time

constraint level

t, 
se

c

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Performance Profile

t bound, sec

Re
la

tiv
e 

V
al

ue

0.8

0.9

1

0.8

0.9

1
0.2

0.3

0.4

0.5

0.6

0.7

γ1
γ2

M
IL

P 
tim

e 
[n

or
m

al
iz

ed
]

(a) (b) (c) (d)
Figure 1: Value of deterministic and randomized policies (a); solution time (b) and profile (c); MDP with two discounts (d).

time there are (to the best of our knowledge) no practical al-
gorithms for finding optimal solutions from any larger policy
class for constrained MDPs with multiple discount factors.

5 Experimental Observations
We have implemented the MILP algorithm for finding opti-
mal stationary deterministic policies for constrained MDPs
and empirically evaluated it on a class of test problems. In
the following discussion, we focus on the constrained MDPs
from Section 3, because these problems are better studied,
and the existing algorithms for finding optimal randomized
policies can serve as benchmarks, whereas there are no al-
ternative algorithms for finding policies that are optimal for
general constrained MDPs with multiple discount factors.

In our empirical analysis, we tried to answer the follow-
ing questions: 1) how well do deterministic policies perform,
compared to optimal randomized ones, and 2) what is the
average-case complexity of the resulting MILPs. The answers
to these questions are obviously domain-dependent, so the
following discussion should not be viewed as a comprehen-
sive characterization of the behavior of our algorithms on
constrained MDPs. However, we believe that our experiments
provide some interesting observations about such problems.

We experimented with a large set of randomly-generated
problems and with a more meaningful manually-constructed
domain, which we randomly perturbed in several ways. The
big picture resulting from the experiments on the randomly-
generated domains was very similar to the one from the
manually-constructed example, providing a certain measure
of comfort about the stability and validity of our observations.
We report the results for the manually-constructed domain.

For our test domain, we used a simplistic model of an
autonomous delivery agent, as mentioned in the introduc-
tion (based on the multiagent example from[Dolgov and
Durfee, 2004b]). In the domain, an agent is operating in a
grid world with delivery sites placed randomly throughout
the grid. The agent moves around the grid (incurring small
negative rewards for every move) and receives positive re-
wards for making deliveries. The agent’s movement is non-
deterministic, and the agent has some probability of getting
stuck in randomly-placed dangerous locations. The agent also
incurs a scalar cost (e.g., time) per move, and the objective is
to maximize the total expected discounted reward subject to
an upper bound on the total expected discounted cost.

The results of our experiments are summarized in Figure 1.
Figure 1a shows the values of randomized and determinis-

tic policies as functions of the constraint level ([0, 1]), where
0 means that only policies that incur zero cost are feasible
(strictest possible constraint), whereas1 means that the upper
bound on cost equals the cost of the optimal unconstrained
policy (agent is not constrained at all). The first observation,
as illustrated in Figure 1a, is that the value of stationary deter-
ministic policies for constrained problems is reasonably close
to optimal. We can also observe that the value of determinis-
tic policies changes in a very discrete manner (i.e., it jumps
up at certain constraint levels), whereas the value of random-
ized policies changes continuously. This is, of course, only
natural, given that the space of randomized policies is con-
tinuous, and randomized policies can gradually increase the
probability of taking “better” actions as cost constraints are
relaxed. On the other hand, the space of deterministic poli-
cies is discrete, and their quality jumps when the constraints
are relaxed to permit the agent to switch to a better action.
While the number and the size of these jumps in the value
function depends on the dynamics of the MDP, the high-level
picture was the same in all of our experiments.

Figure 1b shows the running time of the MILP solver as
a function of the constraint level (here and in Figure 1c the
plots contain values averaged over 100 runs, with the error
bars showing the standard deviation). The data indicates that
our MILPs (11) have an easy-hard-easy complexity profile,
although without a sharp phase transition from hard to easy,
i.e., the problems very quickly become hard, and then gradu-
ally get easier as cost constraints are relaxed.

