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Abstract

This paper presents a generic architecture for
proof planning systems in terms of an interac-
tion between a customisable proof module and
search module. These refer to both global and
local information contained in reasoning states.

1 Introduction

Proof planning systems attempt to automate the process
of mathematical proof by searching for a high-level repre-
sentation of a proof rather than one at the level of logical
inference rules. This makes the resulting proofs more
human-like; aiding comprehension, cognitive modeling
and higher-level reasoning about failed proof attempts.
Proof planning represents an important methodology
in automated reasoning and has been proposed as a
generic framework for understanding reasoning in gen-
eral [Bundy, 1991]. Unfortunately over 15 years of re-
search and exploration of the concept has so altered the
initial descriptions that it is no longer trivial to describe
exactly what proof planning is. This paper presents a
generic architecture for proof planning systems as a first
step towards a unified description.

2 Proof Planning

Proof planning was first introduced in [Bundy, 1988]
where the term proof plan was used to describe both a
way of going about a particular sort of proof and a high-
level representation of the proof itself. In order to avoid
confusion, this papers refers to these two concepts as the
proof strategy and the proof representation respectively.
A common example of a proof strategy is mathematical
induction. Here the strategy is to split the problem into
a base case and a step case and the step case can be
further broken down into a sequence of rewrites followed
by appeal to the induction hypothesis.

The proof representation is a graph/tree structure.
The nodes are labelled by proof goals and a justification
associated with a proof method. The intended semantics
is that a goal formula can be derived from its children
and that this derivation is justified by the method. These

proof representations are formed using the proof meth-
ods as plan operators within a framework inspired by
STRIPS [Fikes and Nilsson, 1971]. The edges in a proof
representation can be expanded to a proof at the level
of logical inference rules using planning operators based
on LCF-style tactics. These tactics are associated with
the method that justifies the parent node.

Methods are generally represented as a frame struc-
ture with slots for preconditions which must be satisfied
before the method can apply. A proof strategy is either
represented by some form of method hierarchy which re-
stricts consideration of particular methods to particular
points in a proof or by control rules [Siekmann et al.,
2003] which analyse the current state of the plan rep-
resentation and the history of the planning attempt to
decide on the methods to be considered at any point.
The proof strategy is an important technique for limit-
ing search and has been represented in a variety of ways.

The proof planning methodology also includes failure-
triggered plan operators (eg. [Ireland and Bundy, 1996])
which propose major changes to the current proof repre-
sentation (as opposed to methods which simply extend
the graph). Selection and application of these operators
is determined by preconditions and the proof strategy.

At present there is no general description of proof
planning which which addresses the varied ideas of proof
strategy implemented in the proof planning systems of
the last decade. This paper seeks to answer the question
of what proof planning is by presenting a generic archi-
tecture that can encompass existing implementations.

3 A General Architecture for Proof

Planning Systems

Figure 1 shows a general architecture for proof planning
systems as a data/control flow diagram. In this diagram
circles indicate functions or operations and rectangles
stores of data. Solid arrows into operators represent in-
formation used by the operator and arrows from it show
outputs or side-effects of its operation. Dashed arrows
show the flow of control between operations.

Most descriptions of proof planning have described the
proof planner as operating on proof representations how-
ever an important insight in [Dixon and Fleuriot, 2003]
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Figure 1: A General Architecture for Proof Planning
Systems

is to notice that proof planners operate on reasoning
states. Reasoning states contain a search strategy (such
as depth-first search) and proof search information which
includes general information (such as constraints) as well
as a proof representation and a proof strategy.

There are two reasoning states consulted by the sys-
tem: a global reasoning state which is in existence for the
lifetime of the program’s execution and which can be dy-
namically updated and a current reasoning state which
is generated by the proof module at one point in time,
placed in a global set and later selected by the search
module to become current after which it is deleted. This
reasoning state is not altered once it is generated.

Global information is used in all systems for pragmatic
reasons. However there is also a need to store a history
(eg. [Siekmann et al., 2003]) of the planning attempt,
including abandoned branches of the search space. This
needs to be global and dynamically updatable.

At the start of a proof attempt a user presents a global
reasoning state and a set (usually a singleton) of local
reasoning states to the system. The search module then
selects one of the local reasoning states to become cur-
rent and hands control to the proof module.

Control passes back and forth between the proof mod-
ule and the search module. The proof module uses proof
search information to generate new reasoning states and
to update the global reasoning state. Control is then
handed to the search module which uses the search
strategies to propose a new current reasoning state and

to update the reasoning state set.
A key idea is that the proof module should be cus-

tomisable by the user via the proof strategy. In this way
a proof planner can be adapted for individual proof fam-
ilies without the user needing a firm grip on the internal
code of the system. User support for expressing a proof
strategy varies widely and appears to be an area ripe for
further research.

4 Conclusion and Further Work

I have presented here a general architecture for proof
planning as an interaction between a proof module and
a search module operating on two reasoning states (one
global and one local) and a reasoning state set.

Dixon et al. [2004] have recently started work on a
comparison of the major proof planning systems. We
are in the process of combining our work and hope this
will generate further insights into the definition of proof
planning and the construction of proof planning systems.
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