
Heuristics for Hard ASP Programs ∗

Wolfgang Faber† and Nicola Leone and Francesco Ricca
Department of Mathematics, University of Calabria, I-87030Rende (CS), Italy

Email: {faber,leone,ricca}@mat.unical.it

Abstract
We define a new heuristichDS for ASP, and imple-
ment it in the (disjunctive) ASP system DLV. The
new heuristic improves the evaluation ofΣ

P
2 /ΠP

2 -
hard ASP programs while maintaining the benign
behaviour of the well-assessed heuristic of DLV
on NP problems. We experiment with the new
heuristic on QBFs.hDS significantly outperforms
the heuristic of DLV on hard 2QBF problems.
We compare also the DLV system (with the new
heuristic hDS) to three prominent QBF solvers.
The results of the comparison, performed on in-
stances used in the last QBF competition, indicate
that ASP systems can be faster than QBF systems
onΣ

P
2 /ΠP

2 -hard problems.

1 Introduction
Answer set programming (ASP) is a novel programming
paradigm, which has been recently proposed in the area of
nonmonotonic reasoning and logic programming. The idea
of answer set programming is to represent a given computa-
tional problem by a logic program whose answer sets corre-
spond to solutions, and then use an answer set solver to find
such a solution[Lifschitz, 1999]. The knowledge represen-
tation language of ASP is very expressive in a precise math-
ematical sense; in its general form, allowing for disjunction
in rule heads and nonmonotonic negation in rule bodies, ASP
can representeveryproblem in the complexity classΣP

2 and
Π

P
2 (under brave and cautious reasoning, respectively)[Eiter

et al., 1997]. Thus, ASP is strictly more powerful than SAT-
based programming, as it allows us to solve even problems
which cannot be translated to SAT in polynomial time. The
high expressive power of ASP can be profitably exploited in
AI, which often has to deal with problems of high complex-
ity. For instance, problems in diagnosis and planning under
incomplete knowledge are complete for the the complexity
classΣP

2 or Π
P
2 , and can be naturally encoded in ASP[Baral,

2002; Leoneet al., 2001].
∗This work was partially supported by the European Commission

under projects IST-2002-33570 (INFOMIX) and IST-2001-37004
(WASP), and by FWF (Austrian Science Funds) under projects
P16536-N04 and P17212-N04.

†Funded by APART of the Austrian Academy of Sciences.

Most of the optimization work on ASP systems has fo-
cused on the efficient evaluation of non-disjunctive programs
(whose power is limited toNP/co-NP), whereas the opti-
mization of full (disjunctive) ASP programs has been treated
in fewer works (e.g., in[Janhunenet al., 2000; Kochet al.,
2003]). In particular, we are not aware of any work concern-
ing heuristics forΣP

2 /ΠP
2 -hard ASP programs.

In this paper, we address the following two questions:
◮ Can the heuristics of ASP systems be refined to deal more
efficiently withΣ

P
2 /ΠP

2 -hard ASP programs?
◮ On hardΣP

2 /ΠP
2 problems, can ASP systems compete with

other AI systems, like QBF solvers?
We define a new heuristichDS for the (disjunctive) ASP

system DLV, aiming at improving the evaluation ofΣ
P
2 /ΠP

2 -
hard ASP programs, but maintaining the benign behaviour
of the heuristic of DLV onNP problems. We experimen-
tally comparehDS against the DLV heuristic on hard 2QBF
instances, showing a clear benefit. We also experiment the
competitiveness of ASP w.r.t. QBF solvers on hard problems,
indicating that ASP systems are very competitive with QBF
systems onΣP

2 /ΠP
2 -hard problems.

2 Answer Set Computation and Heuristics
We first recall the main steps of the computational process
performed by ASP systems, in particular the DLV system,
which will be used for the experiments.

An answer set programP in general contains variables.
The first step of a computation of an ASP system eliminates
these variables, then the following algorithm is invoked:

Function ModelGenerator(I: Interpretation): Boolean;
begin

I := DetCons(I);
if I = L then return False; (* inconsistency *)
if no atom is undefined in Ithen return IsAnswerSet(I);
Select an undefined ground atomA according to a heuristic;
if ModelGenerator(I ∪ {A}) then return True;
else returnModelGenerator(I ∪ {not A});

end;

Roughly, the Model Generator produces some “candidate”
answer sets. The stability of each of them is subsequently ver-
ified by the functionIsAnswerSet(I), which verifies whether
the given “candidate”I is a minimal model of the GL-
transformed program and outputs the model, if so.IsAnswer-



Set(I)returns True if the computation should be stopped and
False otherwise.

The function DetCons() computes an extension ofI with
the literals that can be deterministically inferred (or theset
of all literals L upon inconsistency). If DetCons does not
detect any inconsistency, an atomA is selected according to
a heuristic criterion and ModelGenerator is called onI ∪{A}
and onI∪{not A}. The atomA plays the role of a branching
variable of a SAT solver.

The heuristichUT , proposed in[Faberet al., 2001] is cur-
rently employed in DLV. It is mostly based on the number of
UnsupportedTrue (UT)atoms (called MBTs in[Faberet al.,
2001]), i.e., atoms which are true in the current interpretation
but miss a supporting rule, trying to minimize UT atoms and
hence more likely arrive at supported models.

