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Abstract

Scaling Al agorithms to large problems requires
that these algorithms work together to harness their
respective strengths. We introduce a method of au-
tomatically constructing HHMMs using the output
of a sequential data-mining algorithm and sequen-
tial prediction agorithm. We present the theory
of this technique and demonstrate results using the
MavHome intelligent environment.

1 Introduction

An important component of an intelligent environment is to
anticipate actions of a human inhabitant and then automate
them. The decision of which action to execute must be cor-
rect in order to avoid creating excess work for humans in the
form of correcting wrong automated actions and performing
manual actions.

We examine the problem of learning human inhabitant be-
havioral modelsin the MavHome intelligent environment and
using this to automate the environment. An event in the
environment is described by the time of the event, the de-
vice/sensor zone, the device/sensor number, the new value of
the device or sensor, the source of the vent (e.g., sensor net-
work, powerline controller), and the inhabitant initiating the
event (if known).

2 Solution Strategy

To automate the environment, we collect observations of
manual inhabitant activities and interactions with the environ-
ment. We then mine sequential patterns from this data using
the ED sequence mining algorithm. Finally, a hierarchical
Markov model is created using low-level state information
and high-level sequential patterns, and is used to learn an ac-
tion policy for the environment.

2.1 Mining Sequential PatternsUsing ED

Our data mining agorithm, ED, mines sequential patterns
from observed activities. Data is processed incrementally
and sequential patterns are mined according to their ability
to compress the data using the Minimum Description Length
principle. Periodicity (daily, every other day, weekly occur-
rence) of episodes is detected using autocorrelation and in-
cluded in the episode description. If the instances of apattern

are highly periodic (occur at predictable intervals), the exact
timings do not need to be encoded and the resulting pattern
yields even greater compression value.

2.2 Predicting ActivitiesUsing ALZ

To predict inhabitant activities, we borrow ideas from text
compression. By predicting inhabitant actions, the home
can automate or improve upon anticipated events that inhabi-
tants would normally perform in the home. Our Active LeZi
(ALZ) agorithm [Gopal ratnam and Cook, 2005] approaches
this problem from an information-theoretic standpoint. ALZ
incrementally parses the input sequence into phrases and, as
a result, gradually changes the order of the corresponding
Markov model that is used to predict the next symbol in the
sequence. Frequency of symbolsis stored along with phrase
information in a trie, and information from multiple context
sizes are combined to provide the probability for each poten-
tial symbol as being the next oneto occur. In our experiments,
ALZ proved to be avery accurate sequential predictor. How-
ever, accuracy is further improved when the task is restricted
by ED to only perform predictions when the current activity
islikely to be part of afrequently-occurring pattern.

2.3 Decision Making Using ProPHeT

Work in decision-making under uncertainty has popularized
the use of Hierarchical Hidden Markov Models and Partially
Observable Markov Decision Processes. Recently, there have
been many published hierarchical extensions that allow for
the partitioning of large domains into a tree of manageable
POMDPs[Pineau et al., 2001; Theocharous et al., 2001]. Al-
though the Hierarchical POMDP is appropriate for an intel-
ligent environment domain, current approaches generally re-
quire a priori construction of the HPOMDP. Given the large
size of our domain, we need to seed our model with structure
automatically derived from observed inhabitant activity data.

Unlike other approaches to creating a hierarchical model,
our decision learner, ProPHeT, actually automates model cre-
ation by using the ED-mined sequences to represent the ab-
stract nodesin the higher levels of the hierarchy. Lowest-level
states correspond to an environment state representation to-
gether with an ALZ-supplied prediction of the next inhabitant
action. To learn an automation strategy, the agent explores
the effects of its decisions over time and uses this experi-
ence within areinforcement learning framework to form con-



trol policies which optimize the expected future reward. The
current version of MavHome receives negative reinforcement
when the inhabitant immediately reverses an automation de-
cision (e.g., turnsthelight back off) or an automation decision
contradicts user-supplied safety and comfort constraints (e.g.,
do not let the temperature exceed 100 degrees).

3 Environments

All of the algorithms described here are implemented in
MavHome and are being used to automate two environments,
shown in Figure 1. The MavLab environment contains work
areas, cubicles, a break area, a lounge, and a conference
room. MavLab is automated using 54 X-10 controllers and
the current state is determined using light, temperature, hu-
midity, motion, and door/seat status sensors. The MavPad
is an on-campus apartment hosting a full-time student oc-
cupant. MavPad is automated using 25 controllers and pro-
vides sensing for light, temperature, humidity, leak detection,
vent position, smoke detection, CO detection, motion, and
door/window/seat status sensors.

Figure 1. The MavLab (left) and MavPad (right) environ-
ments.

4 Case Study

As an illustration of these techniques, we have evaluated a
week in aninhabitant’slife with the goal of reducing the man-
ual interactionsin the MavLab. The data was generated from
avirtual inhabitant based on captured data from the MavL ab
and was restricted to just motion and lighting interactions
which account for an average of 1400 events per day. We
trained ALZ and ED on real data and then repeated a typi-
cal week in our ResiSim simulator to determine if the system
could automate the lights throughout the day in real-time.

Figure 2: ProPHeT generated HHMM with production nodes
abstracted.

AL Z processed the data and converged to 99.99% accuracy
after 10 iterations through the training data, and accuracy was

54% on test data. When automation decisions were made us-
ing ALZ aone, interactions were reduced by 9.7% on aver-
age. Next, ED processed the data and found 3 episodes to
use as abstract nodes in the HPOMDP, as shown in Figure 2.
The HHMM model with no abstract nodes reduced interac-
tions by 38.3%, and the combined-learning system (ProPHeT
bootstraped using ED and ALZ) was able to reduce interac-
tions by 76%, as shown in Figure 3.
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Figure 3: Interaction reduction.

Experimentation in the MavPad using real inhabitant data
has yielded similar results. In this case, ALZ alone reduced
interactions from 18 to 17 events, the HPOMDP with no
abstract nodes reduced interactions by 33.3% to 12 events,
while the bootstrapped HPOMDP reduced interactions by
72.2%10 5 events.

In thisresearch we have shown that learning a gorithms can
successfully automate an intelligent environment. We seethat
synergy between these a gorithms can improve performance,
as ED-produced abstractions in the hierarchy coupled with
a prediction produced by ALZ improved automation perfor-
mance for ProPHeT. A full system deployment in the MavPad
is currently being conducted.
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