Language Learning in Multi-Agent Systems
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Abstract sharing information. However, where agents utilize défer
) ) sets of messages, and do not fully understand one another,
We present the problem of learning to communi-  e55age-passing alone is not enough. Rather, agents need to
cate in decentralized and stochastic environments, |4 how taespondo the messages that are passed between
analyzing it formally in a decision-theoretic context them—in a sense, learning what those messagen

and illustrating the concept experimentally. Our ap-

proach allows agents to converge upon coordinated ~ Definition 1 (Translation). Let %2 and %’ be sets of mes-
communication and action over time. sages. Atranslation 7, betweenX and X’ is a probabil-

ity function over message-pairs: for any messages’,
_ 7(0o, o’) is the probability that ando’ have the same mean-
1 Introduction ing. 75t 1, is the set of all translations betweErandy'.

Learning to communicate in multi-agent systems is an emergagents may need to consider multiple possible translations

ing challenge Al research. Autonomous systems, developegetween messages; that is, agents possess beliefs as o whic
separately, interact more and more often in contexts like di translation is correct given their present situation.

tributed computing, information gathering over the ingdrn Definition 2 (Belief-state). Let i ts of
and wide-spread networks of machines using distinct proto2€inition 2 (Belief-state). Let agentsa;, as Use Sets 0
cols. As aresult, we foresee the need for autonomous systerfless.agegjl’ 2. A belief-statefor a; is a probability-
that can learn to communicate with one another in order t unction 3; overtranslatlon-setzhzj (¢ # 5). For translation

achieve cooperative goals. We make some first steps towards€ 7s, 5, 5:(7) is the probability that is correct.

solving the ?tte”da”‘ problems. L . Updating beliefs about translations is thus an important
Coordination among agents acting in the same environg, " of the overall process of learning to communicate.
ment while sharing resources has been studled_extenswelﬁgents act based upon local observations, messages mceive
particularly by the multi-agent systems community. While 3ng ¢y rrent beliefs about how to translate those messages.
such coordination may involve communication, typically their actions lead to new observations, causing them to up-
there is no deliberation about the value of communicationyata peliefs and translations. The procedure governirggthe
resulting in systems with no communication or ones a”OW'updates comprises the agehMguage-modela function
ing free communication of well-understood messages. 4o actions, messages, and observations to distributicers
contrast, we study decentralized systems that requiret®igery,; nq|ations. Such models may be highly complex, or difficul

to adapt their communication language when new situationg, ¢ompute, especially where languages are complicated, or
arise or when mis-coordination occurs. the environment is only partially observable. Here we con-

. . centrate upon special—but interesting—cases for which gen-
2 The Decentralized Learning Framework erating these probabilities is much more straightforward.

We study the problem in the contextaécentralized Markov _
Decision ProcessefBernsteinet al, 2004 with communi- 3 Formal Properties of the Problem

cation (Dec-MDP-Com). Such a process is a multi-agent expr main formal results isolate conditions under which Dec-

tension of a common MDP in which each agentobserves  \1pp_coms reduce to simpler problems, and present a proto-

only its own local portion of the state-space, and can attemp. for earning to communicate in such reduced problems.
to communicate with others using the set of messages

Decentralization makes Dec-MDPs, with communication orReduction to MMDPs

not, significantly harder to solve than regular MDPs; foiithe Boutilier [1999 definesmultiagent MDPS(MMDPS), con-

complexity properties, sd&oldman and Zilberstein, 20D4  sisting of a set of agents operating in a fully- and commonly-
If agents in a system share the same language, optimal lirebserved environment; transitions between states in tivat e

guistic action is a matter of decidinghatandwhento com-  ronment arise fronpint actionsof all agents, and a common

municate, given its cost relative to the projected benefit ofeward is shared by the system as a whole. While we can
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Figure 1: Reward accumulated as language is learned.

calculatean optimal joint policy for such a process offline,
this is not the same thing asplementingt. Unless agents
can coordinate their actions, there is no guarantee of #yoin
optimal policy, since communication is not allowed, or is un
reliable. Boutilier thus definesoordination problemswhich

Claim 2. Given an infinite time-horizon, agents acting ac-

cording to the elementary action protocol in a suitable Dec-
MDP-Com will eventually converge upon a joint policy that

is optimal for the states they encounter from then on. O

4 Empirical Results and Conclusions

To explore the viability of our approach, we implemented our
language-learning protocol for a reasonably complex (fiut s
suitable) Dec-MDP-Com, involving two agents in joint con-
trol of a set of pumps and flow-valves in a factory setting.

Our results show the elementary protocol converging on
optimal policies in a wide range of problem-instances. Fig-
ure 1 gives an example, for a problem-instance featuring 100
vocabulary-items for each agent, showing the percentage of
total accumulated reward, and total shared vocabulargcit e
time-step in the process of learning and acting. As can be
seen, the learning process (top, dotted line) proceeds quit
steadily. Reward-accumulation, on the other hand, grows
with time before finally stabilizing. Initially, languagedrn-

arise when agents may each take an individual action that {9 outpaces reward gain given that knowledge, as agefits sti

potentially optimal, but which combine in sub-optimal fash ind many of 'the other’s actions and observations hard to de-
ion. We show that certain, putatively more complex, Dec-t€rmine. As time goes on, the rate of accumulated reward nar-
MDP-Coms in fact reduce to MMDPs for which such prob- "OWs this gap considerably; agents now know much of what

lems do not arise. This is notable, as Dec-MDPs are generalij?€y need to communicate, and spend more time accumu-
intractable, while MMDPs can be solved efficiently. ating reward in familiar circumstances, without necesgar

. . . learning anything new about the language of others.
Definition 3 (Fully-describable). A Dec-MDP-Com ifully- These experimental results conform with intuition, show-

describablef and only if each agent; possesses a language jng that while a small amount of language learning doeslittl
%, thatis sufficient to communicate bott&)@ny observation  ohe|p agents in choosing their actions, they are capable of
it makes, andk) any action it takes. very nearly optimal action even in the presence of an under-
Definition 4 (Freely-describable). A Dec-MDP-Com is  standing that is still less than perfect. This opens the door
freely-describablef and only if for any agenty; and mes-  for further study into approximation in these contexts. We
sager € X, the cost of communicating that message is 0. continue to investigate and compare other approaches to the

Claim 1. A Dec-MDP-Com is equivalent to an MMDP with- Problem, including analysis of the differences betweerspos
out coordination problems ifdj it is both fully- and freely- ble optimal offline techniques and online learning methods.

describable; anddfj agents share a common language. [J
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