Improving Tree Decomposition Methods With Function Filtering

Marti Sanchez(!), Javier Larrosa® and Pedro Meseguer(!)
(DIITA-CSIC, Campus UAB, 08193 Bellaterra, Spain
(Q)Dep. LSI, UPC, Jordi Girona 1-3, 08034 Barcelona, Spain
marti @iiia.csic.es, larrosa@lsi.upc.es, pedro@iiia.csic.es

Abstract

Tree decomposition can solve weighted CSP, but
with a high spatial complexity. To improve its prac-
tical usage, we present function filtering, a strategy
to decrease memory consumption. Function filter-
ing detects and removes some tuples that appear
to be consistent but that will become inconsistent
when extended to other variables. We show empir-
ically the benefits of our approach.

1 Introduction

A weigthed CSP (WCSP) is defined as (X, D,C,S(k))
where X and D are variables and domains as in CSP. (' is
a finite set of constraints as cost functions; f € ' relates
some variables var(f) = {x;,,...#;. } called its scope, and
assigns costs to tuples ¢ €] D; such that,

z;€var(f)
0 if ¢ is allowed
f(t) = { 1...k—1 iftispartially allowed
k if ¢ is totally forbidden

S(k) = ([0,1,...,k],®, >) is a valuation structure such that
a®b = min{k,a+ b}, T = k, L = 0 [Larrosa, 2002].
We assume that the reader is familiar with assignments or
value tuples 75 with scope .S, complete tuples (S = X)), pro-
jections over S’ C S, {5[S’], and concatenation of two tuples
tg -1, defined only if common variables coincide in their cor-
responding values. We assume that f(ts) (with var(f) C .S)
always means f(tg[var(f)]). A complete tuple {5 is consis-
tentif ;e f(t) < k,elsets is inconsistent. A solutionis a
complete consistent assignment with minimum cost. Finding
a solution is NP-hard. With & = 1 WCSP reduces to CSP.
We define two operations on functions. Projecting out a
variable z € var(f) from f, denoted f,, is a new function
with scope var(f)—xz defined as fi,(¢) = mingep, (f(a.t)).
Summing two functions f and ¢ is a new function f +
g with scope var(f) U var(g) and Vi €[], cyar(s) Dis
V' € [, cvarg) D such thatt.t" is defined, (f +g)(t.t") =
F(t)®g(t'). We say that function g¢ is a lower bound of f, de-
noted g < f,if var(g) C var(f) and for all possible tuples ¢
of f,g(t) < f(t). A setof functions G is a lower bound of f
iff (3, cq 9) < f. Itis easy to check that for any f, (fy.) is

alowerboundof f,and) ¢ p (fyz) < (O ser e

procedure CTE((X, D, C, k), {{V, E), x, ¢))

1 for each (u,v) € E's.t. all m(; 4,1 # v have arrived do
2 B ylu)U{mguy | (4 uS € E,i £ v},

3 m & Upenf :
4 sendmy.);

elim(u,v)r

Figure 1: The CTE algorithm.

A tree decomposition of a WCSP (X, D, ', S(k)) is a
triplet {7, x, ¢), where T = (V| F) is a tree, x and ¢ are
labeling functions which associate with each vertex v € V
two sets, x(v) € X and ¢(v) C C such that: (¢) for each
function f € (', there is exactly one vertex v € V such
that f € (v) and var(f) C x(v); (i) for each vari-
able # € X, the set {v € V]|z € x(v)} induces a con-
nected subtree of 7. The tree-width of a tree decomposi-
tion is tw = mazyev|x(v)] — 1. If (u,v) € E the sep-
arator is sep(u,v) = x(u) N x(v), and the eliminator is
elim(u,v) = x(u) — sep(u, v) [Dechter, 2003].

Cluster-Tree Elimination (CTE) is an algorithm that solves
WCSP by sending messages along tree decomposition edges
[Dechter and Pearl, 1989]. Edge (u,v) € E has associated
two CTE messages my), from u to v, and m,), from v
o u. My) is a function computed summing all functions
in ¢(v) with all incoming CTE messages except from m,)
and projecting out variables in elim(u, v). m(,,) has scope
sep(u, v). The CTE algorithm appears in Figure 1. Its com-
plexity is time O(d'“*') and space O(d*), where d is the
largest domain size and s is the maximum separator size.

Mini-Cluster-Tree Elimination (MCTE(r)) approximates
CTE. If the number of variables in a cluster is high, it may
be impossible to compute m, ,) due to memory limitations.
MCTE(r) computes a lower bound by limiting by » the
arity of the functions sent in the messages. A MCTE(r)
message, M, ,), is a set of functions that approximate the
corresponding CTE message my o) (M) < My ,0))- It
is computed as m(, ,) but instead of summing all functions
of set B, it computes a partition P = {B1, Bs,..., By} of
B such that the sum of the functions in every B; does not
exceed arity . The MCTE(r) algorithm, with time and space
complexity O(d"), is obtained replacing line 3 of CTE by,

3.1 P « partitioning(B, r);
3.2 M,y < {(Xep,) elim(u,v)|Bi € P}

2 Function Filtering

A nogood s atuple ¢ that cannot be extended into a complete
consistent assignment. Nogoods are useless for solution gen-
eration, so they can be eliminated as soon as are detected. We
store function f as a set Sy containing all pairs (¢, f(¢)) with
cost less than k. The size of f, denoted | f|, is the number of
tuples with cost less than £. Computing f |}, has time com-
plexity O(|f]). For summing f + g, we iterate over all the
combinations (¢, f(¢)) € Sy and (¢', g(t')) € Sy and, if they
match, compute (¢ - ¥/, f(t) @ g(¢')), which has complexity
O(|f|lg])- Efficiency of operations depends on function size.

