I ncor porating a folding rule into inductive logic programming

David A. Rosenblueth
Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas
Universidad Nacional Autbnoma de México
Apdo. 20-726, 01000 México D. F.
Mexico
drosenbl@servidor.unam.mx

Abstract

Many inductive logic programming systems have
operators reorganizing the program so far inferred,
such as the intra-construction operator of CIGOL.
At the same time, there is a similar reorganizing
operator, called the “folding rule,” developed in
program transformation. We argue that there are
advantages in using an extended folding rule as a
reorganizing operator for inductive-inference sys-
tems. Such an extended folding rule allows an
inductive-inference system not only to recognize
already-learned concepts, but also to increase the
efficiently of execution of inferred programs.

1 Introduction

At first glance, it might seem that inductive logic program-
ming (ILP) and logic program transformation (LPT) have
opposite objectives. While ILP is interested in generalizing
from examples, LPT is careful to preserve correctness. Nev-
ertheless, there are ILP operators, like the intra-construction
operator of CiGoL, that do not generalize, and instead reor-
ganize the program so far inferred. This suggests looking at
logic program transformation rules to obtain better nongener-
alizing operators for ILP.

One LPT rule, called “folding,” [Pettorossi and Proietti,
1998] is reminiscent of intra-construction, with some impor-
tant differences. For example whereas intra-construction pro-
duces the definition of a new predicate (i.e. “concept”), fold-
ing receives as input such a definition, so that there is a sepa-
rate, dedicated rule for creating a definition. The reason there
is such a separate rule in LPT is that the derivation of effi-
ciently executable programs is closely related to being able to
fold using an already-existing definition.

Researchers have developed several reorganizing operators
for ILP. Such operators can be found, for instance in the sys-
tems devised by Muggleton, Baneriji, Ling, and Rouveirol and
Puget. We have selected Muggleton’s intra-construction as a
representative of these operators for performing a comparison
with folding. The main ideas of our comparison, however,
should carry over to other similar operators.

Throughout, A and B denote atoms, and Q and R denote
tuples of atoms (we will assume definite logic programs).
Also, msg(es, e2) denotes the most specific generalization of

expressions e; and es, and “~” denotes equality up to vari-
able renaming.

When used to fold two clauses, the folding rule infers (F)
from (D1), (E1), (D2), and (E2):

B+« Q@ (D)) By+ Q> (D2)
A« Qlel,R (Eq) A+ Q202;R (E2)

A+ B,R (F)
where B = B16; = B,0,. In addition, there are some syn-
tactic restrictions for soundness, for which we refer the reader
to [Pettorossi and Proietti, 1998]. An application of folding
replaces (E;) and (Es) by (F).
Observe that this rule has the limitation of requiring both
clauses to be folded (E;) and (E,), to have the same head A

and the same part of the body R which is not an instance of
the bodies of the definition (D1) and (Ds).

On the other hand, folding has the advantage of allowing
the clauses (D7) and (D) to be drawn from a previous pro-
gram [Pettorossi et al., 1996].

To be able to perform a comparison with intra-
construction, we will assume that intra-construction consists
of two parts: first the “invention” of a predicate, and then the
clause-reorganization proper. The second part would then be:

Bl <~ (Dl) BQ «— (DQ)
A1 <~ R1 (El) A2 — R2 (E2)
A« B,R (F)

where
(A, R) = msg((A1, R1), (A2, R2))
B = p(Xla" aXn)
Bi = p(i,...,t:l)
(A, R){ X /t],.... Xn/th} =~ (A, Ry)

An application of the second part of intra-construction also
replaces (E1) and (Ez) by (F). Compared with folding, not
only must the definition clauses be unit clauses, but their ar-
gument places must be terms that undo the generalization
when resolving (F) with (D1) and (D5). If we are introduc-
ing a new definition, such constraints might not be relevant.
If, however, we wish to recognize an already-inferred concept
or we are interested in increasing the efficiency of execution
of our inferred program, it might be important to be able to
relax such limitations.

