
Abstract 
This paper describes the integration of robot 
path-planning and spatial task modeling into a 
software system that teaches the operation of a 
robot manipulator deployed on International 
Space Station (ISS). The system addresses the 
complexity of the manipulator, the limited direct 
view of the ISS exterior and the unpredictability 
of lighting conditions in the workspace. Robot 
path planning is used not for controlling the 
manipulator, but for automatically checking 
errors of a student learning to operate the 
manipulator and for automatically producing 
illustrations of good and bad motions in training.    

1 Introduction 
Designing software that teaches requires, in advanced 
cases, the implementation of “intelligence” capabilities. 
After all, the best human teachers are those mastering the 
subject they teach, having communication skills and 
understanding the student’s problem solving process in 
order to help him. With the aim of furthering intelligent 
software-based education systems, we have been 
developing a software simulator, called RomanTutor, that 
can be used to train astronauts to operate a robotic 
manipulation system (the Mobile Servicing System, 
MSS), on the International Space Station (ISS, Figure 1).   

The MSS consists of a Space Station Remote 
Manipulator System (SSRMS), a Mobile Base System 
(MBS), a Mobile Transporter (MT), and a Special 
Purpose Dexterous Manipulator (SPDM).  The SSRMS is 
a 17-meter long articulated robot manipulator with seven 
rotational joints and two latching end-effectors which can 
grapple special fixtures, giving it the capability to “walk” 
from one grappling fixture to next on the exterior of the 
ISS. The SPDM is a dexterous manipulator with two 
symmetrical six-joint arms and can be operated from the 
end of the SSRMS. The MT is a platform that serves to 
move SSRMS along the main truss of ISS.   

The MSS is operated from a robotic workstation 
located inside one of the ISS modules and is equipped 
with three video monitors, each displaying a view from 
one of the 14 cameras mounted on the ISS exterior and 
the SSRMS. Crewmembers operating the MSS have no 
direct view of the ISS exterior other than the three 
monitors. In fact, choosing the right camera views to 
display is one of the tasks for operating the SSRMS.   

RomanTutor is a system still under development; here 
we describe the integration of robot path-planning and 
spatial task modeling in an MSS simulator to provide 
useful feedback to a student operating the SSRMS. To 
illustrate, when a student is learning to move a payload, 
RomanTutor invokes the path-planner periodically to 
check whether there is a path from the current 
configuration to the target and provides feedback 
accordingly. The path-planner not only computes 
collision free paths but is also capable of taking into 
account the limited direct view of the ISS, the lighting 
conditions and other safety constraints about operating the 
SSRMS.  

2 Architecture and Basic Functionalities 
RomanTutor works with any robot manipulator provided 
a 3D model of the robot and its workspace are specified. 
The system includes the following components among 
others (Figure 2): a graphic user interface, a feedback 
generator, a path planner, a movie generator, and third-
party libraries (PQP [Larsen et al., 2000], Open Inventor  
from Silicon Graphics and MPK [Sanchez and Latombe, 
2001]).  

Path-Planning for Autonomous Training on Robot Manipulators in Space 
 

Froduald Kabanza 
Université de Sherbrooke 
kabanza@usherbrooke.ca 

 
 

 

Roger Nkambou 
U. du Québec à Montréal 
nkambou.roger@uqam.ca 

 
 

 

Khaled Belghith 
Université de Sherbrooke 

khaled.belghith@usherbrooke.ca 
 
 

 

Figure 1. ISS with the SSRMS 



A snapshot of the user interface is shown on Figure 3. 
It emulates the Robot workstation using three screens (for 
the three monitors). The keyboard is used to operate the 
robot. In command mode, one controls the joints directly; 
in automatic mode, one moves the end-effector, small 
increments at a time, relying on inverse kinematics to 
calculate the joint rotations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The robot free workspace is segmented into zones 

with each zone having an associated degree of 
desirability, that is, a real number in the interval [0 1], 
depending on the task, visual cue positions, camera 
positions, and lighting conditions. The closer the dd is to 
1, the more the zone is desired. Safe corridors are zones 
with dd near to 1, whereas unsafe corridors are those with 
dd in the neighborhood of 0. We extend the definition of 
dd to robot configurations and paths in a straightforward 
way. 

