Maintaining Arc Consistency using Adaptive Domain Ordering*

Chavalit Likitvivatanavong
Cork Constraint Computation Centre
University College Cork, Ireland

Yuanlin Zhang
Department of Computer Science
Texas Tech University, Texas, U.S.

James Bowen and Eugene C. Freuder
Cork Constraint Computation Centre, University College Cork, Ireland

1 Introduction

Solving a Constraint Satisfaction Problem (CSP) by Maintain-
ing Arc Consistency (MAC) [Sabin and Freuder, 1994] has
been one of the most widely-used methods. Since Arc Con-
sistency (AC) is enforced at every node in a search tree, its
efficiency is critical to the whole algorithm. We propose a
new MAC algorithm based on AC-3.1 [Zhang and Yap, 2001]
in which the AC component is capable of starting from where
it left off in its previous execution with low overhead. It has
the following properties: (1) O(ed?) worst-case time com-
plexity in any node and any branch of the search tree; (2)
O(ed) space complexity; (3) the ability to avoid a type of re-
dundant constraint check called a negative repeat; (4) no re-
computation and maintenance of its internal data structures
upon backtrack.

2 Definitions

In this paper we consider CSPs with binary constraints and
use Dx, n, e, and d to denote the current domain of variable
X, the number of variables, the number of constraints, and
the maximum domain size respectively. We also assume a do-
main to be totally-ordered and adopt a random-access doubly
linked-list implementation. The terms head and tail denote
the boundary of a domain. A constraint check between value
a € Dx and value b € Dy is denoted by Cxy (a, b).

A propagation-oriented backtrack search algorithm for
CSPs is the standard depth-first backtrack search framework
augmented by some process that handles all constraint prop-
agation and the maintenance of the internal data structures
involved. The search treeis defined by associating each node
with a variable assignment of the algorithm. Node complexity
of the algorithm is the time complexity cost of the constraint
propagation performed at each node. Path complexity is the
aggregate cost for any path in the search tree, summing the
cost of every node in succession, starting from the root, to a
leaf. During search some constraint checks may be repeated
many times even though the constraint processing component
is optimal in a single execution. We define the following
type of redundant check called a negative repeat. Negative
repeats can be troublesome for hard problems that require a
large amount of backtracking.

*This work has received support from Science Foundation Ire-
land under Grant 00/PI1.1/CQ75.

Definition 1 (Negative Repeat) A constraint check
Cxy (a,b) performed at time ¢ during search is called a
negative repeat with respect to Y if and only if:

(1) Cxy (a, b) = false, and

(2) Cxy (a, b) has been performed at time s where s < ¢, and
(3) b has been continuously present in the time interval (s, t).

3 Adaptive Domain Ordering

In this section we introduce a new MAC algorithm called
Adaptive Domain Ordering (ADO). The key feature is the
dynamic rearrangement of variable domains after each back-
track. A pruned value is simply restored to the end of its do-
main, rather than its initial position. This technique makes
the algorithm capable of avoiding all negative repeats as
well as requiring no maintenance on its internal data struc-
ture. Unlike AC-3.1, on which the constraint processing unit
of ADO is bhased, we associate the following two invari-
ants for last(X,a,Y). First, the safety invariant: there exists
no support of a in {¢ € Dy | ¢ < last(X,a,Y)}. Sec-
ond, the prospect invariant: there exists a support of a in
{c € Dy | ¢ > last(X,a,Y)}. ADO is a propagation-oriented
backtrack search algorithm and behaves like MAC-3.1 for the
most part. The main differences lie in the routines for re-
moving a value (r enove), finding a support, and restoring
a value (restore). When a value is removed, any last that
points to it will be moved to the next value. When no sup-
port for a € Dx is found in Dy, last(X,a,Y) will be made
to point to tail of Y. When a value is restored, all the last
pointers that point to the tail will be made to point to the re-
stored value instead. It can be proved that, given any path in a
search tree, the worst-case aggregate complexity of r enove
is O(ed?). Due to space restriction we are not able to give de-
tailed proofs of the complexity cost and correctness of ADO.
An example trace of the algorithm is shown as follows.
Example Consider Dx = {a,b,c,d}, Dy = {1,2,3,4}
and Cxy={(a,1),(b,1),(c,2),(d,4)} (allowed tuples). The
result after the initial AC processing? is shown in Figure (1.1):
last(X,a,Y)=1, last(X,b,Y)=1, last(X,c,Y)=2, and last(X,d,Y)=4.
Suppose a and d are removed due to some external cause;
their last values remain unchanged (1.2). Next, suppose 4 is
removed. The result after AC processing is shown in (1.3). At

n truth, we only enforce directional AC on the arc (X,Y) to
keep the example simple.

e op®

:’M@W@\zi :’g//@\zi :’3

e~ {EPM@\@/% @\(D}%l/{%@\@/\% {@}%@\@)% w@i@%ﬁ\@/z

(1.3)