This complexity profile gives rise to the question regarding
the source of the difficulty for solving MILPs in the “hard”
region: is it difficult to find good feasible solutions, or is it
time-consuming to prove their optimality? Figure 1c suggests
that the latter is the case, which can be considered as the more
fortunate outcome, since algorithms with such performance
profiles can be successfully used in an anytime manner. The
figure contains a plot of the quality of the best solution found
as a function of the time bound imposed on the MILP solver1

for problems in the hardest constraint region (constraint level
value of0.13). As the graph shows, very good policies are
usually produced rather quickly.

Let us conclude with a somewhat intriguing observation
about the MILP solution time for constrained MDPs with
multiple discount factors (Section 4). We generated and
solved a large number of random MDPs with two discount

1CPLEX 8.1 on a P4 performed the role of the MILP solver.



factors and plotted (after cubic smoothing) the average so-
lution time (shown in Figure 1d). An interesting observation
about this plot is that the problem instances where the two
discount factors are equal (or close) appear to be the hardest
(notice the contours in theγ1-γ2 plane). This is counterin-
tuitive, because such MDPs are equivalent to standard MDPs
with one discount factor. A possible explanation might be that
when discount factors are far apart, one of the reward func-
tions dominates the other and the problem becomes simpler,
while when the discount factors are close, the tradeoffs be-
come more complicated (with the equivalence to a standard
MDP hidden in the MILP translation). However, this is spec-
ulation and the phenomenon deserves a more careful analysis.

6 Discussion and Conclusions
We have presented algorithms for finding optimal determinis-
tic policies for two classes of constrained MDPs, and in both
cases we were maximizing a measure of the total expected
discounted reward subject to constraints on the total expected
discounted costs. However, our technique of finding optimal
stationary deterministic policies via mixed integer program-
ming also applies to other classes of MDPs.

In particular, the same methodology applies to MDPs with
average per-time rewards and constraints (e.g.,[Puterman,
1994]). Similarly to the constrained total-reward discounted
MDP model described in Section 3, the MDP with average
rewards and constraints can also be formulated as an LP (sim-
ilar to (6)) that yields optimal stationary randomized policies.
The problem of finding optimal stationary deterministic poli-
cies for such MDPs is also known to be NP-complete[Filar
and Krass, 1994]. Our MILP reduction of Section 3 carries
through with almost no changes and can thus be used to find
optimal stationary deterministic policies for such MDPs.

The techniques of Section 4 also apply more generally.
For instance, consider an MDP with general utility functions
in the optimization criteria and constraints on theprobabil-
ity that the total cost exceeds some upper bound. This class
of MDPs was discussed in[Dolgov and Durfee, 2004a], and
the problem of finding approximately-optimal stationary ran-
domized policies was reduced to a non-convex quadratic pro-
gram in the space of the higher-order moments of the state
visits. The non-convex quadratic constraints resulted from the
requirement that the moments of different orders had to cor-
respond to the same policy, and were almost identical to the
quadratic constraints in (14) that synchronized the occupation
measures for different discount factors. In fact, the two are so
similar that our MILP reduction from Section 4 can be used
to approximate optimal stationary deterministic policies for
MDPs in[Dolgov and Durfee, 2004a].

To summarize, we have presented a general integer pro-
gramming method for finding optimal stationary determinis-
tic policies in constrained MDPs. We have demonstrated the
method on two classes of MDPs: (i) a constrained discounted
MDP and (ii) a constrained MDP with multiple discount fac-
tors. For (i), our methodology is of most value for domains
where randomized policies (which work better and are easier
to compute) are undesirable or difficult to implement because
of an agent’s architectural limitations. However, even in the

absence of such limitations, the approach is useful in situa-
tions where it is desirable to compare the quality of random-
ized and deterministic policies, such as when an agent is be-
ing designed for a particular task and it is necessary to weigh
the cost of implementing a more complex policy-execution
mechanism against the gain in expected performance. For
problem (ii), to the best of our knowledge, no feasible algo-
rithms have been reported for finding optimal solutions in any
interesting policy class, and thus our MILP approach for find-
ing optimal stationary deterministic policies provides the first
practical approach to dealing with constrained MDPs with
multiple discount factors.
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