
Incorporating a folding rule into inductive logic programming

David A. Rosenblueth
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas

Universidad Nacional Autónoma de México
Apdo. 20-726, 01000 México D. F.

Mexico
drosenbl@servidor.unam.mx

Abstract
Many inductive logic programming systems have
operators reorganizing the program so far inferred,
such as the intra-construction operator of CIGOL.
At the same time, there is a similar reorganizing
operator, called the “folding rule,” developed in
program transformation. We argue that there are
advantages in using an extended folding rule as a
reorganizing operator for inductive-inference sys-
tems. Such an extended folding rule allows an
inductive-inference system not only to recognize
already-learned concepts, but also to increase the
efficiently of execution of inferred programs.

1 Introduction
At first glance, it might seem that inductive logic program-
ming (ILP) and logic program transformation (LPT) have
opposite objectives. While ILP is interested in generalizing
from examples, LPT is careful to preserve correctness. Nev-
ertheless, there are ILP operators, like the intra-construction
operator of CIGOL, that do not generalize, and instead reor-
ganize the program so far inferred. This suggests looking at
logic program transformation rules to obtain better nongener-
alizing operators for ILP.

One LPT rule, called “folding,” [Pettorossi and Proietti,
1998] is reminiscent of intra-construction, with some impor-
tant differences. For example whereas intra-construction pro-
duces the definition of a new predicate (i.e. “concept”), fold-
ing receives as input such a definition, so that there is a sepa-
rate, dedicated rule for creating a definition. The reason there
is such a separate rule in LPT is that the derivation of effi-
ciently executable programs is closely related to being able to
fold using an already-existing definition.

Researchers have developed several reorganizing operators
for ILP. Such operators can be found, for instance in the sys-
tems devised by Muggleton, Banerji, Ling, and Rouveirol and
Puget. We have selected Muggleton’s intra-construction as a
representative of these operators for performing a comparison
with folding. The main ideas of our comparison, however,
should carry over to other similar operators.

Throughout,
�

and � denote atoms, and
��

and
��

denote
tuples of atoms (we will assume definite logic programs).
Also, msg ���	��
���
�� denotes the most specific generalization of

expressions ��� and ��
 , and “ � ” denotes equality up to vari-
able renaming.

When used to fold two clauses, the folding rule infers � F �
from � D � � , � E � � , � D
 � , and � E
 � :
����� �� � � D ��� ��
�� ��
 � D
��� � �� ���	��
 �� � E ��� � � ��
���
�
 �� � E
��

� ����
 �� � F �
where ��� ���!�	�"� ��
���
 . In addition, there are some syn-
tactic restrictions for soundness, for which we refer the reader
to [Pettorossi and Proietti, 1998]. An application of folding
replaces � E �#� and � E
�� by � F � .

Observe that this rule has the limitation of requiring both
clauses to be folded � E � � and � E
 � , to have the same head

�
and the same part of the body

��
which is not an instance of

the bodies of the definition � D ��� and � D
�� .
On the other hand, folding has the advantage of allowing

the clauses � D � � and � D
 � to be drawn from a previous pro-
gram [Pettorossi et al., 1996].

To be able to perform a comparison with intra-
construction, we will assume that intra-construction consists
of two parts: first the “invention” of a predicate, and then the
clause-reorganization proper. The second part would then be:

�$��� � D ��� ��
�� � D
��� � � �� � � E � � �
 � ��
 � E
 �
� ����
 �� � F �

where
� �
 �� �%� msg �&� � �
 �� � ��
�� �

 ��
 �&�
�'�)(*�,+-��
�.#.�.#
&+0/1�
��23�)(*�,4 2 �
#.#.�.#
�4 2/ �

� �
 �� �!5�+-�#6�4 2 �
#.�.#.#
�+0/76�4 2/98 �:� � 2�

�� 2;�

An application of the second part of intra-construction also
replaces � E �#� and � E
�� by � F � . Compared with folding, not
only must the definition clauses be unit clauses, but their ar-
gument places must be terms that undo the generalization
when resolving � F � with � D �#� and � D
�� . If we are introduc-
ing a new definition, such constraints might not be relevant.
If, however, we wish to recognize an already-inferred concept
or we are interested in increasing the efficiency of execution
of our inferred program, it might be important to be able to
relax such limitations.

