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Abstract e if s € Candt € CthenK(s,t) = k(s,t) wherex :
We describe a family of kernels over untyped and C x C, — IR is a valid kernel on constants; )
typed Prolog ground terms and show that they can e else if s and ¢ are compound terms and have differ-
be applied for learning in structured domains, pre- ent arities or functors, i.e.s = f(s1,...,s,) and
senting experimental results in a QSPR task. t=g(t1,...,tm) then
K(s,t)=(f,9) 1)

1 Introduction . .

. . . where. : F x F — IR is a valid kernel on functors;
Starting from the seminal work of Haussler on convolution 4 g|se jfs andt are compound terms and have the same
kernels[Haussler, 1999 several researchers have proposed arity and functor, i.e. s = f(si,...,5,) and ¢ =

kernels on discrete data structures such as sequences, trees Ft1,...,t,), then

and graphs (sefGartner, 200Bfor a review). Recently, ker- ' .

nels over complex individuals have been defined using higher -

order logic abstractiongGartneret al, 2004. The family K(s,t)=uf./) + ZK(S“ ti) 2)
of kernels developed in this paper originates from a special- =1
ization to first-order logic of such kernels, as it is designed
to work on individuals represented as Prolog ground terms.
There are several reasons for such a specializagemplic- We call < and . atomic kernels as they operate on non-
ity: Prolog representations provide a simpler representationatructured symbols. A special but useful case is the atomic
framework. Sufficiency useful higher order structures such match kerneb defined ag(z, z) = 1if x = z andd(z, z) =

as sets can be simulated in Prolog. Types can also be if+if = # z.

troduced. In practice, Prolog based representations are suf- A finer level of granularity in the definition of ground term
ficiently expressive for many application domainsegacy  kernels can be gained from the use of typed terms. This extra
many inductive logic programming systems and knowledgeflexibility may be necessary to specify different kernel func-
bases are actually based on first order logic and Prolog is tions associated with constants of different type (e.g. numer-
well supported languagd&xtendibility. first-order logic pro- ical vs. categorical). It may also be necessary in order to
grams have been extended to deal with uncertainty througbpecify different kernels associated to different arguments of
the use of probability resulting in models such as stochasticompound terms. Our approach for introducing types is sim-
and Bayesian logic programs (sHee Raedt and Kersting, ilar to that proposed iflLakshman and Reddy, 199 MWe de-
2009 for a review); these extensions can be very interestingiote by7 the ranked set of type constructors. The type signa-
in the context of machine learning. ture of a function of arity: has the formr x, ..., X7, — 7/

We develop variants of the kernel on typed and untypedvheren > 0 is the number of arguments;,..., 7, € T
terms. The present formulation allows us to obtain a relativelytheir types, and’ € T the type of the result. Functions of ar-
simple proof of positive definiteness based on showing thaity 0 have signature. +— 7" and can be therefore interpreted
kernels over terms are a special case of convolution kernelss constants of type’. The type signature of a predicate of
[Haussler, 1999 We finally present experimental evidence arity n has the formr; x, ..., x7, — Q whereQ € T is the
of the usefulness of these kernels by learning the boiling pointype of booleans. We write : 7 to assert that is a term of
of alkanes from their chemical structure. type 7. We denote byB the set of all typed ground terms,

by C C B the set of all typed constants, and Bythe set of
2 Ke_me_ls on Prolog ground terms ) ty)|/oed functors. Finally we introduce a (possibly empty) set
We begin with kernels on untyped terms. For a given progranyf distinguishedype signature® c 7 that can be useful to

P we denote by5 the Herbrand universe df (i.e. the set of  gpecify ad-hoc kernel functions on certain compound terms.
all ground terms that can be formed from symbols"nby o
C C B the set of all constants, and b5 the ranked set of Definition 2 (Kernels on typed terms). The kernel between

e in all other cased<(s,t) = 0.

functors. two typed terms and s is defined inductively as follows:
Definition 1 (Kernels on untyped terms). The kernel be- eifseC,teC,s:7,t:7thenK(s,t) = k(s,1)
tween two termg and s is a functionK : B x B — IR wherek, : C x C — IR is a valid kernel on constants of

defined inductively as follows: typer;



e else if s and ¢t are compound terms that have the CH,  CH, CHg
same type but different arities, functors, or signatures, ‘ .

; o}
L.e. s = f(Sl,...,Sn) andt = g(tl,...,tm), f : CH;—C C——CH, —_ /‘\
O1X,..., X0, — T, g : T1X,...,XTm, — 7/, then ‘ ‘ CH, GCH; C
CH CH <IN
K(s,t) = L-r/(fa 9) (3 8 8 / CH; CH; CHy
where.,, : F x F — IR is a valid kernel on functors
that construct terms of typg C(H,H,H,C(C(H,H,H),C(H,H,H),C(C(H,H,H),C(H,H,H),C(H,H,H))

e else ifs andt are compound terms and have the same

type, arity, and fUNCtor, i.e.s — f(s1,...,8n), t — Figure 1: Ground term representation of an Alkane.

[t tn),andf i, ... X7, = 7/, then Fig. 1. We addressed this task using kernel ridge regression
Koy o xrmirt (85 1) [Shawe-Taylor and Cristianini, 20D4vith the kernelK on
if (r1X,...,xT —7)€D untyped terms of Def. 1, a match kernel for functors (car-
K(s,t) = i ™ ponatoms), and a null kernel for constants (hydrogen atoms).
() + Z K(si,t:) otherwise In this way the kernel measures the number of carbon atoms
=t in corresponding positions. As an additional source of in-
e in all other cased((s,t) = 0. formation, we extracted the depths of the trees representing

In the case of numerical constants, examples of uselne molecules, and summed their product to the term kernel,

: T - N2 obtaining a more informed kern&l’. Finally, we employed

Lul k?;nil)s_mggf{e;%‘”(x’z) = exp(—(@ = 2)%) and o issian kernel on top &€ and K'. Performance was
Reall®» <) = o ) evaluated by a ten fold cross validation procedure, Hyperpa-
Theorem 1. The kernel functions on Prolog ground terms rameters (namely, the Gaussian width and the regularization

given in Definitions 1 and 2 are positive definite (pd). parameter), were chosen by a hold-out procedure on the train-
Proof sketch. Let us introduce the following decomposition ing set of the first fold, and kept fixed for the successive 10
structure (se¢Shawe-Taylor and Cristianini, 204 R = fold cross validation procedure. When using kerhelwe
((X1,X5), R, (ki, ko)) with X; = F (the set of functors), oObtained an average mean square error of 4.6 Celsius degrees
X, = (F,IN,B)), and while usingK”’ the error can be reduced to 3.8 degrees. These
results are comparable to those produced by the highly tuned
R ={(f,(f,n,a),s) s.t.sis aterm having functof, networks developed i[Bianucciet al, 2004.
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