2 A common extension of folding and
intra-construction

As an illustration showing the need for increasing the effi-
ciency of an inferred program, consider the string-matching
problem. This problem consists in finding all occurrences (or
only one occurrence, if any) of a string called the pattern
within another string called the text. Suppose that our pat-
tern is the string aab. If we give the following two examples,
both of which are a text having an occurrence of this pattern;

s([a, a,b]) @)
s([a,a,a,b])

we can apply absorption, deriving:

s([alX]) « s(X))
A third example:
s([b,a,a,b]) <
allows us to apply absorption again, inferring:
s([b|X]) + s(X) @)

Clauses (1), (2), and (3) can be regarded as representing a
finite-state automaton accepting the language (a + b)*aab.
However, these clauses are a hondeterministic program, re-
quiring a quadratic time in the worst case to find an oc-
currence of the pattern. Note that this program cannot be
converted to a deterministic version with intra-construction.
A reason is that we would need to be able to apply intra-
construction without inventing a new predicate at every ap-
plication. (Such already-existing predicates represent edges
going backwards in the corresponding automaton.) Allow-
ing the use of already-existing definitions is accompanied by
a possible violation of the conditions for intra-construction
(i.e. the B;’s may not have the required form).

This limitation suggests using the ordinary folding [Pet-
torossi and Proietti, 1998] rule as part of the operator reper-
toire of an ILP system. In fact, [Pettorossi et al., 1996] show
how to determinize a program similar to the one we just in-
ferred with absorption (given as specification by the user),
where the folding rule plays a central role.

The ordinary folding rule [Pettorossi and Proietti, 1998],
however, is not adequate for inductive logic programming:
We observed that this rule requires the set of atoms that do
not match the bodies of the definition (i.e. A and R) be the
same in each clause to be folded (i.e. (E1) and (Ez)).

Now we give another illustration. Suppose an inductive-
inference system has inferred the following description of an
arch, where the example arch(([], beam, [])) is not given until
later:

arch(([X Y], beam, [X|Y])) « brick_or_block(X),
column(Y) 4
column([]) «+
column([X|Y]) « brick_or_block(X), column(Y")
If we now add the example:

arch(([], beam,[])) « 5)

both folding and intra-construction are unable to derive the
desired concept from (4) and (5):

arch((X,beam, X)) «+ column(X) (6)

Being able to derive the concise version of arch (6) might
be important if we have already the same concept under a
different name:

gateway((X, beam, X)) < column(X)

We have recently extended the ordinary folding rule so as
to overcome these limitations of folding [Rosenblueth, 2005].
Our extension can be viewed as a common generalization of
ordinary folding and intra-construction;

By + Q1 (D1) By + Q5 (Dy)

A+ Q191,R1 (E1) Ay Q292,R2 (E2)

Ay « Bi6,, Ry (Fy) Ay Bybs, Ry (Fs)
A« B,R (F)

where
(A,R) = msg((A1, R1), (A2, Ry))
B = msg(B16171, B26>72)

Here, 6; only acts on the variables occurring in Q, and 7;
only acts on the variables occurring in B; and not occurring
in Q; (i.e. the head-only variables in (D;)). In addition, we
preserve the syntactic conditions on 6; developed for ordinary
(multiple-clause) folding [Pettorossi and Proietti, 1998].

The main point of our folding rule is the computation
of the substitutions 7; in such a way that soundness is
preserved. We distinguish two kinds of head-only vari-
able instantiation: (a) coverage, taking a function sym-
bol or variable from the substitutions p;, where (Ai,f%i)
= msg((A1, R1), (A2, Ra2))p; (i = 1,2), and (b) matching,
taking the function symbol from the corresponding position
in the clause of the other single-clause folding.

The contributions of this poster over [Rosenblueth, 2005]
are (1) the comparison of folding with intra-construction and
(2) the development of inductively inferred example pro-
grams. We are currently investigating the possibility of em-
bedding our folding rule in CiGoL.

References

[Pettorossi and Proietti, 1998] Alberto Pettorossi and Maur-
izio Proietti. Transformation of logic programs. In Dov M.
Gabbay, C. J. Hogger, and J. A. Robinson, editors, Hand-
book of Logic in Artificial Intelligence and Logic Program-
ming, volume 5, pages 697—787. Oxford University Press,
1998.

[Pettorossi et al., 1996] Alberto Pettorossi, Maurizio Proi-
etti, and Sophie Renault. Enhancing partial deduction
via unfold/fold rules. In Proc. 6th Int. Workshop on
Logic Program Synthesis and Transformation, pages 146—
168, Stockholm, Sweden, 1996. Springer-Verlag. Lecture
Notes in Computer Science No. 1207.

[Rosenblueth, 2005] David A. Rosenblueth. A multiple-
clause folding rule using instantiation and generalization.
submitted to Fundamenta Informaticae (Special Issue on
Program Transformation), 2005.

