
Transfer in Learning by Doing

Bill Krueger, Tim Oates, Tom Armstrong
University of Maryland Baltimore County

CSEE, 1000 Hilltop Circle
Baltimore, MD 21250

{wkrueg1,oates,arm1}@cs.umbc.edu

Paul Cohen, Carole Beal
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292
{cohen,cbeal}@isi.edu

Abstract

We develop two related themes,learning proce-
dures and knowledge transfer. This paper intro-
duces two methods for learning procedures and one
for transferring previously-learned knowledge to a
slightly different task. We demonstrate by experi-
ment that transfer accelerates learning.

1 Introduction
Procedures are interesting for many reasons: Infants exer-
cise procedures (called “circular reactions” by Piaget) almost
from birth. These gradually develop in complexity, adding
new elements, and eventually incorporate objects in the in-
fant’s environment. Piaget believed infants learn much about
the world by executing procedures. Older students do, as
well; indeed, the literature on expert/novice differencescan
be summarized in a single phrase: Novices know “how,” ex-
perts also know “why.” Novices can run statistical tests but
not understand why they are appropriate, they can follow
recipes but not understand the underlying chemistry and gas-
tronomy.

There are advantages to learning fact-like knowledge
alongside procedures. One can do useful work with proce-
dures even if one doesn’t completely understand them. This
means learning is grounded in activity and is gradual over
the life of the agent. By exercising procedures the learner
produces occasional failures as well as the context one needs
to gradually learn both new procedures and non-procedural
knowledge. The latter includes the facts and reasons we call
“understanding,” or, less colloquially, the conditioningvari-
ables that affect the probabilities that procedures will suc-
ceed. In social environments, there often is a human to help
the learner correct missteps before a procedure goes com-
pletely wrong. This minimizes the credit-assignment prob-
lem.

Our intention is to have a machine learn a sequence of
increasingly-difficult games, starting with extremely easy
ones. All the games are two-person card games. One player
makes mistakes, the other is a competent player who offers
corrections as necessary. For convenience we call these play-
ers the learner or child (C) and the adult (A). Correct play
for the games can be modeled by finite state machines, so the

learner learns finite state machines and uses its current ma-
chine to generate its next move.

The experiments in this paper involve a sequence of three
games. In the first game, the child and the adult each have two
stacks of cards, one in which all of the cards are face-up and
another in which all of the cards are face-down. Let’s denote
these stacks by the owner (A for adult orC for child) and
whether they are face-up (U) or face-down (D). Therefore, the
four stacks areAU,AD,CU,CD. Each player must flip over the
card on top of their face-down stack and move it to the top of
their face-up stack. Each player does this as fast as they can,
and can ignore the other player’s actions for the purposes of
this game.

� � � �

� � � � � � � 	 � 
 � � 

� � 	 � 
 � � �

� � � 	 � � � 	 � 
 � � �

� � � 	 � � � 	 � � � � �

� � � � � � � 	 � � � � 

� � 	 � � � � �

� � � �

� � � �
� � � �

Figure 1: A state machine for Game 2 that yields perfect play.

In the second game, the players take turns flipping and
moving cards, as shown in Figure 1. The two nodes
on the left specify constraints on what the child observes,
namely, the action that is currently being taken by the
adult. To be in the lower-left state in the machine, the adult
must currently be flipping over the top card on her face-
down stack (FLIP(TOP(AD))). When this happens, the
action executed by the child isWAIT. That is, when the
adult doesFLIP(TOP(AD)), the child doesWAIT at the
same time. This leads to a state in which the adult does
MOVE(TOP(AD), TOP(AU)), which also results in the
child waiting. Then, when the adult executes aWAIT action
(the constraint in the upper-right state), the child flips the card
on top of her face-down stack, and the adult continues to wait
(the lower-right state) as the child doesMOVE(TOP(CD),
TOP(CU)). Some time later, the adult flips the card on top
of her face-down stack, and the cycle repeats.

The third game is just like the second game, except when
either player turns over a card and the color of that card
matches that of the card atop the other player’s face-up stack,
both players say “Squawk”.



