
Machine-Learning-Based Circuit Synthesis

Lior Rokach1 and Meir Kalech1 and Gregory Provan2 and Alexander Feldman2

1Ben Gurion University of the Negev, Be’er Sheva, Israel
e-mail: {liorrk,kalech}@bgu.ac.il

2University College Cork, College Road, Cork, Ireland
e-mail: g.provan@cs.ucc.ie,a.feldman@ucc.ie

Abstract
Multi-level logic synthesis is a problem of immense
practical significance, and is a key to developing
circuits that optimize a number of parameters, such
as depth, energy dissipation, reliability, etc. The
problem can be defined as the task of taking a col-
lection of components from which one wants to
synthesize a circuit that optimizes a particular ob-
jective function. This problem is computationally
hard, and there are very few automated approaches
for its solution. To solve this problem we pro-
pose an algorithm, called Circuit-Decomposition
Engine (CDE), that is based on learning decision
trees, and uses a greedy approach for function
learning. We empirically demonstrate that CDE,
when given a library of different component types,
can learn the function of Disjunctive Normal Form
(DNF) Boolean representations and synthesize cir-
cuit structure using the input library. We compare
the structure of the synthesized circuits with that of
well-known circuits using a range of circuit simi-
larity metrics.

1 Introduction
Logic (or Boolean Function) Synthesis is a well-known prob-
lem, and is a key to developing circuits that optimize a num-
ber of parameters, such as depth, energy dissipation, reliabil-
ity, etc. The problem can be defined as the task of taking a
collection of components from which one wants to synthe-
size a circuit that optimizes a particular objective function.
This problem has been addressed since Roth [Roth, 1958].
More recent work has focused on synthesis of circuits jointly
optimizing a complex objective function [Temes and Lapa-
tra, 1977; Zupan et al., 1999], optimization via genetic algo-
rithms [Koza et al., 1996; Aguirre et al., 2003], and on circuit
re-engineering, e.g., [Bernasconi et al., 2012].

Circuit synthesis is related to, but strictly more general
than, Boolean minimization, on which there has been signif-
icant work (e.g., using the Quine-McCluskey method [Mc-
Cluskey, 1956]). Rather than being given a function to op-
timize, we must jointly create the function and optimize it;
in addition, we may want to address many other tasks in the
synthesis process; such tasks include (1) optimize properties

beyond just the number of gates that Boolean minimization
addresses (e.g., circuit area, depth), (2) add components not
present in the given function, and (3) design nested hierarchi-
cal structures in the device.

We aim to automate the process of generating circuits from
component libraries. We propose a machine learning ap-
proach. Prior work has used genetic algorithms, which do
not converge well [Aguirre et al., 1999; 2003]. We adopt a
decision tree approach, and in particular, an iterative greedy
algorithm that adds the most efficient component in terms of
model size. Our approach is not restricted by a pre-defined
library of component types but uses a library that can dynam-
ically grow, and thus keeps the model size small.

Our approach has several important applications: (1) In
reverse engineering, engineers can shorten the process of
revere-engineering. For instance, automating this process
could significantly reduce the time duration of unveiling key
systems; e.g., it could emulate the reverse engineering of the
ISCAS-85 benchmarks [Hansen et al., 1999]. (2) In model-
based synthesis, automating the process of Boolean function
synthesis is needed for model-based systems. The existence
of a model is a basic requirement for model-based systems.
Unfortunately, in many cases such a model does not exist. (3)
In model-based diagnosis, this approach can take a system
function and optimize its diagnostics properties, e.g., diag-
nosability, fault tolerance, failure probability, etc.

Our contributions are as follows. We propose a novel ma-
chine learning approach for Boolean function decomposition
for the case of multi-level logic synthesis. We propose re-
verse engineering of Boolean formulas rather than addressing
designing problems. We cope with multiple output functions
rather than a single output. We implement a method that uses
a library of different component types which can be dynam-
ically increased with new types of components. Finally, our
algorithm is empirically evaluated through various circuits.

2 Related Work
The task of composing a model from components to achieve
a goal function is known in the electrical and computer en-
gineering literature as logic synthesis. Logic synthesis is a
process for converting a high-level specification of circuit be-
havior, typically register transfer level (RTL), into a design
implementation, which can be represented in terms of logic
gates.

