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Abstract

This paper proposes a novel approach to discover
simultaneous time differential law equations hav-
ing high plausibility to represent first principles un-
derlying objective processes. The approach has the
power to identify law equations containing hidden
state variables and/or representing chaotic dynam-
ics without using any detailed domain knowledge.

1 Introduction

A set of well known pioneering approaches of scientific law
equation discovery is called BACON family [Langley et al.,
1987]. They try to figure out a static equation on multiple
guantities over awide state range under agiven laboratory ex-
periment. Some approaches introduced unit dimension con-
straints and “ scale-type constraints’ to limit the search space
to mathematically admissible equations reflecting the first
principles [Falkenhainer and Michalski, 1986],[Washio and
Motoda, 1997]. Especially, the scale-type constraints have
wider applicability since it does not reguire any unit informa-
tion of quantities. Subsequently, LAGRANGE addressed the
discovery of “simultaneous time differential law equations’
reflecting the dynamics of objective processes under “passive
observations” where none of quantities are experimentally
controllable [Dzeroski and Todorovski, 1995]. Its extended
version called LAGRAMGE introduced domain knowledge
of the objective processto limit the search space within plau-
sible law equations [Todorovski and Dzeroski, 1997]. Ex-
tended IPM having similar functions with LAGRAMGE fur-
ther identified plausible law equations containing “hidden
state variables’ when the variables are known in the domain
knowledge [Langley et al., 2003]. PRET identified “chaotic
dynamics’ under similar conditions with these approaches
where rich domain knowledge is available [Bradley et al.,
1998]. However, scientists and engineers can develop good
models of the objective dynamics without using the discovery
approachesin many practical cases when the detailed domain
knowledge is available. Accordingly, the main applications
of the discovery approaches are to identify simultaneous time
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differential equations reflecting the first principles under pas-
sive observation and “little domain knowledge.”

In this paper, we propose a novel approach called SCALE-
TRACK (SCALE-types and state TRACKing based discov-
ery system) to discover amodel of an objective process under
the following reguirements.

(1) The model is simultaneous time differential equations
representing the dynamics of an objective process.

(2) The mode is not an approximation but a plausible can-
didate to represent the underlying first principles.

(3) The moddl is discovered from passively observed data
without using domain knowledge specific to the objec-
tive process.

(4) Themodd can include hidden state variables.
(5) The modd can represent chaotic dynamics.

2 Outline

2.1 Basic Problem Setting

We adopt the following “state space model” of objective dy-
namics and measurements without loss of generality.

@) = flx)+o@) (v(t)~N(0,%,)), and
y(t) Ca(t) + w(t) (w(t) ~N(0,Xu)),

where the first equation is called a “ state equation” and the
second a “measurement equation.” x is caled a state vec-
tor, f(x) a system function, v a process noise vector, y a
measurement vector, C' a measurement matrix, w a measure-
ment noise and ¢ atime index. f(x) is not limited to linear
formulae in general. C is represented by a linear transfor-
mation matrix, since the measurement facilities are artificial
and linear in most cases. If C is column full rank, the val-
ues of all state variables are estimated by solving the mea-
surement equation with . Otherwise, some state variables
are not estimated within the measurement equation, and these
variables are called “hidden state variables.” In the scientific
law equation discovery, f (x) isinitially unknown, and even
x is not known correctly. Only a state subvector ’(C x)
and a submatrix C’(C C) areinitialy known. To derive C
from C’, SCALETRACK must identify the dimension of =
at first. Then, it searches plausible candidates of f(x) from
the measurement time series data.



2.2 Entire Approach

The entire approach of SCALETRACK is outlined in Fig-
ure 1. Given a set of measurement time series data, the di-
mension of x isidentified through a statistical analysis called
“correlation dimension analysis’ [Berge et al., 1984]. For
each element of y, its time trgjectory is mapped to a phase
space constructed by time lagged values of the element, and
the degree of freedom, i.e., the dimension of x, embedded in
the time trgjectory is estimated by computing the sparseness
of the trgjectory in the space.

Once the dimension is known, all possible combinations
of scale-types of the elementsin « are enumerated based on
scal e-type constraints, the known measurement submatrix C'’
and the scale-types of the elementsin y. The representative
scale-typesof quantitiesareratio scaleand interval scale. The
examples of the ratio scale quantities are physical mass and
absolute temperature where each has an absol ute origin, while
the examples of the interval scale quantities are temperature
in Celsius and sound pitch where their origins are not abso-
lute and arbitrary changed by human's definitions. Due to
these natures, the quantitative relations among the quantities
are strongly constrained [Luce, 1959], and these constraints
are used to determine the scale types of the elements in
from y. After every combination of the scale typesin x is
derived, the candidate formulae of a state equation are gener-
ated for each combination based on “Extended Product The-
orem” [Washio and Motoda, 1997] limiting the admissible
formulae of the equation based on the scale-type constraints.