(1.4)

the next search level suppose 1 is removed. According to the
algorithm, any last that points to 1 — including last(X,a,Y)
— will be shifted to 2 (1.4). Figure (1.5) shows the result
after the problem is made arc consistent. Now consider the
network after backtrack. Since 1 is removed after 4, it must
be restored before. Figure (1.6) shows the result after 1 is re-
stored. All the last pointers that pointed to tail are moved to
1. Notice that b is restored as well because it was pruned at
the same level as 1. Figure (1.7) shows the result after 4 is re-
stored. Figure (1.8) shows the network after the search back-
tracks to the point where we started this example. Note how
the last pointers and the domain ordering differ from (1.1). O

To make ADO efficient, we need another data structure as-
sociated with each value to account for the last pointers that
point to it. This is called buffer. Its elements can be preallo-
cated since a value has only one last pointer in any constraint.
We then make a last pointer refer to a value’s buffer instead
of the value itself — i.e. (a, X) € buffer(b,Y) iff last(X,a,Y)
points to buffer(b,Y). This allows a set of last pointers to be
switched all at once just by rearranging related buffers. For
example, consider Figure (2.1), a more detailed view of (1.5).
When 1 is restored, we want to move all the pointers from tail
to 1. This can be done simply by swapping the two buffers
(2.2). Asaresultrest or e takes O(1) time.

We use a similar technique for r emove. We compare the
buffer of the value to be removed with that of the next value
in the current domain (or tail if there is none) and swap both
buffers if the first contains more elements. For an exam-
ple, consider Figure (2.3), which is the detailed view of Fig-
ure (1.3). When value 1 is removed, its buffer size is com-
pared with the buffer size of value 2. Since it has more ele-
ments, we move pointers from the buffer for value 2 into that
for value 1 and swap both buffers, which results in (2.4).

Given any path in a search tree, the worst-case aggregate
complexity of r emove using buffer with the above techniques
is O(edlgd). We can further reduce the cost by represent-
ing data in a buffer as a rooted tree and having the root of
the smaller tree point to that of the larger one. In fact, this is
the union-by-rank operation for the disjoint-set union prob-
lem. remove then takes O(1) time. However, locating the
value of a last pointer no longer takes constant time. By us-
ing path compression, its worst-case aggregate complexity is
O(ed a(ed?)) where « is the inverse Ackerman’s function,
which is almost constant [Tarjan, 1975].

ADO has O(ed?) for node and path complexity since the
cost related to buffer is subsumed by the standard cost of es-
tablishing arc consistency. Correctness follows because: (1)
the prospect invariant states that there is a support somewhere

(1.5) (1.6) (1 7)

for each value, thereby enforcing arc consistency; (2) the
safety invariant states that no support is skipped. Note that
because the problem is made arc consistent before the search
starts, we can always expect a value to have a support. If a
value is subsequently removed, it is only because all of its
supports are pruned; these supports are still in the original
domain. The existence of a support in the original domain is
central in the correctness proofs, and without the AC prepro-
cessing before the search starts ADO would not be correct.

4 Conclusions

We have designed ADO to explore the theoretical limits of
MAC and, as far as we know, it achieves the best results and
outperforms all other existing MAC algorithms. Specifically,
ADO has O(ed?) worst-case time complexity in any node and
any branch of the search tree while using only O(ed) space.
This resolves the trade-off between the two traditional imple-
mentations of MAC-3.1. The first one records every change
made to last so that after backtrack the algorithm can start
from the exact same state. Although both node and path com-
plexity for this approach is O(ed?), its space complexity is
O(edmin(n,d)). The second approach resets last in every
search node to keep the space at O(ed), but this comes at the
expense of path complexity, which becomes O(ned?).

Régin [2004] also aims to create a maintenance-free MAC
algorithm that has the best features from the two implemen-
tations of MAC-3.1. The algorithm in [Régin, 2004] is both
node and path optimal while using O(ed) space. However,
the last structure needs to be recomputed and updated after
each backtrack besides the normal restoration of pruned val-
ues. It cannot avoid negative repeats. By contrast, ADO re-
quires no recomputation and no update of its internal structure
and is able to avoid negative repeats.

References

[Regin, 2004 J.-C. Regin. Maintaining arc consistency algorithms
during the search with an optimal time and space complexity.
In CP-04 Workshop on Constraint Propagation and Implemen-
tation, 2004.

[Sabin and Freuder, 1994] D. Sabin and E. C. Freuder. Contradict-
ing conventional wisdom in constraint satisfaction. In Proceed-
ings of ECAI-94, pages 125-129, 1994.

[Tarjan, 1975] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. Journal of ACM, 22(2):215-225, 1975.

[Zhang and Yap, 2001] Y. Zhang and R. H. C. Yap. Making AC-3
an optimal algorithm. In Proceedings of 1JCAI-01, pages 316-
321, 2001.

