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1 Introduction

A PipyVPipg -
A propositionalizatiorof a theory in First-Order Logic (FOL) Py (h1)V Py (hs) —~Ecpy py> - --
is a set of propositional sentences that is satisfiable @f th | |P2(ra)vP2(hs). .. Piry = E<py>
original theory is satisfiable. We cannot translate arbjtra Ve (Py(z) = ~P2(2) - -
FOL theories to propositional logic because FOL is only ol | Pyj VPs, ..
semi-decidable. However, when possible, it is often advan- f&l;zfifi JB<map>
tageous to do so because we can use optimized, efficient SAT| | " .” LT Sretam T e
solvers (e.g.[Moskewiczet al., 2001) to solve the result- H s
ing SAT problem. Propositionalization is used frequently i (@) Partitoning{ A; } <., (b) Part-Prop-Monadic (A:}:.<..)

Planning[Kautz and Selman, 1996Relational Data Mining

[Krogelet al., 2003, and Formal VerificatiofKropf, 1999.
Current propositional encodingadive prop), based on Figure 1: The partitioning of the theory.

[Gilmore, 1960, result in prohibitively large propositional

encodings even for moderate applications and assume a o ) )

known finite domain for the theory. However despite their{n€ structure of the partitioning. Finally, they combine th

drawbacks, they are the most efficient solutions known so faffanslated parts into a single propositional theory.

Examples of naive prop. are given in Table 1. In the following, we briefly describe our methods with ex-

We briefly describe a novel, systematic approach to trans2MPles, and then present experimental results from agplyin
lating two important subsets of FOL into propositional lngi  tN€S€ methods to an encoding of the Pigeonhole problem.
Our approach leverages structure in the FOL formulation to
provide significantly more compact propositional encoding 2 Partitioned Prop. for the Monadic Class
without requiring a finite fixed domain. _ ..

Specifically, we present algorithms for translating two im- " '9ure 1 shows an example of the partitioned prop. of a the-
portant decidable subsets of FOL: (1) function-freenadic ~ 2'Y I the monadic class (all predicates have arity 1). The
and (2) theBernays-Sobenfinkel-Ramseslass (sedBorger f[heoryA on the left is partitioned mt_o_ﬁll,Ag ...A,. There
et al, 1994) in which all existential quantifiers must occur IS an edg‘? b.etW?e” every two partitions that share Symb‘)ls'
before all universal ones (all arity is allowed for predest The partitioning is done in such a way thaessage-passing

with equality, but no functions). These subsets cover impor[Amlr and Mcllraith, 2004, a reasoning procedure that in-

tant problems in Al and computer science, such as expressi\)/é’.lveS sending messages between partitions when a formula

planning, data mining, constraint satisfaction, proposél IS in the intersection language, is sound and complete.

modal logic, and quantified boolean formulae (QBF). _Figure 1 b) shows the propositional encoding of the parti-
! oned theory. There are two kinds of propositonal symbols,

Our algorithms generate propositional encodings of thesﬁ_‘ ;
- . ose of the formP,, which stand forP(a), andE<pq.. >
subsets of FOL as follows. They start by grouping axiom setWhich stand fordz{ P(z)AQ(x) .. ]. It can be shown that

into a tree of partitions following the approach[@fmir and ; , .

Mcliraith, 2004. Then, they translate each partition sepa-EVETY Mmonadic FOL formula can be converted into an equiv-
rately using only a restricted set of constants that depend o2I€"t Propositional sentence using only these symbols. To
ensure that the propositional symbols have the right seman-

tics we need to add some consistency axioms to the proposi-

| FOL Theory | Naive Prop. | tionalization. For eg.P,;,, = E.p - ensures that if there
=(P(a)AQ(b)) —(PaAQy) is some constanti, for which P;(h;) holds, therdz P (x)
VoP(z) = YVy=Q(y) | (PaAPAP: = (mQaA=-QuvA=Q.)) holds as well and&< p, p,> = F<p,>AE.p,~ ensures that
F2(R(z,c)A=Q(a)) | (R(a,c)A=Q(a))V(R(c,c)A-Q(a)) if = 3x[Ps(x)APy(2)] is true, therdz P3(z) and3x Py (x) is
true as well.

Table 1: Naive propositionalization The union of these partitioned propositionalizations can b



the number of variables created and the running time for the
SAT solver. Our algorithm does substantially better, eingbl
the solution of problems that are outside the scope of thenai
encoding. The size of the encoding for the partitioned Ram-
sey prop. grows aé)(plogp) versusO(p?) for the naive
prop, wherep is the number of pigeons. The running time
for our SAT solver shows orders of magnitude speedup.

The bottom two graphs present a similar comparison for a
partitioned pigeonholgroblem (i.e. where each pigeon can
be assigned only to a fixed subset of the holes) which is in
%{E{th the Ramsey and Monadic classes. We compare both the

Figure 2: The solid boundaries represents the constants a
the broken ones represent the predicates in each separ
propositionalization.

nadic and Ramsey partitioned prop. with naive prop. For
€ naive prop., the size of the encoding growgs?) ver-
susO(p) for the partitioned monadic prop.

The experiments were done on a 3.2 GHz Linux machine
shown to be equisatisfiable with. The proof relies on the with Zchaff[Moskewiczet al, 2001 as the SAT solver.
completeness of the message passing procedure. Briefly, it
can be shown that if the intersection graph of the partitigni #Pigeons vs. Time(secs) #Pigeons vs. #Vars
is a tree, for every formula s.t. A - «, there is a proof s.t. 100 L2er08 R =
each step uses either axioms that are completely within the 1000 oo
same partitiond; or messages transmitted X from other

#Vars
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Time(secs.)

partitions. The proof of this relies on the following theore 200 e 200000 o
Theorem 1 (Craig's Interpolation Theorem). If a and 3 e e, o e
are first order formula s.t.a F g3, then there is a formula #Pigeons vs. Time(secs) #Pigeons vs. #Vars

v € L(L(e) N L(B)) such that -y andy F 3. 1200 e el SO e

1000 Naive ——/ 1e+06 Naive ——
800 / 800000
600 600000

3 Partitioned Prop. for the Ramsey Class

It is known that the naive partitioning is correct for the 0 2000 | e =
Ramsey class without any additional semantic assumptions O om0 %0 O e 0
[Borgeret al, 1994d. The number of propositional sym- . _

bols used igP||C|* wherek is the maximum arity of any Figure 3: Experimental Results
predicate. This can be significantly reduced by partitignin

But it is not enough to propositionalize each partition indi
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