
Compact Propositional Encodings of First-Order Theories

Deepak Ramachandran and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{dramacha,eyal}@cs.uiuc.edu

1 Introduction
A propositionalizationof a theory in First-Order Logic (FOL)
is a set of propositional sentences that is satisfiable iff the
original theory is satisfiable. We cannot translate arbitrary
FOL theories to propositional logic because FOL is only
semi-decidable. However, when possible, it is often advan-
tageous to do so because we can use optimized, efficient SAT
solvers (e.g.[Moskewiczet al., 2001]) to solve the result-
ing SAT problem. Propositionalization is used frequently in
Planning[Kautz and Selman, 1996], Relational Data Mining
[Krogelet al., 2003], and Formal Verification[Kropf, 1999].

Current propositional encodings (naive prop.), based on
[Gilmore, 1960], result in prohibitively large propositional
encodings even for moderate applications and assume a
known finite domain for the theory. However despite their
drawbacks, they are the most efficient solutions known so far.
Examples of naive prop. are given in Table 1.

We briefly describe a novel, systematic approach to trans-
lating two important subsets of FOL into propositional logic.
Our approach leverages structure in the FOL formulation to
provide significantly more compact propositional encodings
without requiring a finite fixed domain.

Specifically, we present algorithms for translating two im-
portant decidable subsets of FOL: (1) function-freemonadic,
and (2) theBernays-Scḧoenfinkel-Ramseyclass (see[Börger
et al., 1996]) in which all existential quantifiers must occur
before all universal ones (all arity is allowed for predicates,
with equality, but no functions). These subsets cover impor-
tant problems in AI and computer science, such as expressive
planning, data mining, constraint satisfaction, propositional
modal logic, and quantified boolean formulae (QBF).

Our algorithms generate propositional encodings of these
subsets of FOL as follows. They start by grouping axiom sets
into a tree of partitions following the approach of[Amir and
McIlraith, 2004]. Then, they translate each partition sepa-
rately using only a restricted set of constants that depend on

FOL Theory Naive Prop.
¬(P (a)∧Q(b)) ¬(Pa∧Qb)

∀xP (x) ⇒ ∀y¬Q(y) (Pa∧Pb∧Pc ⇒ (¬Qa∧¬Qb∧¬Qc))
∃z(R(z, c)∧¬Q(a)) (R(a, c)∧¬Q(a))∨(R(c, c)∧¬Q(a))

Table 1: Naive propositionalization

�
�
�
��
�
�
���

A1

A2

P1(h1)∨P1(h3)

P2(h4)∨P2(h8) . . .

∀x(P1(x) ⇒ ¬P2(x)) . . .

P3(h1)∨P3(h2)

P4(h5)∨P4(h7) . . .

∀x(P3(x) ⇒ ¬P4(x)) . . .

(a) Partitioning{Ai}i≤n

�
�
�
���

��

P1h1
∨P1h3

. . .

¬E<P1,P2> . . .

P1h1
⇒ E<P1>

P3h1
∨P3h2

. . .

¬E<P3,P4> . . .

E<P3,P4> ⇒ E<P3>∧E<P4>

(b) Part-Prop-Monadic ({Ai}i≤n)

Figure 1: The partitioning of the theoryA.

the structure of the partitioning. Finally, they combine the
translated parts into a single propositional theory.

In the following, we briefly describe our methods with ex-
amples, and then present experimental results from applying
these methods to an encoding of the Pigeonhole problem.

2 Partitioned Prop. for the Monadic Class
Figure 1 shows an example of the partitioned prop. of a the-
ory in the monadic class (all predicates have arity 1). The
theoryA on the left is partitioned intoA1,A2 . . .An. There
is an edge between every two partitions that share symbols.
The partitioning is done in such a way thatmessage-passing
[Amir and McIlraith, 2004], a reasoning procedure that in-
volves sending messages between partitions when a formula
is in the intersection language, is sound and complete.

Figure 1 b) shows the propositional encoding of the parti-
tioned theory. There are two kinds of propositonal symbols,
those of the formPa, which stand forP (a), andE<P,Q...>

which stand for∃x[P (x)∧Q(x) . . .]. It can be shown that
every monadic FOL formula can be converted into an equiv-
alent propositional sentence using only these symbols. To
ensure that the propositional symbols have the right seman-
tics we need to add some consistency axioms to the proposi-
tionalization. For eg.P1h1

⇒ E<P1> ensures that if there
is some constanth1 for which P1(h1) holds, then∃xP1(x)
holds as well andE<P3,P4> ⇒ E<P3>∧E<P4> ensures that
if ≡ ∃x[P3(x)∧P4(x)] is true, then∃xP3(x) and∃xP4(x) is
true as well.

