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In many domains, the objects of interest are not uniquely
identified, and the problem arises of determining which ob-
servations correspond to the same object. For example, in
information extraction and NLP we need to determine which
noun phrases refer to the same entity. When merging multiple
databases, a problem of keen interest to many large scientific
projects, businesses, and government agencies, we need to
determine which records represent the same entity and should
therefore be merged. This problem, first placed on a firm sta-
tistical footing by Fellegi and Sunter [1969], is known by the
name of object identification, record linkage, de-duplication
and others. Most approaches described to solve this problem
are variants of the original Fellegi-Sunter model, in which ob-
ject identification is viewed as a classification problem: given
a vector of similarity scores between the attributes of two ob-
servations, classify it as “Match” or “Non-match.” A separate
match decision is made for each candidate pair, followed by
transitive closure to eliminate inconsistencies. Typically, a
logistic regression model is used. We call this the standard
model.

Making match decisions separately ignores that informa-
tion gleaned from one match decision may be useful in others.
For example, if we find that a paper appearing in Proc. 1JCAI-
03 is the same as a paper appearing in Proc. 18th 1JCAI,
this implies that these two strings refer to the same venue,
which in turn can help match other pairs of IICAI papers. In
this paper, we propose an approach which accomplishes this
propagation of information. Our approach makes decisions
collectively, performing simultaneous inference for all candi-
date match pairs, and allowing information to propagate from
one candidate match to another via the attributes (or fields)
they have in common. Our model is based on conditional
random fields [Lafferty et al., 2001]. We call our model the
collective model. Figure 1(a) shows a four-record bibliog-
raphy database and 1(b) shows the corresponding graphical
representation for the candidate pairs (b1, b2) and (b3, bs) in
the collective model. There are three types of nodes in the fig-
ure. Record-match nodes are Boolean-valued and they corre-
spond to asking the question “Is record b; the same as record
b;?” Field-match nodes are also Boolean-valued and they
correspond to asking the question “Do field values b;.F" and
b;.F, for the field F, represent the same underlying property ?”’
Field-similarity nodes are real-valued nodes taking values in
the domain [0, 1] and they encode how similar two field val-
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Figure 1: Example of collective object identification. For
clarity, we have omitted the edges linking the record-match
nodes to the corresponding field-similarity nodes.

ues are, according to a pre-defined similarity measure. The
values of these nodes can be directly computed from data,
and hence they are also called the evidence nodes. Intu-
itively, an edge between two nodes represents the fact their



values directly influence each other. Note how dependencies
flow through the shared field-match node corresponding to
the venue field. Inferring that b; and bs refer to the same un-
derlying paper will lead to the inference that the correspond-
ing venue strings “Proc. IJCAI-03” and “Proc. 18th IICAI”
refer to the same underlying venue, which in turn might pro-
vide sufficient evidence to merge b3 and by. In general, our
model can capture complex interactions between candidate
pair decisions, potentially leading to better object identifica-
tion.

For random fields where maximum clique size is two and
all non-evidence nodes are Boolean, the inference problem
can be reduced to a graph min-cut problem, provided cer-
tain constraints on the parameters are satisfied [Greig et al.,
1989]. Our formulation of the problem satisfies these con-
straints. Since min-cut can be solved exactly in polynomial
time, we have a polynomial-time exact inference algorithm
for our model. We follow the standard approach of gradient
descent to learn the parameters. Calculating the exact deriva-
tive is intractable as it involves an expectation over an expo-
nential number of configurations. We use a voted perceptron
algorithm [Collins, 2002], which approximates this expecta-
tion by the feature counts of the most likely configuration,
which we find using our polynomial-time inference algorithm
with the current parameters.

Combining models is often a simple way to improve ac-
curacy. We combine the standard and collective models us-
ing logistic regression. For each record-match node in the
training set, we form a data point with the outputs of the two
models as predictors, and the true value of the node as the
response variable. We then apply logistic regression to this
dataset. Notice that this still yields a conditional random field.

We performed experiments on real and semi-artificial
databases, comparing the performance of (a) the standard
Fellegi-Sunter model using logistic regression, (b) the col-
lective model, and (c) the combined model.

The first set of experiments was on Cora database, which
is a collection of 1295 different citations to computer science
research papers. We cleaned it up by correcting some labels
and filling in missing values. This cleaned version contains
references to 132 different research papers. We used the au-
thor, venue, and title fields. The second set of experiments
was done on the BibServ.org database, which is the result of
merging citation databases donated by its users, Citeseer, and
DBLP. We experimented on the user-donated subset of Bib-
Serv, which contains 21,805 citations. Table 1 reports the
results for these databases. The combined model gives the
best performance on both Cora and BibServ, followed by the
collective model. Transitive closure helps these on Cora but
hurts all models on BibServ (where recall was close to 100%
even without transitive closure). The best combined model
outperforms the best standard model in F-measure by about
2% on Cora and 3% on BibServ.

To further observe the behavior of the algorithms, we gen-
erated variants of the Cora database by taking distinct field
values from the original database and randomly combining
them to generate distinct papers. Figures 2(a) and 2(b) com-
pare the performance of the collective and standard models
as number of clusters and level of distortion in the data are

Table 1: F-measures on Cora and BibServ before and after
transitive closure.

Model Cora BibServ
Before  After | Before  After
Standard | 86.9% 84.7% | 82.7% 68.5%
Collective | 87.4% 889% | 82.8% 73.6%
Combined | 85.8% 89.0% | 85.6% 76.0%
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Figure 2: Experimental results on semi-artificial data.

varied, respectively.! The collective model clearly dominates
the standard model over a broad range of number of clusters
and level of distortion.

In summary, determining which observations correspond
to the same object is a key problem in information integra-
tion, citation matching, natural language, vision, and other ar-
eas. We have developed a collective approach to this problem,
where information propagates among related decisions via
shared field values, and shown experimentally that it outper-
forms the standard one of making decisions independently.
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"For clarity, we have not shown the curves for the combined
model, which are similar to the collective one’s.



