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Abstract Most of the optimization work on ASP systems has fo-
cused on the efficient evaluation of non-disjunctive pragga
(whose power is limited taNP/co-NP), whereas the opti-
mization of full (disjunctive) ASP programs has been trdate
in fewer works (e.g., ifJanhuneret al., 2000; Kochet al,
2003). In particular, we are not aware of any work concern-
ing heuristics for2' /1%’ -hard ASP programs.

In this paper, we address the following two questions:

» Can the heuristics of ASP systems be refined to deal more
efficiently with ©2’/T1Y’-hard ASP programs?

» On hard-’ /14 problems, can ASP systems compete with
other Al systems, like QBF solvers?

We define a new heuristikps for the (disjunctive) ASP
system DLV, aiming at improving the evaluation§ /115 -
hard ASP programs, but maintaining the benign behaviour
of the heuristic of DLV onNP problems. We experimen-

. tally compareh ps against the DLV heuristic on hard 2QBF

1 Introduction instances, showing a clear benefit. We also experiment the
Answer set programming (ASP) is a novel programmingCompetitiveneSS of ASP w.r.t. QBF solvers on hard problems,
paradigm, which has been recently proposed in the area #fdicating that ASP systems are very competitive with QBF
nonmonotonic reasoning and logic programming. The ide®ystems ort}'/I15 -hard problems.

of answer set programming is to represent a given computa-

tional problem by a logic program whose answer sets corre2  Answer Set Computation and Heuristics

spond to solutions, and then use an answer set solver to find ) )

such a solutioriLifschitz, 1999. The knowledge represen- We first recall the main steps of the_ computational process
tation language of ASP is very expressive in a precise mathPerformed by ASP systems, in particular the DLV system,
ematical sense; in its general form, allowing for disjuati  Which will be used for the experiments. . .

in rule heads and nonmonotonic negation in rule bodies, ASP An answer set prograr® in general contains variables.
can represergveryproblem in the complexity class? and ~ The first step of a computation of an ASP system eliminates
H; (under brave and cautious reasoning, respecti&E'&&r these variables, then the fOIIOWIﬂg algorlthm is invoked:
etal, 1997. Thus_’ ASP IS strictly more powerful than SAT- Function ModelGenerator(l: Interpretation): Boolean;

based programming, as it allows us to solve even problemgeggin

We define a new heuristicp s for ASP, and imple-
ment it in the (disjunctive) ASP system DLV. The
new heuristic improves the evaluation % /T1% -
hard ASP programs while maintaining the benign
behaviour of the well-assessed heuristic of DLV
on NP problems. We experiment with the new
heuristic on QBFsApg significantly outperforms
the heuristic of DLV on hard 2QBF problems.
We compare also the DLV system (with the new
heuristic hpg) to three prominent QBF solvers.
The results of the comparison, performed on in-
stances used in the last QBF competition, indicate
that ASP systems can be faster than QBF systems
on X1’ /M¥-hard problems.

which cannot be translated to SAT in polynomial time. The | := DetCons(l);

high expressive power of ASP can be profitably exploited in if | = £ then return False; (* inconsistency *)

Al, which often has to deal with problems of high complex- if no atom is undefined inthen return IsAnswerSet(l);

ity. For instance, problems in diagnosis and planning under Select an undefined ground atofraccording to a heuristic;
incomplete knowledge are complete for the the complexity if ModelGeneratof(U { A}) then return True;

classx!’ or I1¥’, and can be naturally encoded in ABaral, ~ elsereturnModelGenerator(U {not A});

2002; Leonest al, 2007, end,
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Set(l)returns True if the computation should be stopped andt ASP vs QBF Solvers

False otherwise. . . . .
: . . The main goal of this paper is to improve the performance

The function DetCons() computes an extensiod afith ot Agp systems for problems located at the second level of
the literals that can be deterministically inferred (or te¢ o polynomial hierarchy. One may wonder whether, on such

of all Iiteral_sz: upon inconsistency). If DetCons do_es not $P/I1F-hard problems, ASP systems are competitive with
detect any inconsistency, an atofris selected according to it ar ‘Al systems, like the QBF solvers. In order to give a

a heuristic criterion and ModelGenerator is called@{ A} st answer to this question, we have also performed a com-
ano_l on/U{not A}. The atomA plays the role of a branching parison with QBF solveruantor [Biere, 2004, Semprop
variable of a SAT solver. . . [Letz, 2002, andyQuaffle [Zhang and Malik, 200Ron the
The heuristidiy 7, proposed ifFaberet al, 2001 is cur- et of a1 537~ and 117 -complete QBF formulas of the last
rently employed in DLV. Itis mostly based on the number of 5gr competition. The results below report the number of in-

UnsupportedTrue (UTatoms (called MBTs ifiFaberet al,  giancas solved within 660s and show that DLV (with heuristic
2001)), i.e., atoms which are true in the current mterpretanonhDS) generally outperformed the QBF solvers.

but miss a supporting rule, trying to minimize UT atoms and

P i DLV (hps) | Quantor | Semprop | yQuaffle

hence more likely arrive atsu_pported models. e e (QS/O) 10 @1%) |13 1%y | a7 (5%
For hard ASP programs (i.e., non-HCF prograiBen- Random 108 (100%) | 14 (12%) | 90 (83%) | 53 (49%)
Eliyahu and Dechter, 1994~ they express:l’-complete Ij;r;; iggggﬁlg iggg;y/og i&gggﬁg iggggﬁlg
H ( 0, 0 (]

problems under brave reasoning), supported models are ofte == T37 (96%) |26 (18%) | 105 (73%) |72 (50%)

not answer sets. Moreover, answer-set checking is computa-
tionally expensive (co-NP), and may consume a large portiolReferences
of the resources needed for computing an answer set. )
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It is clear that the new heuristib ps outperforms the
heuristichy  in these experiments, advancing the “maximum
solvable-size” from 56 up to size 92, and reducing the awerag
execution times of the smaller instances.



