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Abstract

We present the problem of learning to communi-
cate in decentralized and stochastic environments,
analyzing it formally in a decision-theoretic context
and illustrating the concept experimentally. Our ap-
proach allows agents to converge upon coordinated
communication and action over time.

1 Introduction
Learning to communicate in multi-agent systems is an emerg-
ing challenge AI research. Autonomous systems, developed
separately, interact more and more often in contexts like dis-
tributed computing, information gathering over the internet,
and wide-spread networks of machines using distinct proto-
cols. As a result, we foresee the need for autonomous systems
that can learn to communicate with one another in order to
achieve cooperative goals. We make some first steps towards
solving the attendant problems.

Coordination among agents acting in the same environ-
ment while sharing resources has been studied extensively,
particularly by the multi-agent systems community. While
such coordination may involve communication, typically
there is no deliberation about the value of communication,
resulting in systems with no communication or ones allow-
ing free communication of well-understood messages. In
contrast, we study decentralized systems that require agents
to adapt their communication language when new situations
arise or when mis-coordination occurs.

2 The Decentralized Learning Framework
We study the problem in the context ofdecentralized Markov
Decision Processes[Bernsteinet al., 2002] with communi-
cation (Dec-MDP-Com). Such a process is a multi-agent ex-
tension of a common MDP in which each agentαi observes
only its own local portion of the state-space, and can attempt
to communicate with others using the set of messagesΣi.
Decentralization makes Dec-MDPs, with communication or
not, significantly harder to solve than regular MDPs; for their
complexity properties, see[Goldman and Zilberstein, 2004].

If agents in a system share the same language, optimal lin-
guistic action is a matter of decidingwhatandwhento com-
municate, given its cost relative to the projected benefit of

sharing information. However, where agents utilize different
sets of messages, and do not fully understand one another,
message-passing alone is not enough. Rather, agents need to
learn how torespondto the messages that are passed between
them—in a sense, learning what those messagesmean.

Definition 1 (Translation). Let Σ and Σ′ be sets of mes-
sages. Atranslation, τ , betweenΣ and Σ′ is a probabil-
ity function over message-pairs: for any messagesσ, σ′,
τ(σ, σ′) is the probability thatσ andσ′ have the same mean-
ing. τ+

Σ,Σ′ is the set of all translations betweenΣ andΣ′.

Agents may need to consider multiple possible translations
between messages; that is, agents possess beliefs as to which
translation is correct given their present situation.

Definition 2 (Belief-state). Let agentsα1, α2 use sets of
messagesΣ1, Σ2. A belief-statefor αi is a probability-
functionβi over translation-setτ+

Σi,Σj
(i 6= j). For translation

τ ∈ τ+

Σi,Σj
, βi(τ) is the probability thatτ is correct.

Updating beliefs about translations is thus an important
part of the overall process of learning to communicate.
Agents act based upon local observations, messages received,
and current beliefs about how to translate those messages.
Their actions lead to new observations, causing them to up-
date beliefs and translations. The procedure governing these
updates comprises the agent’slanguage-model, a function
from actions, messages, and observations to distributionsover
translations. Such models may be highly complex, or difficult
to compute, especially where languages are complicated, or
the environment is only partially observable. Here we con-
centrate upon special—but interesting—cases for which gen-
erating these probabilities is much more straightforward.

3 Formal Properties of the Problem
Our main formal results isolate conditions under which Dec-
MDP-Coms reduce to simpler problems, and present a proto-
col for learning to communicate in such reduced problems.

Reduction to MMDPs
Boutilier [1999] definesmultiagent MDPs(MMDPs), con-
sisting of a set of agents operating in a fully- and commonly-
observed environment; transitions between states in that envi-
ronment arise fromjoint actionsof all agents, and a common
reward is shared by the system as a whole. While we can
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Figure 1: Reward accumulated as language is learned.

calculatean optimal joint policy for such a process offline,
this is not the same thing asimplementingit. Unless agents
can coordinate their actions, there is no guarantee of a jointly
optimal policy, since communication is not allowed, or is un-
reliable. Boutilier thus definescoordination problems, which
arise when agents may each take an individual action that is
potentially optimal, but which combine in sub-optimal fash-
ion. We show that certain, putatively more complex, Dec-
MDP-Coms in fact reduce to MMDPs for which such prob-
lems do not arise. This is notable, as Dec-MDPs are generally
intractable, while MMDPs can be solved efficiently.

Definition 3 (Fully-describable). A Dec-MDP-Com isfully-
describableif and only if each agentαi possesses a language
Σi that is sufficient to communicate both: (a) any observation
it makes, and (b) any action it takes.

Definition 4 (Freely-describable). A Dec-MDP-Com is
freely-describableif and only if for any agentαi and mes-
sageσ ∈ Σi, the cost of communicating that message is 0.

Claim 1. A Dec-MDP-Com is equivalent to an MMDP with-
out coordination problems if (a) it is both fully- and freely-
describable; and (b) agents share a common language.

Suitability and Convergence
For any freely- and fully-describable Dec-MDP-Com, agents
can calculate an optimal joint policy, under the working as-
sumption that all agents share a common language and that
all relevant information is shared. Where agents must in
fact learn to communicate, however, implementation of such
policies requires cooperation from the environment, so that
agents can update translations appropriately over time. The
full definition of a suitable Dec-MDP-Com cannot be in-
cluded here; we simply note that in such problems, the prob-
ability that each agent assigns to the actual prior observations
and actions of othersfollowingsome state-transition is strictly
greater than that of the observations and actions considered
most likely beforethat transition (unless those entries were
actually correct). Suitable Dec-MDP-Coms provide enough
information to ensure that others’ actual actions and observa-
tions are more likely than mistaken ones.

We extend work of Goldmanet al. [2004] (where agents
communicate states but not actions), to give anelementary
action protocol. Using such a protocol for action and belief-
update, agents move towards optimality, based upon the ob-
served consequences of action in a suitable problem-domain.

Claim 2. Given an infinite time-horizon, agents acting ac-
cording to the elementary action protocol in a suitable Dec-
MDP-Com will eventually converge upon a joint policy that
is optimal for the states they encounter from then on.

4 Empirical Results and Conclusions
To explore the viability of our approach, we implemented our
language-learning protocol for a reasonably complex (but still
suitable) Dec-MDP-Com, involving two agents in joint con-
trol of a set of pumps and flow-valves in a factory setting.

Our results show the elementary protocol converging on
optimal policies in a wide range of problem-instances. Fig-
ure 1 gives an example, for a problem-instance featuring 100
vocabulary-items for each agent, showing the percentage of
total accumulated reward, and total shared vocabulary, at each
time-step in the process of learning and acting. As can be
seen, the learning process (top, dotted line) proceeds quite
steadily. Reward-accumulation, on the other hand, grows
with time before finally stabilizing. Initially, language learn-
ing outpaces reward gain given that knowledge, as agents still
find many of the other’s actions and observations hard to de-
termine. As time goes on, the rate of accumulated reward nar-
rows this gap considerably; agents now know much of what
they need to communicate, and spend more time accumu-
lating reward in familiar circumstances, without necessarily
learning anything new about the language of others.

These experimental results conform with intuition, show-
ing that while a small amount of language learning does little
to help agents in choosing their actions, they are capable of
very nearly optimal action even in the presence of an under-
standing that is still less than perfect. This opens the door
for further study into approximation in these contexts. We
continue to investigate and compare other approaches to the
problem, including analysis of the differences between possi-
ble optimal offline techniques and online learning methods.
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