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Abstract learner learns finite state machines and uses its current ma-
chine to generate its next move.

We develop two related themelgarning proce- The experiments in this paper involve a sequence of three
dures and knowledge transfer. This paper intro- games. In the first game, the child and the adult each have two

duces two methods for learning proceduresand one  gtacks of cards, one in which all of the cards are face-up and
for transferring previously-learned knowledge to a another in which all of the cards are face-down. Let’s denote
slightly different task. We demonstrate by experi-  these stacks by the owneh for adult or C for child) and
ment that transfer accelerates learning. whether they are face-upJf or face-down D). Therefore, the
four stacks aréU, AD, CU, CD. Each player must flip over the
. card on top of their face-down stack and move it to the top of
1 Introduction their face-up stack. Each player does this as fast as they can

Procedures are interesting for many reasons: Infants exefd can ignore the other player’s actions for the purposes of

cise procedures (called “circular reactions” by Piaget)adt  this game.
from birth. These gradually develop in complexity, adding

new elements, and eventually incorporate objects in the in- HOVE(To7 (707,

fant's environment. Piaget believed infants learn muchuabo o

the world by executing procedures. Older students do, as errR(TOR(CD))
well; indeed, the literature on expert/novice differencan

be summarized in a single phrase: Novices know “how,” ex- it LI —

perts also know “why.” Novices can run statistical tests but TOR(CO))

not understand why they are appropriate, they can follow ] )
recipes but not understand the underlying chemistry and ga&igure 1: A state machine for Game 2 that yields perfect play.
tronomy.

There are advantages to learning fact-like knowledge In the second game, the players take turns flipping and
alongside procedures. One can do useful work with procemoving cards, as shown in Figure 1. The two nodes
dures even if one doesn’t completely understand them. Thien the left specify constraints on what the child observes,
means learning is grounded in activity and is gradual ovenamely, the action that is currently being taken by the
the life of the agent. By exercising procedures the learneadult. To be in the lower-left state in the machine, the adult
produces occasional failures as well as the context onesneethust currently be flipping over the top card on her face-
to gradually learn both new procedures and non-proceduralown stack LI P( TOP( AD) ) ). When this happens, the
knowledge. The latter includes the facts and reasons we cadiction executed by the child Al T. That is, when the
“understanding,” or, less colloquially, the conditioningri-  adult doesFLI P( TOP( AD) ) , the child doesAAI T at the
ables that affect the probabilities that procedures wil-su same time. This leads to a state in which the adult does
ceed. In social environments, there often is a human to helOVE( TOP( AD), TOP( AU) ), which also results in the
the learner correct missteps before a procedure goes cormhild waiting. Then, when the adult execute®/d T action
pletely wrong. This minimizes the credit-assignment prob-(the constraintin the upper-right state), the child flips¢hrd
lem. on top of her face-down stack, and the adult continues to wait

Our intention is to have a machine learn a sequence ofthe lower-right state) as the child doB&VE( TOP( CD) ,
increasingly-difficult games, starting with extremely yas TOP( CU)) . Some time later, the adult flips the card on top
ones. All the games are two-person card games. One playef her face-down stack, and the cycle repeats.
makes mistakes, the other is a competent player who offers The third game is just like the second game, except when
corrections as necessary. For convenience we call thege pleeither player turns over a card and the color of that card
ers the learner or childX) and the adult 4). Correct play matches that of the card atop the other player’s face-uj,stac
for the games can be modeled by finite state machines, so thmth players say “Squawk”.



2 Learningthe State Machines 3 Experiments

Figure 2 shows two machines that were intermediate steps
Our goal s to learn procedures, and, specfically, pEEE ciine. tnore is a single stae rom hich he chic tg T,
state machines such as those we described in the PrevioNgy/E( CD CU) , or FLI P( CD) . Edges are labeled with two
section. A useful distinction can be drawn between learning.onts - the number of times the transition was taken and the
a state machine and learning a state machine given a relatgh mper of times that transition resulted iN@ This machine
state machine. We are most interested in the second casgyes not yield perfect play, so the state will be split. The ob
which we present as a kind ofansfer learning. EVen so,  genyaple feature that most reduces entropy in the disioibut

we begin our discussion of learning with two methods for ot hegative feedback is the feedback received for the move
learning state machine® novo. These are Bayesian Model just made.