The union of these partitioned propositionalizations can be

A1

A2 A3

A4 A5 A6 A7

Figure 2: The solid boundaries represents the constants and
the broken ones represent the predicates in each separate
propositionalization.

shown to be equisatisfiable withA. The proof relies on the
completeness of the message passing procedure. Briefly, it
can be shown that if the intersection graph of the partitioning
is a tree, for every formulaα s.t. A ⊢ α, there is a proof s.t.
each step uses either axioms that are completely within the
same partitionAi or messages transmitted toAi from other
partitions. The proof of this relies on the following theorem:

Theorem 1 (Craig’s Interpolation Theorem). If α and β
are first order formula s.t.α ⊢ β, then there is a formula
γ ∈ L(L(α) ∩ L(β)) such thatα ⊢ γ andγ ⊢ β.

3 Partitioned Prop. for the Ramsey Class
It is known that the naive partitioning is correct for the
Ramsey class without any additional semantic assumptions
[Börger et al., 1996]. The number of propositional sym-
bols used is|P ||C|k wherek is the maximum arity of any
predicate. This can be significantly reduced by partitioning.
But it is not enough to propositionalize each partition indi-
vidually. For example, consider the case whereP (c) and
∀x[P (x) ⇒ Q(a)] are in different partitions. Because we
propositionalize these separately,P (c) ⇒ Q(a) will not be
in the propositional theory and thusQ(a) cannot be deduced.

However, it can be shown that there exists an ordering≺ of
the vertices in the intersection graph of the partitioning such
that a correct propositionalization results if we propositional-
ize the predicates of each partitionAi w.r.t. every constant
that occurs in some partitionAj , Aj ≺ Ai. For example, in
a prop. of the theory in figure 1 a),P3h3

will be in the lan-
guage, butP1h2

will not. There aren such orderings, one
for each choice of a partition as the root of the tree. In the
case of a binary tree withn vertices (figure 2) each prop.
will have log n

n
|P ||C|k variables. Thus the problem of sat-

isfiability of A reduces ton independent SAT instance of size
log n

n
|P ||C|k. The running time will beO(n · 2

log n

n
|P ||C|k)

compared to the naive prop. which takesO(2|P ||C|k).

4 Experimental Results
In figure 3 we present the results of some experiments with
our algorithms on two different problems. The first is a first-
order encoding of the pigeonhole problem that belongs to the
Ramsey class. The upper two graphs compare our Ramsey
prop. with the naive prop. for this problem, on the basis of

the number of variables created and the running time for the
SAT solver. Our algorithm does substantially better, enabling
the solution of problems that are outside the scope of the naive
encoding. The size of the encoding for the partitioned Ram-
sey prop. grows asO(p log p) versusO(p2) for the naive
prop, wherep is the number of pigeons. The running time
for our SAT solver shows orders of magnitude speedup.

The bottom two graphs present a similar comparison for a
partitioned pigeonholeproblem (i.e. where each pigeon can
be assigned only to a fixed subset of the holes) which is in
both the Ramsey and Monadic classes. We compare both the
Monadic and Ramsey partitioned prop. with naive prop. For
the naive prop., the size of the encoding grows asO(p2) ver-
susO(p) for the partitioned monadic prop.

The experiments were done on a 3.2 GHz Linux machine
with Zchaff [Moskewiczet al., 2001] as the SAT solver.

0
200
400
600
800

1000
1200
1400
1600

100 150 200 250 300 350

T
im

e(
se

cs
.)

#Pigeons

#Pigeons vs. Time(secs.)

Ramsey
Naive

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

100 150 200 250 300 350

#V
ar

s

#Pigeons

#Pigeons vs. #Vars

Ramsey
Naive

0

200

400

600

800

1000

1200

1400

100 200 300 400 500 600 700 800 900

T
im

e(
se

cs
.)

#Pigeons

#Pigeons vs. Time(secs.)

Ramsey
Monadic

Naive

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

100 200 300 400 500 600 700 800 900

#V
ar

s

#Pigeons

#Pigeons vs. #Vars

Ramsey
Monadic

Naive

Figure 3: Experimental Results

References
[Amir and McIlraith, 2004] E. Amir and S. McIlraith. Partition-

based logical reasoning for first-order and propositional theories.
Artificial Intelligence, 2004. Accepted for publication.

[Amir, 2001] E. Amir. Efficient approximation for triangulation of
minimum treewidth. InUAI’01, pages 7–15. Morgan Kaufmann,
2001.

[Börgeret al., 1996] E. Börger, E. Gr̈adel, and Y. Gurevich.The
Classical Decision Problem. Springer-Verlag, 1996.

[Gilmore, 1960] P.C. Gilmore. A proof method for quantification
theory: It’s justification and realization.IBM Journal of Research
and Development, 4(1):28–35, January 1960.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing the
envelope: Planning, propositional logic, and stochastic search.
In AAAI’96, 1996.

[Krogelet al., 2003] M. Krogel, N. Lavrac, and S. Wrobel. Com-
parative evaluation of approaches to propositionalization. In ILP,
pages 197–214, 2003.

[Kropf, 1999] T. Kropf, editor. Introduction to Formal Hardware
Verification. Springer, 1999.

[Moskewiczet al., 2001] M. W. Moskewicz, C. F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an effi-
cient SAT solver. InProceedings of the 38th Design Automation
Conference (DAC’01), 2001.