2 Learning the State Machines

Our goal is to learn procedures, and, specifically, perfect-play
state machines such as those we described in the previous
section. A useful distinction can be drawn between learning
a state machine and learning a state machine given a related
state machine. We are most interested in the second case,
which we present as a kind oftransfer learning. Even so,
we begin our discussion of learning with two methods for
learning state machinesde novo. These are Bayesian Model
Merging (BMM) [Stolcke, 1994], a well-known method for
learning HMMs; and State Splitting (SS), which also learns
HMMs, though by splitting rather than merging states.

The training data in both approaches was a sequence of ob-
servations such asMOVE(TOP(CD), TOP(CU)), the sym-
bol SQUAWK, and the special symbolNO. The BMM and SS
algorithms rely onNO to indicate that the child has done
something that is not allowed in perfect play. Incorrect play
is generated by the learner’s incorrect machine in the active
learning regime. Passive learning requires training data that
includes mistakes and adult admonitions (i.e.,NO) and cor-
rections. For this purpose we build simulators of child and
adult play.

BMM is a top-down approach in which an initial HMM is
constructed with one state for every observation, and obser-
vations are greedily merged to maximize the posterior likeli-
hood of the data using a description length prior on HMMs. It
is incremental in the sense that new observations can be added
during the merging process. SS is a bottom-up approach that
starts with one state that matches all observations, and re-
peatedly splits states on observable features of the world in
an effort to more accurately predict negative feedback from
the teacher. Features are chosen that minimize entropy in the
distribution of feedback (positive or negative) over all states.

Regardless of whether the HMM was learned via BMM
or SS, it can be used for action selection (game play) and to
parse new observations. We are interested in whether learning
a series of related, yet increasingly difficult, games requires
less effort in total than learning the most difficult gamede
novo. For example, is it easier to learn our three games in
sequence, using the machine learned for gamen to bias the
learning of gamen + 1, than to learn to play Squawk with no
prior machine to serve as bias?

When using BMM to learn a new game biased by an exist-
ing HMM, new states and transitions are added for the new
observations, but old and obsolete state transitions are not re-
moved. Instead, as more and more data are collected for the
new game, the probabilities of obsolete state transitions that
are no longer traversed will tend to zero. This is not accept-
able, as we want to quickly refine the model to work with the
new game while harnessing as much information as possible
from previous experience. To achieve this we preserve model
structure but eliminate the bias of old probability parameters
when moving from one game to the next. In BMM terminol-
ogy, this means that we reset Viterbi counts to be uniform and
small when starting to learn a new game.

3 Experiments
Figure 2 shows two machines that were intermediate steps
on the path to learning the turn taking game. In the top ma-
chine, there is a single state from which the child canWAIT,
MOVE(CD CU), orFLIP(CD). Edges are labeled with two
counts - the number of times the transition was taken and the
number of times that transition resulted in aNO. This machine
does not yield perfect play, so the state will be split. The ob-
servable feature that most reduces entropy in the distribution
of negative feedback is the feedback received for the move
just made.

Figure 2: Machines produced by SS when learning the turn
taking game.

The bottom machine in Figure 2 shows the result of split-
ting on this feature and pruning away any transitions that al-
ways cause aNO. This machine correctly captures the fact that
if the adult corrects the child, the only legal action is toWAIT
while the adult repairs the incorrect action, which will result
in a YES. Residual feedback non-determinism exists in the
top state due to errors in action ordering (e.g., flipping twice
in a row). Therefore, that state will be split next.

In a second set of experiments, the child chose actions ran-
domly from a set of known actions until a model was devel-
oped (using BMM) that could guide action selection. Ini-
tially, therefore, the child would frequently choose an incor-
rect action. Learning early on with no model is tedious and
time-consuming as it requires heavy exploration. The second
game, the simple turn-taking game, was still easy to learn.
Only 10 simulation time steps were required to learn the opti-
mal model for that game when starting from scratch. Without
using this model to bias the model learned for the third game,
53 time steps were required to achieve the optimal model for
the more complex game. However, when the game 2 model
was used to bias the learning of game 3, only an additional
17 time steps were needed to learn game 3, making a total of
27 time steps. That is, game 3 took in total half as long to
learn when game 2 was learned as an intermediate step in the
learning process.

Acknowledgments
This work was supported by DARPA (contract number: 53-
4540-0016; project name: Learning by Doing).

References
[Stolcke, 1994] Andreas Stolcke. Bayesian Learning of

Probabilistic Language Models. PhD thesis, University
of California, Berkeley, 1994.