Merging (BMM) [Stolcke, 1994 a well-known method for
learning HMMSs; and State Splitting (SS), which also learns e BRI D L) rhasiaris) rmss o
HMMs, though by splitting rather than merging states. Com oo Do .

The training data in both approaches was a sequence of ob-
servations such adOvVE( TOP( CD), TOP( CU)) , the sym-
bol SQUAVKK, and the special symbdlO. The BMM and SS TaeOvEDL) |06
algorithms rely onNO to indicate that the child has done
something that is not allowed in perfect play. Incorrecypla i
is generated by the learner’s incorrect machine in the ectiv
learning regime. Passive learning requires training dea t Figure 2: Machines produced by SS when learning the turn
includes mistakes and adult admonitions (iNQ) and cor-  taking game.
rections. For this purpose we build simulators of child and
adult play. The bottom machine in Figure 2 shows the result of split-
ting on this feature and pruning away any transitions that al
ways cause BIO. This machine correctly captures the fact that
[f the adult corrects the child, the only legal action s\l T
while the adult repairs the incorrect action, which will ulis

27,0,(FLIP LD)

N=174
(0 (FEEDBACK YES)) w

119,0,(WAIT)

BMM is a top-down approach in which an initial HMM is
constructed with one state for every observation, and ebse
vations are greedily merged to maximize the posteriorilikel

hood of the data using a description length prior on HMMSs. It 5 yvES Residual feedback non-determinism exists in the
is incremental in the sense that new observations can beladdfbp state due to errors in action ordering (e.g., flippingévi

during the merging process. SS is a bottom-up approach thit'y roy). Therefore, that state will be split next.
starts with one state that matches all observations, and re- |, 5 second set of experiments, the child chose actions ran-

peatedly splits states on observa_ble featu_res of the world idomly from a set of known actions until a model was devel-
an effort to more accurately predict negative feedback from, o 4" (ysing BMM) that could guide action selection. Ini-
the teacher. Features are chosen that minimize entropgin thia iy therefore, the child would frequently choose andnc

distribution of feedback (positive or negative) over adites. ot action. Learning early on with no model is tedious and

Regardless of whether the HMM was learned via BMM time-consuming as it requires heavy exploration. The secon
or SS, it can be used for action selection (game play) and tgame, the simple turn-taking game, was still easy to learn.
parse new observations. We are interested in whether fearni Only 10 simulation time steps were required to learn the-opti
a series of related, yet increasing|y difficult, games rm_“ mal moc_iel for that game when starting from SCI'atCh._ Without
less effort in total than learning the most difficult gamee  Using this model to bias the model learned for the third game,
novo. For example, is it easier to learn our three games irp3 time steps were required to achieve the optimal model for
sequence, using the machine learned for gane bias the ~ the more complex game. However, when the game 2 model

learning of game: + 1, than to learn to play Squawk with no was used to bias the learning of game 3, only an additional
prior machine to serve as bias? 17 time steps were needed to learn game 3, making a total of

27 time steps. That is, game 3 took in total half as long to

~ When using BMM to learn a new game biased by an existiearn when game 2 was learned as an intermediate step in the
ing HMM, new states and transitions are added for the neWearning process.

observations, but old and obsolete state transitions dneno
moved. Instead, as more and more data are collected for t

new game, the probabilities of obsolete state transitibat t %(?knOWIedgments

are no longer traversed will tend to zero. This is not accept]his work was supported by DARPA (contract number: 53-
able, as we want to quickly refine the model to work with the4540-0016; project name: Learning by Doing).

new game while harnessing as much information as possible

from previous experience. To achieve this we preserve moddReferences
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