Detecting and locating faults in the control software of autonomous mobile robots *

Gerald Steinbauer and Franz Wotawa
Institute for Software Technology
Technische Universitit Graz
8010 Graz, Inffeldgasse 16b/2, Austria
{steinbauer,wotawa } @ist.tugraz.at

1 Introduction

Control software of autonomous mobile robots is character-
ized by its fairly high complexity which is in conflict with
stability. Complexity is caused by the software components
implementing the basic functionality like planning, sensor fu-
sion, actuator interfaces, and their interactions. Because of
the high complexity but also the instability of hardware com-
ponents and connections, and the underlying operating sys-
tem, complete stability is very unlikely. But if we want to
build a robot that is truly autonomous it has to deal with fail-
ures during its runtime without degrading the desired behav-
ior or even worse failing to fulfill its mission. Hence, a diag-
nosis system on top of the control system which does mon-
itoring the current behavior, locating the cause of a detected
failure, and taking the appropriate actions is a necessity.

To achieve this we introduce a model-based solution. This
includes a model of software components and their relation-
ships that are specified in the software architecture of the
robot’s control system. This model is then used to derive root
causes of a detected failure. The failure detection is based
on observations. For this we use the concept of observers. If
the monitored value exceeds its pre-specified boundaries, the
observer raises a conflict which causes the diagnosis engine
to compute the root causes. Once the root cause has been
identified, the diagnosis system takes appropriate actions in
order to retain the system’s correct behavior. The fault detec-
tion, localization, and correction procedures are all based on
declarative models of the control software.

2 Modeling software architectures

Software architectures comprise software components and
their connections. Components represent a collection of
classes which implement a certain behavior. The connec-
tions between components represent dependency relations
like client-server relationships and data flow. During the ex-
ecution of a program the components might spawn processes
and interact using method calls, or other means of commu-
nication, like events. Figure 1 depicts parts of the software
architecture of our mobile robot.

The formalization of the structural properties of the soft-
ware architecture considers the software components, their

*This research has been funded in part by the Austrian Science
Fund (FWF) under grant P17963-N04.

Object =5z
Tracker | O

Laser i ‘

Goal
Lositor |-

WorldModel
Eé

[}

RangeSensor_i

*‘ CAN

ong dependency
ndency

Kicker
WorldState Event Channel

Figure 1: Dependencies between software modules.

connections in terms of identifiers representing events or pro-
cedure calls, and a classification of dependency relations
which are used to repair the software during runtime. We
distinguish two different dependencies between components:
weak and strong. Two component are weakly dependent if
killing one component directly affects the other component.
Otherwise, the relationship is a strong dependency.

A software architecture model (SAM) comprises a set of
software components C'O, a set of connections C', a function
out : CO s 2C returning the output connections for a given
component, a function in : CO x C' +— 2¢ returning the input
connections for a given component and output connection, a
set of weak dependencies W DC C 2¢9*¢0 and a set of
strong dependencies SDC C 2¢9xC0,

The concrete behavior of the software at runtime is deter-
mined by the implemented behavior of its software compo-
nents. An abstraction of the concrete behavior is necessary in
order to get a declarative model of the system’s behavior. The
idea behind the abstract behavior model of software compo-
nents is similar to models which are based on dependencies
like the one described by [Friedrich et al., 1999]. If all inputs
to the model are correct, a software component should pro-
duce a correct output. This conversion has to be performed
for all components and their output connections.

For example, the rule that represents the abstract
behavior of the OT (Object Tracker) component is:
—AB(OT) A ok(Firewire) — ok(ObjectMeasurement)
where the predicate A B stands for abnormal, and ok indicates
a correct event or method call.

In order to locate root causes, i.e., the components which

cause a detected misbehavior, we have to introduce a notation
of observations. The easiest way of doing this is to use the
same ok predicate for the purpose. If we detect a misbehavior
at OM (Object M easurement), we could represent this by
the literal —ok(OM). We introduce a distinguished predicate
correct for observations to distinguish observations and com-
puted values . correct(z) for a connection x is true whenever
the observed connection shows the correct behavior. Oth-
erwise correct(x) is false. The appropriate model for OT
and OM is: correct(OM) — ok(OM), —~correct(OM) —
—0k(OM), correct(OM) — —-AB(OT)

3 Monitoring, Diagnosis and Repair

Coupling the running program with its software architec-
ture model requires an abstraction step. The running pro-
gram changes its state via changing variable values which
is caused by inputs from the environment. But SAM only
represents the software components and their communication
means. Therefore, we require to map changes to commu-
nication patterns. For this purpose we introduce observers.
An observer monitors a certain part of the program’s behav-
ior during the execution. If an observer detects a behavior
that contradicts its specification, it computes the appropri-
ate observations in terms of setting the observation predicates
—correct(x) for the connection z, and invokes the diagnosis
engine. In the current implementation we used the following
observers: Periodic event production checks whether an event
e is produced at least every n ms, Conditional event produc-
tion checks whether an event e; is produced n ms after the
occurrence of an event ey, Spawn processes checks whether
a component spawns a number n of processes and Periodic
method calls checks whether a component calls a method m
at least every n ms.