Students carry out robot operation tasks that involve 
moving the manipulator (avoiding collision and 
singularities, using the appropriate speed, switching 
cameras as appropriate, and using the right operation 
mode at each stage), berthing, or mating. These tasks 
require the student to be able to identify a corridor in a 
free workspace for a safe operation of the robot and 
follow it. The student must do this based on the task, the 
location of cameras and visual cues, and the current 
lighting conditions. Therefore localization and navigation 
are important in robot operations.  

The feedback generator periodically checks the 
current state to trigger feedback to the student, using rules 
that are preconditioned on the current state information 
and the current goal. These are “teaching” expert rules 
and can be as efficient as the available teaching expertise 
allows. The feedback generator also changes the lighting 
conditions based upon specification rules in the current 
state. Feedback rules, lighting rules and goals are 
structured into a task automaton.   

A task automaton is a state transition system that 
abstracts the evolution of the simulated system 

configuration under the student’s actions. In any given 
state of the task automaton the feedback generator is 
monitoring the student’s actions, focusing on one subgoal, 
and using a set of feedback rules to help the student. A 
transition to a new state (e.g., the payload has reached a 
predefined milestone) switches the subgoal and the 
feedback rules to those of the new state. 

Feedback rules are production rules preconditioned on 
the state variables and the state goal; the consequents are 
normally multimedia content to be displayed to the 
student, but rules can also update user-defined variables 
(e.g., to keep a record of previous state variables or to 
update a performance score for the student).  

Feedback rules can invoke automated movie 
generation using templates of the form “illustrate correct 
move from <current-configuration> to <goal-
configuration>”. Such a template uses safe corridor 
specifications and the path-planner to generate a path with 
a high degree of desirability (i.e., in a safe corridor); then, 
it determines the best sequence of camera views for the 
different parts of the zone, and uses them as virtual 
cameras to generate a movie showing the path.  

3 The Path Planner 
For efficient path planning, we pre-process the robot 
workspace into a roadmap of collision-free robot motions 
in regions with highest desirability degree.  More 
precisely, the roadmap is a graph such that every node n 
in the graph is labeled with its corresponding robot 
configuration n.q and its degree of desirability n.dd, 
which is the average of dd of zones overlapping with n.q. 
An edge (n,n') connecting two nodes is also assigned a dd 
equal to the average of dd of configurations in the path-
segment (n.q,n'.q). The dd of a path (i.e., a sequence of 
nodes) is an average of dd of its edges.  

Following probabilistic roadmap methods (PRM) 
[Sanchez and Latombe, 2001], we build the roadmap by 
picking robot configurations probabilistically, with a 
probability that is biased by the density of obstacles. A 
path is then a sequence of collision free edges in the 

Figure 3.  RomanTutor User Interface 
 

Figure 2. RomanTutor Architecture 



roadmap, connecting the initial and goal configuration. 
Following the Anytime Dynamic A* (AD*) approach 
[Likhachev et al, 2005], to get new paths when the 
conditions defining safe zones have dynamically changed, 
we can quickly re-plan by exploiting the previous 
roadmap. On the other hand, paths are computed through 
incremental improvements so the planner can be stopped 
at anytime to provide a collision-free path and the more 
time it is given, the better the path optimizes moves 
through desirable zones. Therefore, our planner is a 
combination of the traditional PRM approach [Sanchez 
and Latombe, 2001] and AD* [Likhachev et al, 2005] and 
it is flexible in that it can into account zones with degrees 
of desirability. We call it Flexible Anytime Dynamic 
PRM (FADPRM).  