2 A common extension of folding and
intra-construction

As an illustration showing the need for increasing the effi-
ciency of an inferred program, consider the string-matching
problem. This problem consists in finding all occurrences (or
only one occurrence, if any) of a string called the pattern
within another string called the text. Suppose that our pat-
tern is the string ��� � . If we give the following two examples,
both of which are a text having an occurrence of this pattern:

� ��� �9
��
 ��� � � (1)
� ��� �9
��
��
 ��� � �

we can apply absorption, deriving:
� ��� �
	 + � � � � ��+ � (2)

A third example:
� ��� �
��
��
 ��� � �

allows us to apply absorption again, inferring:
� ��� � 	 + � � � � ��+ � (3)

Clauses (1), (2), and (3) can be regarded as representing a
finite-state automaton accepting the language ����
 � ������� � .
However, these clauses are a nondeterministic program, re-
quiring a quadratic time in the worst case to find an oc-
currence of the pattern. Note that this program cannot be
converted to a deterministic version with intra-construction.
A reason is that we would need to be able to apply intra-
construction without inventing a new predicate at every ap-
plication. (Such already-existing predicates represent edges
going backwards in the corresponding automaton.) Allow-
ing the use of already-existing definitions is accompanied by
a possible violation of the conditions for intra-construction
(i.e. the � 2 ’s may not have the required form).

This limitation suggests using the ordinary folding [Pet-
torossi and Proietti, 1998] rule as part of the operator reper-
toire of an ILP system. In fact, [Pettorossi et al., 1996] show
how to determinize a program similar to the one we just in-
ferred with absorption (given as specification by the user),
where the folding rule plays a central role.

The ordinary folding rule [Pettorossi and Proietti, 1998],
however, is not adequate for inductive logic programming:
We observed that this rule requires the set of atoms that do
not match the bodies of the definition (i.e.

�
and
��
) be the

same in each clause to be folded (i.e. � E ��� and � E
��).
Now we give another illustration. Suppose an inductive-

inference system has inferred the following description of an
arch, where the example arch �&��� �
 beam
�� � ��� is not given until
later:

arch �&��� +�	 � �
 beam
�� +�	 � � ��� � brick or block ��+ �!

column ��� � (4)

column ��� � � �
column ��� +�	 � � � � brick or block �,+ �!
 column ��� �

If we now add the example:

arch �&��� �
 beam
�� � ��� � (5)

both folding and intra-construction are unable to derive the
desired concept from (4) and (5):

arch �&�,+
 beam
&+ ��� � column ��+ � (6)
Being able to derive the concise version of arch (6) might
be important if we have already the same concept under a
different name:

gateway �&��+
 beam
&+ �&� � column �,+ �
We have recently extended the ordinary folding rule so as

to overcome these limitations of folding [Rosenblueth, 2005].
Our extension can be viewed as a common generalization of
ordinary folding and intra-construction:

�$��� �� � � D ��� ��
�� ��
 � D
��� � � �� � � �
 �� � � E � � �
 � ��
 �

 ��
 � E
 �
� � ��� � � �
 �� � � F � � �
 ���
 �

 ��
 � F
 �

� ����
 �� � F �
where

� �
 �� � � msg �&� � ��
 �� ���!
�� �
	
 ��
��&�
� � msg ��� � � �����
 �
 �
��#
 �

Here, ��2 only acts on the variables occurring in
�� 2 , and � 2

only acts on the variables occurring in ��2 and not occurring
in
�� 2 (i.e. the head-only variables in � D 2 �). In addition, we

preserve the syntactic conditions on �	2 developed for ordinary
(multiple-clause) folding [Pettorossi and Proietti, 1998].

The main point of our folding rule is the computation
of the substitutions � 2 in such a way that soundness is
preserved. We distinguish two kinds of head-only vari-
able instantiation: (a) coverage, taking a function sym-
bol or variable from the substitutions � 2 , where � � 2�
 �� 2 �
� msg ��� � ��
 �� �#�!
�� �

 ��
������ 2 (�%���	
��), and (b) matching,
taking the function symbol from the corresponding position
in the clause of the other single-clause folding.

The contributions of this poster over [Rosenblueth, 2005]
are (1) the comparison of folding with intra-construction and
(2) the development of inductively inferred example pro-
grams. We are currently investigating the possibility of em-
bedding our folding rule in CIGOL.

References
[Pettorossi and Proietti, 1998] Alberto Pettorossi and Maur-

izio Proietti. Transformation of logic programs. In Dov M.
Gabbay, C. J. Hogger, and J. A. Robinson, editors, Hand-
book of Logic in Artificial Intelligence and Logic Program-
ming, volume 5, pages 697–787. Oxford University Press,
1998.

[Pettorossi et al., 1996] Alberto Pettorossi, Maurizio Proi-
etti, and Sophie Renault. Enhancing partial deduction
via unfold/fold rules. In Proc. 6th Int. Workshop on
Logic Program Synthesis and Transformation, pages 146–
168, Stockholm, Sweden, 1996. Springer-Verlag. Lecture
Notes in Computer Science No. 1207.

[Rosenblueth, 2005] David A. Rosenblueth. A multiple-
clause folding rule using instantiation and generalization.
submitted to Fundamenta Informaticae (Special Issue on
Program Transformation), 2005.

