
Allocation and Scheduling for MPSoCs via decomposition and no-good generation

Luca Benini, Davide Bertozzi, Alessio Guerri, Michela Milano
DEIS, University of Bologna

V.le Risorgimento 2, 40136, Bologna, Italy
{lbenini, dbertozzi, aguerri, mmilano}@deis.unibo.it

This paper proposes a decomposition approach to the allo-
cation and scheduling of a multi-task application on a multi-
processor system-on-chip (MPSoCs)[Wolf, 2004]. This is
currently one of the most critical problems in electronic de-
sign automation for Very-Large Scale Integrated (VLSI) cir-
cuits. With the limits of chip integration reaching beyond one
billion of elementary devices, current advanced integrated
hardware platforms for high-end consumer application (e.g.
multimedia-enabled phones) contain multiple processors and
memories, as well as complex on-chip interconnects. The
hardware resources in these MPSoCs need to be optimally
allocated and scheduled under tight throughput constraints
when executing a target software workload (e.g. a video de-
coder).

The multi-

Figure 1: Single chip multi-processor
architecture.

processor system
consists of a pre-
defined number of
distributed com-
putation nodes, as
depicted in Figure
1. Each node is
made by a process-
ing core and by
a tightly coupled
local memory.
Unfortunately, the
scratchpad memory is of limited size, therefore data in excess
must be stored externally in a remote on-chip memory,
accessible via the bus. The bus for state-of-the-art MPSoCs
is a shared communication resource, and serialization of bus
access requests of the processors (the bus masters) is carried
out by a centralized arbitration mechanism.

Whenever predictable performance is needed for applica-
tions, it is important to avoid high levels of congestion on
the bus, since this makes completion time of bus transactions
much less predictable. Moreover, under a low congestion
regime, performance of state-of-the-art shared busses scales
almost in the same way as that of advanced busses with topol-
ogy and communication protocol enhancements. Finally, bus
modelling is simpler under these working conditions (e.g., ad-
ditive models). Communication cost is therefore critical for
determining overall system performance, and will be mini-
mized in our task allocation framework.

Based on our methodology, the target application running
on top of the hardware platform is pre-characterized and ab-
stracted as a task graph, with specification of computation,
storage and communication requirements. More in detail,
the worst case execution time (WCET) is specified for each
task and plays a critical role whenever application real time
constraints (expressed here in terms of minimum required
throughput) are to be met. In fact, tasks are scheduled on each
processor based on a time-wheel. The sum of the WCETs of
the tasks for one iteration of the time wheel must not exceed
time periodRT (i.e., the minimum task scheduling period en-
suring that throughput constraints are met), which is the same
for each processor since the minimum throughput is an appli-
cation (not single processor) requirement.

The problem we are facing is a scheduling problem with
alternative resources. Each task should be allocated to one
of the processors (Nodei in Figure 1). Each task also needs
3 memory areas for executing, that should be allocated to a
memory device:internal task state andprogram data can
be allocated either on the local scratchpad memory or on the
remote on-chip memory, whilecommunication queue(the
memory area used by the tasks to communicate one other)
must be allocated on the local scratchpad. Tasks duration de-
pends on where memory slots are allocated; tasks need time
to access the bus and use remote memory. Clearly, tasks
should be scheduled in time subject to real time constraints,
precedence constraints, and capacity constraints on all unary
and cumulative resources. However, on a different perspec-
tive, the problem decomposes into two problems: the alloca-
tion of tasks to processors and the memory slots required by
each task to the proper memory device; a scheduling problem
with static resource allocation.

The objective function of the overall problem is the mini-
mization of communication cost. This function involves only
variables of the first problem. In particular, we have a com-
munication cost each time two communicating tasks are allo-
cated on different processors, and each time a memory slot is
allocated on a remote memory device. Once the communica-
tion cost has been minimized, among feasible schedules we
prefer those having minimum makespan.

The allocation problem is difficult to solve with Constraint
Programming (CP). CP has a naive method for solving op-
timization problems: each time a solution is found, an addi-
tional constraint is added stating that each successive solution



should be better than the best one found so far. If the objec-
tive function is strongly linked to decision variables, CP can
be effective, otherwise it is hopeless to use CP to find the
optimal solution. In case the objective function is related to a
single variable, like for makespan in scheduling problems, CP
works quite well. However, if the objective function is a sum
of cost variables, CP is able to prune only few values, deep
in the search tree since the connection between the objective
function and the problem decision variables is weak. If the
objective function relates to pairs of assignments the situation
is even worse. This is the case of our application where the
objective function depends on pairs of assignments. In fact,
a contribution to the objective function is added when two
communication tasks are allocated to different processors.