The observers are used to monitor the state of the system.
For this purpose the observers check their rules on a regular
basis. In cases of failure the diagnosis procedure is invoked.

The diagnosis task is based on the model-based diagnosis
(MBD) paradigm [Reiter, 1987]. In particular we use Re-
iter’s hitting set algorithm [Reiter, 1987]. In order to mini-
mize diagnosis time we only search for minimal cardinality
diagnoses which can be easily obtained when using Reiter’s
algorithm. We only construct the hitting set graph until a level
where the first diagnosis is computed. In most practical cases
single fault diagnoses can be found.

After diagnosis those components that are responsible for
a detected failure have to be killed and restarted. We have to
take care of the fact that restarting one component might re-
quire restarting another component. This can be done by us-
ing the information about strong dependencies between com-
ponents. The components that have a strong dependency rela-
tionship with each other have to be restarted. Hence, the steps
for repair would be: (1) compute the diagnoses. (2) compute
a set of components that have to be restarted. In this step we
compute all components that strongly depend on components
of a diagnosis. (3) Maximize the chance of repair by using a
larger set of components to be restarted.

The proposed diagnosis system has been tested on our mo-
bile robot system. For the evaluation of the diagnosis we in-
troduced artificial faults into the robot control system and an-

alyzed if the diagnosis system detected and located the fault
and recovered the control system.

Event-Observer
MotionDelta
Process-Obsetver MO ’7

AB(MO)

Process-Obsesver BE [

Diagnosis/Stop BE Restart MO Restart BE
Deadlock in MO Stop MO

0 5 10 15 20 25 30 Us

Figure 2: Diagnosis and repair of a fault in the motion service.

Figure 2 shows the results for an introduced deadlock in the
motion service (MO). After introducing the deadlock in MO
the Event Observer for the event MotionDelta perceives that
no more events are produced. The diagnosis kernel derived
that MO is malfunctioning. Instantly the repair process starts.
The repair action comprises a stop of the Behavior Engine
(BE), a stop of MO, and a restart of MO and BE. The restart
of BE is necessary because BE is strongly coupled with MO.
After repair the diagnosis kernel derives the diagnosis that all
components work properly now. The relatively long time for
the recovery could be explained by the fact that a repair of
services could take a while because of the required starting,
stopping and re-configuration of hardware components.

4 Related research and conclusion

Williams and colleagues [Williams et al., 1998] used model-
based reasoning to detect and recover failures of the hardware
of a space probe. Verma and colleagues [Verma et al., 2004]
used particle filter to estimate the state of the robot and its
environment. These estimations together with a model of the
robot were used to detect faults. Previous research has dealt
either with hardware diagnosis or diagnosis of software as
part of the software engineering cycle. However, diagnosis of
software and repair at runtime has never been an issue. The
paper described a model-based diagnosis for detecting, locat-
ing and repairing faulty software at runtime. For this purpose
a modeling technique for representing software architectures
which include components, control and data flow, and depen-
dencies has been introduced. Moreover, the concept of ob-
servers, have been described in the paper. Finally, the paper
presented a repair algorithm and first empirical results of our
implementation. These results show that software failures,
e.g., deadlocks, can be detected and corrected at runtime.

References

[Friedrich et al., 1999] Gerhard Friedrich, Markus Stumpt-
ner, and Franz Wotawa. Model-based diagnosis of hard-
ware designs. Artificial Intelligence, 111(2):3-39, 1999.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1):57-95, 1987.

[Verma et al., 2004] V. Verma, G. Gordon, R. Simmons, and
S. Thrun. Real-time fault diagnosis. IEEE Robotics &
Automation Magazine, 11(2):56 — 66, 2004.

[Williams et al., 1998] B. C. Williams et al. Remote agent:

To boldly go where no Al system has gone before. Artifi-
cial Intelligence, 103(1-2):5-48, August 1998.