Subseguently, through a set of state tracking simulations
called “SISSRMC filter” on the given measurement time se-
ries data, the parameter values and the states in every candi-
date state equation are estimated [Doucet et al., 2000]. This
state tracking has many advantages comparing with the other
nonlinear state tracking approaches such as the conventional
Extended Kalman Filter [Haykin, 2001] and the quditative
reasoning based PRET [Bradley et al., 1998]. The former us-
ing the linearization of the state equations does not work well
when the equations include some singular points and/or some
state regions having strong sensitivity to the tracking error.
Thelatter faces acombinatorial explosion of qualitative states
when the dimension and/or the complexity of the state space
structure are high. In contrast, SISSRMC filter does not re-
quire any approximation to be spoiled by the singularity and
the strong nonlinearity, and does not face the combinatorial
explosion of the states to be considered, because it tracks the
state probability distributions by using its direct and sequen-
tial Monte Carlo integration within Bayesian framework. In
our approach, the estimated parameter values are rounded off
to integers when the values are close enough to the integers
within the expected estimation errors, since the parameters
tend to be integers in many physical processes. Finally, some
state equations providing highly accurate tracking in terms
of “Mean Square Error (MSE)” are selected as the plausible
candidates of first principle based and dynamic state space
models of the objective process.

2.3 Implementation

The evaluation of candidate state egquations by the SISRMC
filter is the most time consuming step. Any search can not
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Figure 1. Outline of Entire Approach.
Table 1: Basic Performance.

case v ct (h) 0w (%)
(0w = 1.0%) 0105102050
RR 221 15| + + + + —
RRH 221 55| £ + — — —
RI 2.19 40 | + + + + —
RIH 2.19 55| + + — — —

be skipped, since the search space is honmonotonic. We ex-
perienced that one run of stand alone SCALETRACK to dis-
cover a simple state equation took more than a month even
if we used an efficient algorithm. Accordingly, the current
SCALETRACK introduced a simple grid computing frame-
work using a PC cluster consisting of a control server and
10 persona computers where each has an Athlon XP 1900+
(1.6 GHz) CPU and 2GB RAM . The server computesthefirst
three steps and then allocates the task to evaluate 10% of can-
didate state equations to each computer. Because thistask is
mutually independent, and occupies the most of computation
in SCALETRACK, this implementation accelerates the run
speed almost 10 times.

3 Result

3.1 Basic Performance Evaluation

The evaluation is made in terms of scale-types of state vari-
ables, hidden state variables and measurement noise levels by
using the following two dimensional artificial formulae.

= o1 (t)z2(t) } RR,

z1(t)
Z2(t)

wherey; = x; andy, = x5 areratio scale.

0.4x1 (t)(x2(t) +0.2) }RI,

—~

—0.5.T2(t)

(t
—0.1(z2(t) + 0.6)



Figure 2: An Attractor of Altered Rossler Chaos.

where y; = =z, isratio scae and y» = x5 interval scae.
Table 1 shows the evaluation result. All state variables are
observed in RR and RI. Whereas, the measurement variable
1y isnot availablein RRH and RIH respectively, and hence a
hidden state variable existsin these cases. The correlation di-
mension analysis properly estimated the dimension v of state
vectors as nearly 2 in each case. The computation times ct
required for RRH, Rl and RIH were longer than that of RR,
because the variety of admissible formulae containing inter-
val scale variables is larger than that of ratio scale variables.
The result in that the formula having the correct shape is top
ranked by the accuracy is marked by +. If the correct for-
mulais derived within the top five solutions, it is marked by
+, otherwise it is marked by —. The table shows that almost
0w = 2.0% relative noise is acceptable for no hidden state
cases, while noise less than 1.0% is required for hidden state
cases. Since0.5—2.0% noiseisthe most widely seenin many
applications, the performance of SCALETRACK is practical
for no hidden state cases and some hidden state cases.

3.2 Discovery of Chaos

The state equation to be discovered is the following Altered
Rossler Chaos equation.

Ty = —x9 —x3, X2 =1x1 + 0.3622, and
Thishasan attractor ina (1, 2, 3 )-phase space as depicted
in Figure 2. All state variables are interval scale, and can
be measured through the corresponding interval scale mea
surement variables respectively. v = 3.33 was obtained in
the correlation dimension analysis, and hence the state equa-
tions consisting of three state variables were searched. The
required computation time was 15.0 hours, and the following
most accurate state equation was resulted. This formula has
an identical shape with the original except some discrepan-
ciesof coefficients. Thisindicatesthe high ability of SCALE-
TRACK to discover the Chaotic dynamics reflecting the un-
derlying first principles.

T1 = —Toy — x3, To = x1 + 0.33.272, and
i3 = 0.064(21 — 6.34) (21 + 100225 — 4.75).

4 Conclusion

SCALETRACK achieved three advantages which have not
been addressed in any past work of mathematics, physics and

engineering not limited to scientific discovery. Thefirstisthe
discovery of simultaneous time differential equations having
plausibility to represent first principles. The secondisthedis-
covery of hidden state variables. Thethird is the discovery of
chaotic dynamics. These discoveries are done without using
detailed domain knowledge. These advantages are essentially
important in many scientific and engineering fields dueto the
wide existence of such dynamicsin nature.
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