More precisely, FADPRM works as follows. The 
input is: an initial configuration, a goal configuration, a 
3D model of obstacles in the workspace, a 3D 
specification of zones with corresponding dd, and a 3D 
model of the robot. Given this input: 

• To find a path connecting the input and goal 
configuration, we search backward from the goal 
towards the initial (current) robot configuration. 
Backward instead of forward search is done 
because the robot moves, hence its current 
configuration, is not necessarily the initial 
configuration; we want to re-compute a path to the 
same goal when the environment changes before 
the goal is reached. 

• A probabilistic queue OPEN contains nodes of the 
frontier of the current roadmap (i.e., nodes are 
expanded because they are new or because they 
have previously been expanded but are no longer 
up to date w.r.t. to the desired path) and a list 
CLOSED contains non frontier nodes (i.e., nodes 
already expanded) 

• Search consists of repeatedly picking a node from 
OPEN,generating its predecessors and putting the 
new ones or out of date ones in OPEN. 

• The density of a node is the number of nodes in the 
roadmap with configurations that are a short 
distance away (proximity being an empirically set 
parameter, taking into account the obstacles in an 
application domain). The distance estimate to the 
goal takes into account the node's dd and the 
Euclidean distance to the goal.  
A node n in OPEN is selected for expansion with 
probability proportional to  
(1-ß) / density(n) + ß * goal-distance-estimate(n) 
 with 0 ≤ ß ≤ 1. 

  
This equation implements a balance between fast-
solution search and best-solution search by 
choosing different values for ß. With ß near to 0, 
the choice of a node to be expanded from OPEN 
depends only on the density around it. That is, 
nodes with lower density will be chosen first, 

which is the heuristic used in traditional PRM 
approaches to guaranty the diffusion of nodes and 
to accelerate the search for a path [Sanchez and 
Latombe, 2001]. As ß approaches 1, the choice of 
a node to be expanded from OPEN will rather 
depend on its estimated distance to the goal. In this 
case we are seeking optimality rather than speed. 

• To increase the resolution of the roadmap, a new 
predecessor is randomly generated within a small 
neighborhood radius (that is, the radius is fixed 
empirically based on the density of obstacles in the 
workspace) and added to the list of successors in 
the roadmap generated so far. The entire list 
predecessors is returned. 

• Collision is delayed: detection of collisions on the 
edges between the current node and its 
predecessors is delayed until a candidate solution 
is found; if there is a collision, we backtrack. 
Collisions that have already been detected are 
stored in the roadmap to avoid doing them again. 

• The robot may start executing the first path found. 
• Concurrently, the path continues being improved 

by re-planning with an increased value of ß.   
• Changes in the environment (moving obstacles or 

changes in dd for zones) cause updates of the 
roadmap and re-planning. 

4 Conclusion  
RomanTutor's potential benefits to future training 
strategies are (1) the simulation of complex tasks at a low 
cost (e.g., using inexpensive simulation equipment and 
with no risk of injuries or equipment damage) and (2) the 
installation anywhere and anytime to provide “just in 
time” training. Crewmembers would be able to use it 
onboard of the ISS, for example, to study complex 
maintenance or repair operations. For very long missions, 
they would be able to use it to train regularly in order to 
maintain their skills.  

References 
[Sanchez and Latombe, 2001] G. Sanchez and J-C. 

Latombe. A single-query bi-directional probabilistic 
roadmap planner with lazy collision checking, In Proc. 
of 9th International Symposium on Robotics Research, 
pages 403-417, 2001.  

[Larsen et al., 2000] E. Larsen, S. Gottschalk, M. Lin, and 
D. Manocha. Fast Distance Queries using Rectangular 
Swept Sphere Volumes. In Proc. of IEEE 
International Conference on Robotics and 
Automation, 4:24-28, 2000.  

 [Likhachev et al, 2005] M. Likhachev, D. Ferguson, A. 
Stentz, and S. Thrun. Anytime Dynamic A* : An 
Anytime Replanning Algorithme. In Proc. of 
International Conference on Automated Planning and 
Scheduling, June 2005. 

 