On the contrary, Integer Programming (IP) is extremely
good to cope with these problems, while is weak in coping
with time. Scheduling problems require to assign tasks to
time slots, and each slot should be represented by an integer
variable, and the number of variables increases enormously.
CP, instead, is very effective to cope with time constraints.

Therefore, the first problem could be solved with IP effec-
tively, while for the second CP is the technique of choice. The
question is now: how do these problems interact?

We solve them separately, the allocation problem first
(called master problem), and the scheduling problem (called
subproblem) later. The master is solved to optimality and
its solution passed to the subproblem solver. If the solution
is feasible, then the overall problem is solved to optimality.
If, instead, the master solution cannot be completed by the
subproblem solver, a no-good is generated and added to the
model of the master problem, roughly stating that the solu-
tion passed should not be recomputed again (it becomes in-
feasible), and a new optimal solution is found for the master
problem respecting the (set of) no-good(s) generated so far.
Being the allocation problem solver an IP solver, the no-good
has the form of a linear constraint.

A similar method is known in Operations Research as Ben-
ders Decomposition[Benders, 1962], where the overall prob-
lem can be decomposed in two parts connected by some
variables. Some related approaches are[Hooker, 2004] and
[Grossmann and Jain, 2001].

We show that this method is extremely effective if com-
pared to the approaches considering the problem as a whole.

The methodology proposed in this paper has been applied
to a video signal processing pipeline, wherein each task pro-
cesses output data of the preceding task in the pipeline. Func-
tional pipelining is widely used in the domain of multimedia
applications. Task parameters have been derived from a real
video graphics pipeline processing pixels of a digital image.
The proposed allocation and scheduling techniques can be
easily extended to all applications using pipelining as work-
load allocation policy, and aim at providing system designers
with an automated methodology to come up with effective
solutions and cut down on design time. To do that, we sched-
ule several repetitions of the pipeline processes in order to
achieve a working rate configuration.

To validate the strength of our approach, we now compare
the results obtained using this model (Hybrid in the follow-
ing) with results obtained using only a CP or IP model to

solve the overall problem. Actually, since the first experi-
ments showed that both CP and IP were not able to find a
solution, except for the easiest instances, within 15 minutes,
we simplified these models removing some variables and con-
straints. In CP, we fixed the activities execution time not con-
sidering the execution time variability due to remote memory
accesses; in IP, we do not consider all the variables and con-
straints involving the bus: we do not model the bus resource
and we therefore suppose that each activity can access data
whenever it is necessary.

We generate a large variety of problems, varying both the
number of tasks and processors. All the results presented are
the mean over a set of 10 problems for each task or processor
number. All problems considered have a solution. Experi-
ments were performed on a 2GHz Pentium 4 with 512 Mb
RAM. We used ILOG CPLEX 8.1 and ILOG Solver 5.3 as
modelling and solving tools.

In fig-

0.1

1

10

100

1000

4 5 6 7 8 9 10

Number of Tasks

T
im

e 
in

 s
ec

. (
lo

g)

Hybrid

IP

CP

Figure 2: Comparison between algorithms
search times for different process number.

ure 2 we
compare the
algorithms
search time
for prob-
lems with
a different
number
of tasks.
Times are
expressed in
seconds and

the y-axis has a logarithmic scale. For space reasons we omit
the search time figure varying the number of processors, but
it has very similar behaviours to figure 2.

Although CP and IP deal with a simpler problem model, we
can see that these algorithms are in general not comparable
with Hybrid and, as the number of tasks grows, IP and CP
performances worsen and their search times become orders of
magnitude higher w.r.t. Hybrid. Furthermore, we considered
in the figures only instances where the algorithms are able to
find the optimal solution within 15 minutes, and, for problems
with 6 tasks or more, IP and CP can find the solution only in
the 50% or less of the cases.

References
[Benders, 1962] J. F. Benders. Partitioning procedures for solv-

ing mixed-variables programming problems.Numerische Math-
ematik, 4:238–252, 1962.

[Grossmann and Jain, 2001] I. E. Grossmann and V. Jain. Algo-
rithms for hybrid milp/cp models for a class of optimization prob-
lems. INFORMS Journal on Computing, 13:258–276, 2001.

[Hooker, 2004] J. N. Hooker. A hybrid method for planning and
scheduling. InProcs. of the 10th Intern. Conference on Principles
and Practice of Constraint Programming - CP 2004, pages 305–
316, Toronto, Canada, Sept. 2004. Springer.

[Wolf, 2004] W. Wolf. The future of multiprocessor systems-on-
chips. InIn Procs. of the 41st Design and Automation Conference
- DAC 2004, pages 681–685, San Diego, CA, June 2004. ACM.