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

1635

In two-level logic synthesis the goal is to represent a
Boolean function by at most two gate levels between a pri-
mary input and a primary output. This can be achieved by
representing the function as a DNF (in terms of the engineer-
ing literature: sum of products). Known methods for this task
are Quine-McCluskey [McCluskey, 1956] to compute the ex-
act prime implicants of the goal formula and heuristic meth-
ods like ESPRESSO [Brayton et al., 1984] and MINI [Hong
and Muroga, 1991] which compute near-minimal prime im-
plicants. A major limitation of this approach is that two-level
logic circuits are of limited importance in a most real-world
applications, e.g., in very-large-scale integration (VLSI) de-
sign, since most designs require multiple levels of logic.

Another attempt to solve the multi-level logic synthesis is
by genetic algorithms. Aguirre et al. [Aguirre et al., 1999;
2003] propose to use a multiplexer as the only design unit,
defining any logic function. They first explore a feasible
design and then minimize the circuit. Gan et al. [Gan
et al., 2008] present the genetic-based algorithm denoted
Gene Expression-based Clonal Selection Algorithm (GE-
CSA), which combines the advantages of the Clonal Selec-
tion Algorithm (CSA) and Gene Expression Programming
(GEP), overcoming some drawbacks of GEP. These works fo-
cus on a single output function, we on the other hand, show a
machine learning approach which solves multiple logic func-
tions in one circuit. In addition, a known drawback of genetic
algorithm is the long time of convergence. Unfortunately,
even the above papers demonstrate their approach only for
a few simple circuits.

Zupan et al. [Zupan et al., 1999] present a new machine
learning approach that infers a target function from a set of
training examples. It is represented in terms of a hierarchy
of intermediate, less-complex concepts and their definitions.
The method is inspired by the Boolean function decomposi-
tion approach to the design of switching circuits by subopti-
mal heuristic algorithms. Since this algorithm is not restricted
to a given set of gates, it actually tries to decompose the func-
tion to artificial sub-functions. We adopt the hierarchical ap-
proach but redesign it to solve the multi-level logic synthesis
consistently by a given library of component types.

3 Concepts and Definitions
We start by presenting a set of definitions that are designed to
facilitate the exposition of algorithms for automated reason-
ing.

Figure 1 shows an implementation of a full-adder, rep-
resented by the function F (i1, i2, ci) = (q ⇔ i1 ∧ i2) ∧
(p⇔ i1 ⊕ i2) ∧ (Σ⇔ p⊕ ci) ∧ (co ⇔ q ∨ (p ∧ ci)).

ci

i1

i2

co

Σ

rp

q

Figure 1: This full-adder is used as a running example.

Definition 1 (Component) A component COMP, 〈F , IN,
OUT〉, is specified using a Boolean function F over a set
of variables Z, and input/output variables, IN,OUT ∈ Z.

Boolean functions that model components are often repre-
sented graphically, by using the same symbols as in a stan-
dard computer arithmetic schoolbook [Parhami, 2009]. Fig-
ure 2 shows a component that implements a three-input AND
gate by using two two-input ones. The Boolean function
that is shown in Fig. 2 is F (i1, i2, i3) = (o⇔ z ∧ i3) ∧
(z ⇔ i1 ∧ i2) where IN = {i1, i2, i3}, OUT = {o}, and z is
an internal variable. We may omit specifying which variables
are input and output, when that is clear from the context or
from the common use (of an AND gate, for example).

i1

i2
o

i3

z

Figure 2: A component that implements a three-input AND
function by using two two-input AND gates

Definition 2 (Component Library) A component library L
is defined as a set of components.

Figure 3 shows a component library consisting of a half-
adder, a two-input OR gate and a two-input NAND gate. In
our problem formulation, there are no restriction on the con-
tents of the component library, i.e., it is a set of arbitrary
multi-output Boolean functions. It is not necessary for a com-
ponent library to contain a functionally complete subset of
components (the two-input NAND gate in the component li-
brary shown in Fig. 3, for example, can be used to express
any Boolean function, but that is not a requirement in our
framework).

i1

i2

co

Σ

o
i1

i2

o
i1

i2
(a)

(b)

(c)

Figure 3: A component library consisting of (a) a half-adder
(HA), (b) a two-input OR gate (2-OR), and (c) a two-input
NAND gate (2-NAND)

Definition 3 (System Description) A system description
SD, 〈L, G〉 is defined as a vertex-labeled and edge-
labeled direct acyclic graph G = 〈V,E〉 such that
V = {PI ∪ PO ∪ V ′} and if v ∈ V ′, then v ∈ L.

System description graphs contain a set of primary input ver-
tices (PI), a set of primary output vertices (PO) and a vertex
for each component. The graph edges are labeled with the
names of the Boolean function variable names.