To anticipate the detection of nogoods, we propose function

filtering on f from a set of functions A, noted T ,as

1 { () (@ hio) & 510) < &

k otherwise

Tuples reaching the upper bound % are removed, which causes
to reduce | f| before operating with it. Therefore, let f (resp.
g) be a function and F' (resp. (') be a lower bound. When
summing f and g, if previously filtered with the lower bound
of the other function, the result is preserved,

-G _
F +7"=f+yg

and the sum is done with functions of smaller size, so it is
presumably done more efficiently. If f ¢ H, g ¢ H,

—H

T+g" =T"+g"
Function filtering easily integrates into CTE. We define a
Siltering tree-decomposition (T, x, ¢, ¢), where ¢(u,v) is a
set of functions associated to edge (u,v) € E with scope
included in sep(u,v). ¢(u,v) must be a lower bound of
the corresponding m,,) (namely, ¢(u,v) < m(y.)). The
new algorithms CTEf and MCTEf(r) use a filtering tree
decomposition. They are equivalent to CTE and MCTE(r)
except in that they use ¢(u, v) for filtering functions before
computing m,) or M, ,). For CTEf, we replace line 3 by,

= %(u)
3 M (u,v) — ZfeB .f ‘Uelim(u,v);

Similarly for MCTEf(r) we replace line 3 by two lines,
(u,v)

3.1 P « partitioning(B, r) :
3.2 My < {2 sen,) Yetim(ue) |Bi € P}

The effectiveness of the new algorithms will depend on the

quality of the lower bound ¢(u,v). It is worth noting that
the algorithms will be correct as long as ¢(u,v) is a true
lower bound which can be computed using any technique.
An option is to include in ¢(u, v) all the original functions
used to compute m,) properly projected,

d(u,v) ={f s | f € ¥(w),w € T(u,v),S = var(f)—x(u)}

Our CTEf and MCTESf implementations use this lower bound.
T(u,v) denote the nodes of the tree decomposition reach-
able from node v after the eliminaiton of edge (u,v). An-
other option for CTEf is to include in ¢(u,v) a message
My) from a previous execution of MCTE(r). Applying

procedure IMCTE((X, D, C, k), {{V, E}, x, ¢)
for each (u,v) € E do ¢(u,v) := {0}, r :=
repeat
MCTEf(r); r ;=71 + 1,
for each (u,v) € £ do ¢(u,v) := My .);
until exact solution or exhausted resources

)
1

Figure 2: The IMCTE algorithm.

this idea to MCTEf, we obtain a recursive algorithm which
naturally produces an elegant iterative approximating method
called IMCTES (Figure 2). It executes MCTESf(r) using

as lower bounds ¢(u, v) the messages M (’“U_ul) computed by
r—2

MCTEf(r — 1) which, recursively, uses the messages M (v.0)
computed by MCTEf(r — 2), an so on.

State of the art CTE based algorithms assume to consume
all d° memory. Here we show that storing only consistent tu-
ples and applying filtering techniques we can greatly reduce
memory usage. Experiments focus on (i) showing that CTEf
uses less memory than CTE to find the exact solution, and (i1)
showing that MCTEf(r), exhausts resources at a smaller arity
r and finds worst LB than the iterative version IMCTE. We
have tested CTE, CTEf, MCTEf(r) and IMCTE on DIMACS
dubois Max-Sat instances, Borchers Weigthed Max-Sat in-
stances and SPOT instances. When d° is small CTE is feasi-
ble. When d° is large, CTE is unfeasible and filtering is very
useful as shown by the gain in one order of magnitude in the
used memory (see the first Borchers and the firsts SPOT in-
stances). In unfeasible instances for both CTE and CTEf, IM-
CTE finds better quality lower bounds than MCTEf(r).

References

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree clustering
for constraints networks. Artifical Intelligence, 38, 1989.

[Dechter, 2003] R Dechter. Constraint Processing. Elsevier, 2003.

[Larrosa, 2002] J. Larrosa. Node and arc consistency in weighted
csp. In Proc. AAAI 2002.

MCTEfr) [IMCTE |
[IXIJIC] [d Jsep][CTE [CTEf[r [LB [r [LB [UB |

dubois100[75 [200 [2[3 [[3k |2k 1
wp2100 [50 95 {2]9 [lek ik 16
wp2150 [50 138 [2 [15 [[302k [40k 34
wp2200 [50 [186 [2 19 |- [733k 69
wp2250 [50 [233 [2[24 [|- [a1 [e 25 [9%6 9%
wp2300 [50 261 [2[26 || |- [21[76 21 [132 132
wp2350 [50 [302 [2[30 []- |- [e1[izo a1 155 212
wp2400 [50 340 [2 30 []- |- [20[70 20 [137 212
wp2450 [50 [378 [2 31 []- |- [20[130 [0 [187 257
wp2500 [50 418 [2[34 |- |- [20 |18 [20 251 318
spots4 |67 271 [4 [11 [[754k [1ek 37
spot29 [82 462 [4 [14 |- [e3k 8059
spots03 [143 |35 [4 [8 |- [oek 11113
spots05 [240 [2242 4 [22 |- |- [12[s020 [12 [14188 [[21254
spord2 [190 [1394 [4 [26 [|- |- [12 109000 [12 [123050 [[155051

Table 1: Columns are: instance, number of variables, number of constraints, max-
imum domain size, maximum separator size, tuples consumed by CTE algorithm, tu-
ples consumed by CTEf algorithm (- denotes exhausted memory), arity reached by
MCTE(r), LB computed by MCTE(r), arity r reached by IMCTE, LB computed by
IMCTE (before resources exhausted), optimal UB of the problem.

