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Abstract

Stochastic complexity of a data set is defined as the
shortest possible code length for the data obtainable
by using some fixed set of models. This measure is
of great theoretical and practical importance as a
tool for tasks such as model selection or data clus-
tering. In the case of multinomial data, comput-
ing the modern version of stochastic complexity,
defined as the Normalized Maximum Likelihood
(NML) criterion, requires computing a sum with
an exponential number of terms. Furthermore, in
order to apply NML in practice, one often needs to
compute a whole table of these exponential sums.
In our previous work, we were able to compute this
table by a recursive algorithm. The purpose of this
paper is to significantly improve the time complex-
ity of this algorithm. The techniques used here are
based on the discrete Fourier transform and the con-
volution theorem.

Introduction

The Minimum Description Length (MDLprinciple devel-
oped by RissaneRissanen, 1978; 1987; 1906ffers a well-
founded theoretical formalization of statistical modglifThe

main idea of this principle is to represent a set of model
(model class) by a single model imitating the behaviour of
any model in the class. Such representative models arelcall
universal The universal model itself does not have to belong

to the model class as often is the case.

From a computer science viewpoint, the fundamental ide
of the MDL principle iscompression of dataThat is, given

some sample data, the task is to find a descriptionoate

of the data such that this description uses less symbols th

it takes to describe the data literally. Intuitively spewki

this approach can in principle be argued to produce the be
possible model of the problem domain, since in order to b

rectly believe that MDL and BIC are equivalent. The latest
instantiation of the MDL isot directly related to BIC, but

to the formalization described iiRissanen, 1996 Unlike
Bayesian and many other approaches, the modern MDL prin-
ciple does not assume that the chosen model class is correct.
It even says that there is no such thing as a true model or
model class, as acknowledged by many practitioners. The
model class is only used as a technical device for constigicti
an efficient code. For discussions on the theoretical motiva
tions behind the modern definition of the MDL see, dBis-
sanen, 1996; Merhav and Feder, 1998; Bambmal, 1998;
Grunwald, 1998; Rissanen, 1999; Xie and Barron, 2000;
Rissanen, 2041

The most important notion of the MDL principle is the
Stochastic Complexity (SQWhich is defined as the shortest
description length of a given data relative to a model clets
The modern definition of SC is based on the Normalized
Maximum Likelihood (NML) codd Shtarkov, 198%. Unfor-
tunately, with multinomial data this code involves a sumrove
all the possible data matrices of certain length. Computing
this sum, usually called theegret, is obviously exponential.
Therefore, practical applications of the NML have beenejuit
rare,
In our previous worKontkanenet al., 2003; 2005, we

presented a polynomial time (quadratic) method to compute
ghe regret. In this paper we improve our previous results and
show how mathematical techniques such as discrete Fourier
ransform and convolution can be used in regret computation

he idea of applying these techniques for computing a sin-
gle regret term was first suggested foivisto, 2004, but as
?iscussed imKontkaneret al, 2003, in order to apply NML

o practical tasks such as clustering, a whole table of tegre
terms is needed. We will present here an efficient algorithm
a{ﬂr this specific task. For a more detailed discussion of this
work, sedKontkanen and Myllyraki, 2009.

NML for Multinomial Data

able to produce the most efficient coding of data, one musthe mostimportant notion of the MDL is ttf&ochastic Com-
capture all the regularities present in the domain.

plexity (SC) Intuitively, stochastic complexity is defined as

The MDL principle has gone through several evolutionarythe shortest description length of a given data relative to a

steps during the last two decades. For example, the early renodel class. To formalize things, let us start with a defoniti
alization of the MDL principle, the two-part code MORis-
sanen, 1978 takes the same form as the Bayesian BIC cri-itive integer. A class of parametric distributions indexsd
terion[Schwarz, 197B which has led some people to incor- the elements 06 is called amodel class That is, a model

of a model class. Consider a $8tc R?, whered is a pos-



classM is defined as
M={P(-]0):6 €6}

Consider now a discrete data set (or matrixy
(x1,...,xn) Of N outcomes, where each outcomg is
an element of the set consisting of all the vectors of the
form (ay,...,a,), where each variable (or attribuig)takes
onvalues € {1,...,n;}. Given a model clas31, theNor-
malized Maximum Likelihood (NMIdistribution[Shtarkov,
1987 is defined as

1)

P(xN | 6(xN), M
Py (x| M) = b |R(I\}f{ ) )» 2
M
where §(x") denotes themaximum likelihoodestimate of

datax”, andR Y, is given by

=Y PN [0(xN), M), (3)

that an efficient way to compute the regret term is via the
following recursive formula:
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wherek, + ks = K.

As discussed iflKontkanenet al., 2009, in order to ap-
ply NML to the clustering problem, we need to compute a
whole table of regret terms. This table consists of the terms

ek forn=0,...,Nandk =1,..., K, whereK is the
maximum number of clusters.

The procedure of computing the regret table starts by fill-
ing the first column, i.e., the cage = 1, which is trivial
(see[Kontkanenet al, 2003). To compute the columi,
for k = 2,..., K, the recursive formula (7) can be used by
choosingk; = k — 1, ko = 1. The time complexity of filling
the whole table i$0 (K - N2). For more details, seléon-

and the sum goes over all the possible data matrices of&ize tkanenet al, 2005; Kontkanen and Myllyéki, 2009.