Figure 4 shows a system description of the full-adder cir-
cuit shown in Fig. 1, built from components drawn from the
Fig. 3 library.

A system description SD is equivalent to exactly one
Boolean function as shown in the following definition.

1636

p

q co

i1

i2 r

co

Σ

i2

i1
HA

HA

PI 2-OR

PO

PI

PO

Σci
ci

PI

Figure 4: System description of the full-adder circuit shown
in Fig. 1

Definition 4 (Composition) Given a system description
SD = 〈L, G〉, G = 〈V,E〉, a composition C(SD) of SD
is a Boolean function (f1 ◦ · · · ◦ fn)(x1, . . . , xm) such that
n = |V | − |PI| − |PO| and for each fi ∈ {f1, . . . , fn}, there
is an isomorphic function f ′i ∈ L. The primary inputs and
primary outputs of f1, . . . , fn are the respective edge labels
in G and the internal variables in f1, . . . , fn are unique.
In the above definition the variables {x1, . . . , xm} are all in-
ternal variables, i.e., {x1, . . . , xm} = V \ {PI ∪ PO}.

The composition of the system description in Fig. 4, for
example, is a Boolean function that is composed of two half-
adders, and a two-input OR gate. The i1 and i2 inputs of
the half-adder in the component library shown in Fig. 3 are
renamed to p and ci for one of the instances.
Definition 5 (System Decomposition) Given a component
library L and a Boolean function S, a system decomposi-
tion S−1 of S is a system description SD = 〈L, G〉 such that
S ≡ C(SD).
By equivalent function we mean that, since S and C(SD)
have the same primary inputs and primary outputs, a valu-
ation φ(S) = 1 iff φ(C(SD)) = 1. Note that the problem of
computing if two Boolean functions are equivalent is compu-
tationally very hard.

Computing decompositions of a given Boolean function is
the main problem discussed in this paper. Certain decom-
position are preferable, i.e., these minimizing some optimal-
ity criterion such as number of elementary functions (number
of internal nodes in the resulting system description), a cost
function, etc. In this paper, the optimality criterion minimizes
the number of nodes in G.

4 Decomposition Metrics
We are interested in using circuit decomposition for discov-
ering “structure” in unknown Boolean functions. To evaluate
the performance of our algorithms we introduce a class of
basic similarity metrics. In this case we (1) use a specified
system description SD to obtain a “flat” representation, e.g.,
a Disjunctive Normal Form (DNF), (2) decompose the “flat”
representation, obtaining a new system description SD′ and
(3) use SD and SD′ to compare the metrics described next.
We denote the SD graph with G = 〈V,E〉 and the SD′ graph
with G′ = 〈V ′, E′〉.

We can use the graph degree distribution, where the degree
of a node in a graph is the number of edges incident on that
node. Since a circuit graph is directed, nodes have two differ-
ent degrees, the in-degree, which is the number of incoming

edges, and the out-degree, which is the number of outgoing
edges. The degree distribution P (k) of a graph is the fraction
of nodes in the graph with degree k (in this case we do not
take into consideration the orientation of the edges). Thus if
there are n nodes in total in a network and nk of them have
degree k, we have P (k) = nk/n.

The mean degree of a graph is given by

P̄ =
1

|V |
∑
v∈V
|v|. (1)

where V is the set of all nodes and |v| is the degree of a node
v.

The graphs that we deal with are attributed graphs, with the
nodes having a component-type attribute, which we denote as
λ(v) for v ∈ V . Given this, we can define a component-type
distribution, which is

Λ(V) = (Λ1, . . . ,Λk) =

(
|λ1(v)|
|V |

, . . . ,
|λk(v)|
|V |

)
, (2)

given component types 1, . . . , k for a fixed ordering of types.
For example, for the full-adder circuit with gate-type ordering
(AND, OR, XOR), we have the distribution (0.4, 0.2, 0.4).

We denote the SD graph with G = 〈V,E〉 and the SD′

graph with G = 〈V ′, E′〉. We compare a number of graph-
topology ratios, which we define as follows:

• Node Ratio: ≡ V/V ′.
• Component-type distribution ratio:(

Λ1(v)

Λ1(v′)
, . . . ,

Λk(v)

Λk(v′)

)
,

whenever Λi(v) is not zero.
• Degree distribution ratio, where well-defined, i.e.,
P (k) 6= 0.

• Average Vertex Degree Ratio = k̄
k̄′ .