For hard ASP programs (i.e., non-HCF programs[Ben-
Eliyahu and Dechter, 1994] – they expressΣP

2 -complete
problems under brave reasoning), supported models are often
not answer sets. Moreover, answer-set checking is computa-
tionally expensive (co-NP), and may consume a large portion
of the resources needed for computing an answer set.

We therefore propose the new heuristichDS , which tries
in addition to maximize thedegree of supportedness, the av-
erage number of supporting rules for non-HCF true atoms.
Intuitively, if all true atoms have many supporting rules ina
modelM , then the elimination of an atom from the model
would violate many rules, and it becomes less likely to find a
subset ofM which is a model of the reductPM , disproving
that M is an answer set. We definehDS as a refinement of
the heuristichUT (i.e., A <hUT

B ⇒ A <hDS
B). In this

way, hDS keeps the behaviour of the well-assessedhUT on
NP problems while, as we will see in Section 3, it sensibly
improves overhUT on hard 2QBF problems (Σ

P
2 -complete).

3 Comparing hUT vshDS: Experiments
We generated randomly a data set of 100 2QBF formulas, fol-
lowing [Gent and Walsh, 1999], and used the ASP encoding
described in[Leoneet al., 2005].

Experiments were performed on a PentiumIV 1500 MHz
machine with 256MB RAM running SuSe Linux 9.0. For ev-
ery instance, we allowed a maximum running time of 7200
seconds (two hours). The results of our experiments are dis-
played in the following graphs, in which a line stops when-
ever some instance was not solved within the time limit.

0 20 40 60 80 100
0.01

0.1

1

10

100

1000

Number of propositional variables

M
a

x
im

u
m

 E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

h
UT

h
DS

0 20 40 60 80 100
0.01

0.1

1

10

100

1000

Number of propositional variables

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 [
s
]

h
UT

h
DS

It is clear that the new heuristichDS outperforms the
heuristichUT in these experiments, advancing the “maximum
solvable-size” from 56 up to size 92, and reducing the average
execution times of the smaller instances.

4 ASP vs QBF Solvers
The main goal of this paper is to improve the performance
of ASP systems for problems located at the second level of
the polynomial hierarchy. One may wonder whether, on such
Σ

P
2 /ΠP

2 -hard problems, ASP systems are competitive with
other AI systems, like the QBF solvers. In order to give a
first answer to this question, we have also performed a com-
parison with QBF solversQuantor [Biere, 2004], Semprop
[Letz, 2002], andyQuaffle [Zhang and Malik, 2002] on the
set of all ΣP

2 - and Π
P
2 -complete QBF formulas of the last

QBF competition. The results below report the number of in-
stances solved within 660s and show that DLV (with heuristic
hDS) generally outperformed the QBF solvers.

DLV (hDS) Quantor Semprop yQuaffle

Robot 27 (84%) 10 (31%) 13 (41%) 17 (53%)
Random 108 (100%) 14 (12%) 90 (83%) 53 (49%)
Tree 2 (100%) 2 (100%) 2 (100%) 2 (100%)
KPH 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Total 137 (96%) 26 (18%) 105 (73%) 72 (50%)

References
[Baral, 2002] C. Baral.Knowledge Representation, Reason-

ing and Declarative Problem Solving. CUP, 2002.
[Ben-Eliyahu and Dechter, 1994] R. Ben-Eliyahu and

R. Dechter. Propositional Semantics for Disjunctive Logic
Programs.AMAI, 12:53–87, 1994.

[Biere, 2004] A. Biere. Resolve and Expand. 2004. SAT’04.
[Eiteret al., 1997] T. Eiter, G. Gottlob, and H. Mannila. Dis-

junctive Datalog.ACM TODS, 22(3):364–418, 1997.
[Faberet al., 2001] W. Faber, N. Leone, and G. Pfeifer. Ex-

perimenting with Heuristics for Answer Set Programming.
In IJCAI 2001, pp. 635–640.

[Gent and Walsh, 1999] I. Gent and T. Walsh. The QSAT
Phase Transition. InAAAI, 1999.

[Janhunenet al., 2000] T. Janhunen, I. Niemelä, P. Simons,
and J.-H. You. Partiality and Disjunctions in Stable Model
Semantics. InKR 2000, 12-15, pp. 411–419.

[Kochet al., 2003] C. Koch, N. Leone, and G. Pfeifer. En-
hancing Disjunctive Logic Programming Systems by SAT
Checkers.Artificial Intelligence, 15(1–2):177–212, 2003.

[Leoneet al., 2001] N. Leone, R. Rosati, and F. Scarcello.
Enhancing Answer Set Planning. InIJCAI-01 Workshop
on Planning under Uncertainty and Incomplete Informa-
tion, pp. 33–42, 2001.

[Leoneet al., 2005] N. Leone, G. Pfeifer, W. Faber, T. Eiter,
G. Gottlob, S. Perri, and F. Scarcello. The DLV System for
Knowledge Representation and Reasoning.ACM TOCL,
2005. To appear.

[Letz, 2002] R. Letz. Lemma and Model Caching in De-
cision Procedures for Quantified Boolean Formulas. In
TABLEAUX 2002, pp. 160–175, Denmark, 2002.

[Lifschitz, 1999] V. Lifschitz. Answer Set Planning. In
ICLP’99, pp. 23–37.

[Zhang and Malik, 2002] L. Zhang and S. Malik. Towards
a Symmetric Treatment of Satisfaction and Conflicts in
Quantified Boolean Formula Evaluation. InCP 2002, pp.
200–215, NY, USA, 2002.