The termR Y, is called theregret The definition (2) is intu-

In practice, the quadratic dependency on the size of data

itively very appealing: every data matrix is modeled usinglimits the applicability of NML to small or moderate size dat
its own maximum likelihood (i.e., best fit) model, and then asets. In the next section, we will present a novel, signifigan

penalty for the complexity of the model clagd is added to
normalize the distribution.
The stochastic complexity of a data g€t with respectto a

model class\M can now be defined as the negative logarithm

of (2), i.e.,

P(xN | §(xN
R

= —log P(x" | O(xN

), M)

Cx" | M) =—log 4)

), M) +log RY,. (5)

As in [Kontkanenet al, 2009, in the sequel we focus on
a multi-dimensional model class suitable for cluster agialy

The selected model class has also been successfully applied

to mixture modeling[Kontkanenet al, 1994, case-based
reasoning Kontkanenet al, 1994, Naive Bayes classifica-

tion [Grinwald et al, 1998; Kontkaneret al, 20008 and
data visualizatiomKontkanenet al, 20004.
Let us assume that we hawevariables(as, ..., a.), and

we also assume the existence of a special varialpfehich

can be chosen to be one of the variables in our data or it can

be latent). Furthermore, given the value®fthe variables
(ala IR

ablec has K values and each; hasn; values. The NML
distribution for the model clasé1+ is now

pNML<xN|MT>:Lﬁ1( ) ﬁlkHlHl(fk) ]

(6)

1
"N
RMT,K
whereh,, is the number of times has valuek in xV, f;, is

the number of times; has valuey whenc = k, ande\V,lT’K
is the regret term. lfKontkanenet al,, 2009 it was proven

an,) are assumed to be independent. The resulting
model class is denoted hy1. Suppose the special vari-

more efficient method for computing the regret table.

3 The Fast NML Algorithm

In this section we will derive a very efficient algorithm for
the regret table computation. The new method is based on
the Fast Fourier Transform algorithm. As mentioned in the
previous section, the calculation of the first column of the
regret table is trivial. Therefore, we only need to consttier
case of calculating the coluningiven the firs& — 1 columns.
Let us define two sequencasandb by
nn " nn

- _ " pn
Ap = TL' RMT,kfl’ bn - 77,' Mr,1 (8)

forn = 0,...,N. Evaluating the convolution oi andb
gives
N (= h)""
(a*b), = hz: ol =R i ) M 9)
=0
_n”i n! A\" (n—n\"""
n! Rl(n—h)! \ n n
h=0
Rl k1 R (10)
n"_ .
= W Mo k> (11)

where the last equality follows from the recursion for-
mula (7). This derivation shows that the colurhrcan be
computed by first evaluating the convolution (11), and then
multiplying each term by:!/n"™.

The standara@onvolution theorenstates that convolutions
can be evaluated via the (discrete) Fourier transform, lninic
turn can be computed efficiently with the Fast Fourier Trans-
form algorithm (sedKontkanen and Myllyraki, 2003 for
details). It follows that the time complexity of computirftet



whole regret table drops t@ (N log N - K). Thisis a ma- [Kontkaneret al, 1999 P. Kontkanen, P. Myllyraki, T. Si-
jor improvement ove® (N? - K) obtained by the recursion  lander, and H. Tirri. On Bayesian case matching. In
method of Section 2. B. Smyth and P. Cunningham, editofgjvances in Case-
Based Reasoning, Proceedings of the 4th European Work-
: shop (EWCBR-98yolume 1488 of_ecture Notes in Arti-
4 Conclusion And Future Work ficial Intelligence pages 13-24. Springer-Verlag, 1998.

The main result of this paper was a derivation of a novel algo{k gntkaneret al, 20004 P. Kontkanen, J. Lahtinen, P Myl-
rithm for the regret table computation. The theoreticaktim ™ v yx1i T Silander, and H. Tirri. Supervised model-based

complexity of this algorithm allows practical applicatioof — yig ajlization of high-dimensional datantelligent Data
NML in domains with very large datasets. With the earlier Analysis 4:213-227, 2000.

guadratic-time algorithms, this was not possible. L .

In the future, we plan to conduct an extensive set of emlKontkaneret al, 2000 P. Kontkanen, P. Myllyréki, T. Si-
pirical tests to see how well the theoretical advantage ef th  1ander, H. Tirri, and P. Gmwald. On predictive distribu-
new algorithm transfers to practice. On the theoretica,sid  ONS and Bayesian networksStatistics and Computing
our goal is to extend the regret table computation to more 10:39-54, 2000.
complex cases like general graphical models. We will alsdKontkaneret al, 2003 P. Kontkanen, W. Buntine, P. Myl-
research supervised versions of the stochastic complebeity lymaki, J. Rissanen, and H. Tirri. Efficient computation of
signed for supervised prediction tasks such as classditati stochastic complexity. In C. Bishop and B. Frey, editors,
Proceedings of the Ninth International Conference on Ar-
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