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1 Introduction
Groups of robots are likely to accomplish certain tasks more
quickly and robustly than single robots,[Jager and Nebel,
2001]. Many robotic domains such as robotic search and
rescue, vacuuming, and waste cleanup are characterized by
limited operating spaces where robots are likely to collide.
In order to maintain group cohesion under such conditions,
some type of information transfer is likely to be useful be-
tween members of the team. This is especially true as ro-
botic domains are typically fraught with dynamics and un-
certainty such as hardware failures, changing environmental
conditions, and noisy sensors.

Questions such as what to communicate and to whom have
been the subject of recent study[Senet al., 1994], [Jager and
Nebel, 2001], [Tews, July 2001]. At times, forms of implicit
coordination have been shown to allow agents better adapt-
ability, robustness and scalability qualities[Senet al., 1994].
In theory, the lack of communication allows such methods to
be implemented on simpler robots. A second series of ap-
proaches attempt to improve group performance by having
robots locally communicate information[Jager and Nebel,
2001]. A third type of approach involves the use of some
type of central planner[Tews, July 2001]. We believe that
each type of communication framework is best suited for dif-
ferent environmental conditions. A mechanism is needed to
match the proper system to the given environment. This pa-
per attempts to provide such a framework with its use of a
coordination cost measure.

We measure all coordination costs including the time and
energy spent on coordination. We use this measure to eval-
uate the cost of communication. This result also allows us
to create robots that alter their communication scheme when
faced with dynamic domain conditions.

2 Talking the Right Amount
We model every robot’s coordination costCi, as a factor that
impacts the entire group’s productivity. This cost includes the
time and energy used during communication and also proac-
tive and / or reactive collision resolution behaviors. We found
that the use of communication, or lack thereof, can impact the
time or energy used in the second type of behaviors.
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We also are able to create adaptive coordination methods
that switch between different communication methods based
on each robot’s estimate of its coordination cost. When ro-
bots detect no resource conflicts, it decreases an estimate of
this cost,V , by a certain amountWdown. When a robot senses
a conflict is occurring, the value ofV is increased by a certain
amountWup. Thus, the valueV is constantly in flux based on
the robot’s perception of its environment. The values forV

are used to switch between a set of communication schemes
methods ranging from those with little cost overhead such as
those with no communication, to more robust methods with
higher overheads such as the localized and centralized meth-
ods. This approach is novel in that robots individually mea-
sure these values online during task execution and can thus
adapt their communication method as needed in response to
unforseen changes such as group or environment changes.

We proceeded to implement variations of three types of
communication schemes – implicit, localized, and centralized
methods. In our implementation, all communication types are
similar in that they resolve collisions by mutually repelling
once they sensed a teammate within a certain safe distanceε,
which we set to one robot diameter. Once robots came within
this distance, they acted as they were in danger of colliding
and used one of the resolution behaviors involving various
types of communication schemes. Different types of commu-
nication were used to determine the length of time a robot
would repel after this point.

We used the Teambots[Balch, 2000] simulator to imple-
ment these types of communication within groups of Nomad
N150 robots. We measured how many pucks (out of 60) were
delivered to the goal region within 9 minutes by groups of 2 –
25 robots using each communication type. We repeated each
trial 100 times for statistical significance.

Within the implicit method, no time or energy was lost due
to communication. This method assumed that robots were
able to autonomously compute their distance from the home
base. Once robots detected an impending collision, they used
a function of this distance (scalar distance * 5) as the time to
repel from its teammate(s). For these robots, the coordination
cost was equal to the time or the energy spent in these repul-
sion behaviors. In our first set of experiments we measured
the time spent in these behaviors. In our second set of ex-
periments, we allocated each robot 500 units of fuel. We as-
sumed most of the fuel was used by the robots to move, with a



smaller amount (1 unit per 100 seconds) used to maintain ba-
sic sensors and processing capabilities. Our coordinationcost
involved the amount of fuel used for resolving coordination
issues while robots engaged in repulsion behaviors.

Our localized method initiated communication only be-
tween the robots within theε distance. After this event, these
group members would exchange information above their rel-
ative distances from their typical target, their home base.The
closer robot then moved forward, while the other robot re-
pelled for a fixed period of 20 seconds. In our first set of
experiments, we measured the time these robots engaged in
communication and repulsion behaviors. We assumed that
1/5 of a second was needed for this localized information
transfer. In our second group of experiments, we measured
our coordination cost as a function of energy spent on co-
ordination. We again calculated this amount as a function of
the distance traveled during repulsion activities with a smaller
amount on sensors. In addition, we assumed each robot spent
0.3 units of fuel per localized communication exchange.

Our final method,Latency, used a centralized server with
a database of the location of all robots. Within this method,
one of two events triggered communication. First, as with
the localized method, robots dropping within theε distance
initiated communication by reporting its position, only inthis
case with a centralized server. The server then reported back
a repel value based on its relative position to other teammates.
However, in order for the server to store a good estimate of
the positions of all robots, a second, often more frequent type
of communication was needed where each robot reported its
position to the server. We used the same time and energy
usage parameters from the localized experiment to measure
the cost of coordination.

3 Analyzing the Cost of Communication
Our results support our claim that the best method of commu-
nication does change with domain conditions. Figure 1 con-
tains the results from the time based coordination cost trials.
The X-axis represents the group size, and the Y-axis the num-
ber of pucks successfully retrieved within each group. The
implicit approach worked best in small groups where colli-
sions were less likely. In medium sized groups, the localized
approach worked better. As collisions became frequent, the
large amount of communication inherent in the centralized
method became justified, and this group performed signifi-
cantly better. In these experiments, we found that a latency
time of 1 second yield the highest productivity from various
latency variations we studied.

When comparing equally sized groups, the team’s produc-
tivity strongly negatively correlated to its time and energy co-
ordination costs. On average over groups of 2 – 25 robots,
we found a high statistical correlation of -0.96 between these
groups’ productivity and their total coordination cost. Inour
equivalent energy experiment, we found a correlation value
of -0.95. This supports our hypothesis that coordination costs
measure based on time or energy can effectively model the
most effective communication method in groups.

Our measure was useful for communication adaptation as
well. In our implementation, adaptation was triggered oncea
robot’s autonomously measured coordination cost threshold,

Figure 1: Adaptation Using Coordination Costs

V exceeded a certain threshold. After this point, that robot
broadcasted which method it was switching to and all group
members would change in kind and reinitialize their cost es-
timatesV to this new value. Figure 1 shows the results from
our time based adaptive method. We conducted the two tailed
t-test to confirm the statistical significance of for our adaptive
time and energy methods (not shown). In both cases we found
p-values well below the 0.05 confidence interval. We believe
the success of these approaches was based on the ability of
these method to switch their basic communication strategy
as the probability of collisions vacillated. This enabled these
robots to improve their productivity in a significant fashion
regardless of the group size.

4 Conclusion and Future Work
This work demonstrates how coordination costs can model
the relative effective of robotic communication methods. Our
measure focuses on the time and fuel spent communicating
and resolving collisions. It facilitates effective comparison
between implicit, localized and centralized communication
methods. Using this information we are able to select the
most effective communication scheme for a given domain for
a group of robots. We are even able to dynamically switch
between these methods in a quick, online fashion. For future
work, we believe that additional expansions to our measure
will facilitate comparison and adaptation even within hetero-
geneous groups of robots with diverse qualities.
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