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1 Introduction
This work presents a study on the effects of different mem-
ory sizes in the Minority Game (MG) market model[Zhang,
1998]. We analyse the effects on an agent’s performance
when this agent is endowed with a different memory size with
respect to other agents in the game. Our aim is to identify in
which situations a large or small memory might be advanta-
geous in the game. From the obtained results we argue that
there exist convergence to and evolutionary stability around
certain memory sizes and we consider an evolutionary setup
which confirms our hypothesis.

The MG is defined as an odd number of agents (N ) which
must choose at each turn of the game whether they will be in
one of two possible groups. After all agents have made their
choices, agents in the minority group are rewarded. In order
to make a decision, agents use an inductive learning algorithm
in order to try to exploit patterns from previous outcomes.
The number of past turns that agents consider to decide de-
fines theirmemory size(M ).

One of the main properties in a MG is itsefficiency, which
is evaluated by the statistical variance (σ2) of the number of
agents in a group[Moro, 2004]. Efficiency is known to be
a function of a control parameterα = 2M

N
[Manucaet al.,

2000]. For N fixed, M becomes the main control parame-
ter of the game. Figure 1 showsσ2 for a range of memory
sizes. Three regions are observed: (i) for smallM variance
is very high, above the expected for the random case game
(which we will call inefficient region); (ii) for high values of
M , variance is exactly the one expected for the random case
game (random case region); (iii) for intermediateM the sys-
tem presents small variances (efficient region).

2 Memory Size and Performance
Firstly, we tackle thedesignaspects of agents by askingwhat
is the best memory size for an agent immersed in a MG where
agents have a different memory size. We do so by modify-
ing the typical MG setup, defining two basic elements: (i)
the environment, a classical MG with an even number (N )
of agents; (ii) atarget-agentendowed with a possibly differ-
ent memory size (m) from that in the environment. We have
simulated different target-agents within environments in all
3 efficiency regions, takingN as a large value, so that the
target-agent plays no role in the determination of the game’s

Figure 1: Variance versus memory size

efficiency. We are interested in the target-agent’s success rate
(number of correct decisions over total number of rounds).

Figure 2 shows the success rate for different values ofm
for the environment in the inefficient region (M = 3). It
is shown that the target-agent with larger memoriesperforms
better than average. This agrees with the common belief that
having access to more information is beneficial. Figure 3
shows that this is not always the case. ForM = 6 the en-
vironment is now in the efficient region and increases in the
target-agent’s memory size does not translate into better per-
formance. Actually, having access to more information is
shown to beharmful.

Finally, we have simulated our target-agent in the random
case region. We have observed that the target-agent showed
no gains or losses of performance throughout all values ofm.
This is mainly due to the fact that if agents are acting as if
they were choosing randomly, as is the case in this region,
then there will be no pattern in the outcome time series to be
exploited.

Figure 4 depicts the gain (ftarget

favg
) of a target-agent with

one more bit of memory than the environment for a range of
M (i.e. m = M + 1 for all M ). We notice that gains are
reduced as the system approaches the efficient region and in-
deed become smaller than unit for everyM in the efficient
region, reapproching unit when closer to the random case re-
gion. It is only in the inefficient region that gains become
larger than unit and agents with more memory are able to



Figure 2: Target-agent’s success rate in the inefficient region.
Dashed line is the average success rate of the environment.

Figure 3: Target-agent’s success rate in the efficient region.

exploit the environment. Interestingly, the same experiment
repeated havingm = M − 1 shows thatsmallermemories
makes no difference to the target-agent’s performance, it be-
comes the same as the environment’s average.

3 Evolution of memory size
Now we apply our results in an evolutionary setup, in a MG
where mutant agents - endowed with slightly different mem-
ory sizes - may appear and replace badly performing agents.
Let the system be initially in an inefficient phase. Our ex-
periments have shown that an agent with a larger memory
would be able to exploit the environment in this region while
smaller memories provide no benefits. Thus, agents with
larger memories would be able to survive and average mem-
ory size would increase until the point where further increases
lead to no gains. This happens when the system enters the ef-
ficient region.M0 denotes the memory size in which the sys-
tem first becomes efficient. The system cannot move beyond
M0, as larger memories would cause harm to the mutant’s
performance. In addition, the system cannot move towards
lower memory sizes: whenever a sufficient number of agents
convert to smaller memories, the system would again be in
an inefficient region and the push towards larger memories
would reappear.

A similar reasoning might be applied to a MG starting at
any pointM in the efficient region, above or equal toM0.

Figure 4: Gain of a target-agent with m=M+1.

A mutant agent with larger memory would be penalized, but
one with smaller memory would perform just as well and
we could expect that memory sizes would end up being dis-
tributed throughout values belowM . However, this would
result in a reduction of the average memory size, causing
the system to move towards the inefficient region and mak-
ing larger memories harmful, thus creating a new upper limit
in memory size. The process continues untilM0 is reached.

We may say thatM0 is not only evolutionary stable, as
no mutant agent can do better than the agents already in the
environment at this point, but it is also anattractor of mem-
ory sizes in the efficient and inefficient regions. By starting
in any point in these regions, the system is expected to con-
verge toM0. This reasoning was indeed confirmed by sim-
ulations. However we did not have a convergence towards
M0 = 4 as it would be expected by analysing the traditional
MG (see Fig. 1). We have observed an initial “arms race” of
memory sizes up toM = 4 and then a fall towards a final
equilibrium atM = 1. This may be explained if we consider
that two adaptations happen, adaptation of memory size and
adaptation of strategies, for when an agent modifies her mem-
ory size she also modifies her strategies. Since the strategies
space is much larger than the memory sizes space, adaptation
of the latter is faster. Thus, at the beginning of the simulation
we indeed haveM0 = 4 and, as strategies adapt, a different
dynamics emerge[Araújo and Lamb, 2004], with a different
value ofM0.
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