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Abstract
A martingale framework is proposed to enable
support vector machine (SVM) to adapt to time-
varying data streams. The adaptive SVM is a one-
pass incremental algorithm that (i) does not require
a sliding window on the data stream, (ii) does not
require monitoring the performance of the classifier
as data points are streaming, and (iii) works well for
high dimensional, multi-class data streams. Our ex-
periments show that the novel adaptive SVM is ef-
fective at handling time-varying data streams sim-
ulated using both a synthetic dataset and a multi-
class real dataset.

1 Introduction
In this paper we propose an efficient adaptive support vec-
tor machine (SVM) for time-varying data streams based
on the martingale approach [Vovk et al., 2003] and using
adiabatic incremental learning [Cauwenberghs and Poggio,
2000]. When a new data point is observed, hypothesis test-
ing decides whether any change has occurred. Once a change
is detected, historical information about previous data is re-
moved from the memory.

2 Change Detection Using Martingale
[Vovk et al., 2003] introduced the idea of testing exchange-
ability online using martingale. The sequence of random
variables z1, · · · , zn is exchangeable if the joint distribution
p(z1, · · · , zn) is invariant under any permutation of the in-
dices of the random variables. When a new labeled example,
zn, is observed, testing exchangeability of the sequence of
examples z1, z2, · · · , zn consists of two main steps [Vovk et
al., 2003]:

1. Extract the randomized p-value for zn:

pn =
#{i : αi > αn}+ θn#{i : αi = αn}

n
(1)

where αi is the strangeness measure (for SVM, one can
use either the Lagrange multipliers or the distances from
the hyperplane) for zi, i = 1, 2, · · · , n and θn is a ran-
dom number between 0 and 1.

2. Construct the randomized martingale:

M (ε)
n =

n∏

i=1

(
εpε−1

i

)
(2)

where pi are p-values, a constant ε ∈ [0, 1], and the ini-
tial martingale M

(ε)
1 = 1.

pi and M
(ε)
i , for i = 2, · · · , n− 1, are computed using Step 1

and 2.
The exchangeability of a data sequence is a slightly weaker

assumption compared to the randomness (i.i.d.) assumption.
Hypothesis testing using the randomized martingale is suit-
able to check for the randomness of a data sequence which,
in turn, can detect changes.

One tests the null hypothesis H0 : “no change in the data
stream” against the alternative hypothesis H1 : “change in the
data stream”. The martingale test continues as long as

0 < M (ε)
n < λ (3)

One rejects the null hypothesis when M
(ε)
n ≥ λ.

The martingale test is justified using the Doob’s Maximal
Inequality [Steele, 2001] which states that for a martingale
{Mk} and any λ > 0,

λP

(
max
k≤n

Mk ≥ λ

)
≤ E(Mn) (4)

Hence, if E(Mn) = E(M1) = 1, then

P

(
max
k≤n

Mk ≥ λ

)
≤ 1

λ
(5)

This inequality means that it is unlikely for Mn to have a high
value. Based on this inequality, λ is appropriately set to reject
the null hypothesis.

3 Experiments
Experiments are first conducted on a binary-class two-
dimensional rotating hyperplane data stream [Hulten et al.,
2001]. To show the performance of the adaptive SVM on
high dimensional multi-class data stream, experiments are
carried out using a modified three-digit data stream based on
the USPS handwritten digit dataset [LeCun et al., 1989]. For
the SVMs, C = 10 and the Gaussian kernel are used.
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Figure 1: The difference between baseline accuracy and the
accuracy of the adaptive SVM. Negative values imply better
performance than the baseline accuracy.
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Figure 2: The martingale values of the data stream. Detected
change points (denoted ∗): 1007, 3133, 4697, 5054, 6068,
7165, 8144, 9312, 11029, 12099, 13015, 14368, 15045. Miss
detections: 2001, 10001. The median of the time between
true change points and their corresponding detected change
points is 99 time units.

A. 2-D Rotating Hyperplane Synthetic Dataset
For the two-dimensional rotating hyperplane data stream, the
sequence consists of 16,000 data points with changes in the
data distribution occurring at points (1000 × i) + 1, for i =
1, 2, · · · , 15. For each segment of a steady data distribution,
500 points from the same data distribution are used to assess
the performance of the SVM classifier.

The adaptive SVMs using λ = 16, for the martingale test
(3), displays very good performance as shown in Figure 1.
The difference in accuracy from baseline accuracy (perfor-
mance of the classifier that adapts to the given true change
points) is near zero most of the time. Short bursts of accu-
racy discrepancy occur between true change points and their
corresponding detected change points. Longer accuracy dis-
crepancies happen when a significant change is detected late
(e.g. change point 4001) as shown in Figure 1. In Figure 2,
we observe that the martingale value is small and stable when
no change in the data distribution is detected. The martingale
value increases abruptly when change is suspected.

B. Three-digit Data Stream
The USPS handwritten digits dataset, which consists of 10
classes of dimension 256 and includes 7,291 data points, is
modified to form a data stream as follows. There are four
different data segments. Each segment draws from a fixed

Segment Digit 1 Digit 2 Digit 3 Total Change
Point

1 597/359 (0) 502/264 (1) 731/198 (2) 1830/821 1831
2 597/359 (0) 658/166 (3) 652/200 (4) 1907/725 3738
3 503/264 (1) 556/160 (5) 664/170 (6) 1723/594 5461
4 645/147 (7) 542/166 (8) 644/177 (9) 1831/490 -

Table 1: Three-Digit Data Stream: TR/TS (D): For the true
digit class D, TR and TS are the number of data points used
for segment construction and for testing respectively.
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Figure 3: Left Graph: The proportion of data points with
the difference from the baseline accuracy less than or equal
to some percentage value. The maximum, minimum and
mean percentage of data points at each accuracy difference
are shown. Right Graph: The mean difference between the
baseline accuracy and the accuracy of the adaptive SVM.

set of three different digits in a random fashion. The three-
digit set changes from one segment to the next. The composi-
tion of the data stream and ground truth for the change points
are summarized in Table 1. Ten simulations were performed
on the simulated data stream using the one-against-the-rest
multi-class SVM and the martingale test with λ = 10.

For the three-class data stream there are three martingale
values that have to be computed at each point in order to de-
tect change. When one of the martingale values is greater
than λ, the SVM will detect and adapt to the change. One can
see from Figure 3 that the adaptive SVM performs extremely
well. About 94% of the data points have a difference from
baseline accuracy less than or equal to 1%. There are no miss
detections for all the ten simulations.
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