We use all of the above metrics to measure the quality of a
decomposition. In this paper we do not supply weights for
the different metrics and we do not combine them. For ex-
ample, if one introduces a component cost function, it should
be taken into consideration when combining the component-
type distribution ratios of the different component types.

5 Circuit Decomposition
We first discuss some general properties of the Boolean func-
tion decomposition problem and then we give an efficient al-
gorithm for computing decompositions.

5.1 Relation to Known Decompositions
One question that arises is the type of component library that
is necessary for decomposition. It turns out that we can use a
library L consisting of the well known functionally complete
set of gates (Boolean operators), i.e., L can consist of the sets
{ AND, NOT }, {NAND}, or {NOR}.

Certain decompositions are preferable, i.e., these minimiz-
ing some optimality criterion such as number of elementary
functions (number of internal nodes in the resulting system

1637

description), a cost function, etc. We can thus generalize our
notion of system decomposition to include a preferred sys-
tem decomposition, which is a system decomposition that is
optimal with respect to an optimality criterion O.

Given these definitions, it is straightforward to reduce the
problem of circuit synthesis to several well-known Boolean
optimization problems. In particular:

• Consider a component library that consists of Boolean
functions of the following kind:

f(x1, x2, . . . , xn) ≡x1 ∧ f(>, x2, . . . , xn)∨
¬x1 ∧ f(⊥, x2, . . . , xn)

(3)

for n = 1, 2, . . . , k, where k is an upper-bound for the
number of variables in the functions that we want to de-
compose. One can show that the resulting decomposi-
tion that minimizes the number of component instances
is equivalent to an optimal Shannon decomposition, i.e.,
the problem reduces to building a minimal-decision tree.

• If the component library consists of 2-input NAND gates
only, this particular kind of function decomposition be-
comes equivalent to Quine-McCluskey optimization.

5.2 Circuit Decomposition Algorithm
Algorithm 1 shows the main system decomposition method
of this paper. The basic idea of Alg. 1 is to greedily “carve-
out” component instances, starting from some subset of the
primary inputs and moving toward the primary output. Alg. 1
works on single-output Boolean functions only. The in-
put function should be given in a Disjunctive Normal Form
(DNF). The core of Alg. 1 is constructing multiple decision
trees, one for each component instantiation candidate added
to a reduced representation of the target Boolean function. A
component instantiation is selected if it minimizes the depth
of the decision tree.

Algorithm 1: Circuit Decomposition Engine (CDE)
Input: S, a Boolean function in DNF
Input: L, a component library
Result: a system description

1 〈T, IN,OUT〉 ← MAKETABLE(S);
2 repeat
3 foreach 〈F,CIN, COUT〉 ∈ L do
4 foreach X ∈ SUBSETSOFSIZE(IN, |CIN|) do
5 Z ← F (X);
6 T ′ ← ADDINTERNAL(T,Z);
7 CT← TREEINDUCER(T ′);
8 f? ← EVALUATE(CT);
9 if f? < f then

10 〈f?, Z?,CT?〉 ← 〈f, Z,CT〉;

11 〈T, IN,OUT〉 ← UPDATETABLE(T,Z?);

12 until DEPTH(CT?) > 2;
13 return MAKESYSTEMDESCRIPTION(CT?)

Table 1 shows the output of MAKETABLE (line 1) for the
full-adder function shown in Fig. 1. Each column in T (in the
running example T is initially constructed from Table 1) is

IN OUT
ci i1 i2 co Σ

False False False False False
True False False False True
False True False False True
True True False True False
False False True False True
True False True True False
False True True True False
True True True True True

Table 1: Truth table of the target function for the full-adder
shown in Fig. 1

an attribute and this table is a partial specification of the sys-
tem description and a full representation of the target Boolean
function. Each attribute (column) represents a primary input,
a primary output, or an internal variable. Note that each inter-
nal variable is also the output of a component and the name
of this component can be specified in the name of the internal
variable.

The main idea of Alg. 1 is to maintain a front of unused
input or internal variables and to try all possible components
from the component library. This front is initially constructed
from all primary inputs contained in IN and later maintained
in the same set of variables. Line 3 of Alg. 1 tries to use each
component from the component library. Let the component
chosen in line 3 has k = |CIN| inputs. These k inputs are at-
tempted to be connected to any k-subset of the variables in the
set IN. These subsets are generated by the SUBSETSOFSIZE
auxiliary subroutine invoked in line 4.

Consider decomposing the function of the running example
whose truth table is given in Table 1. CDE first draws an
inverter from the component library (the order is arbitrary). It
will then try to use each of the IN variables of the full-adder
as an input to this inverter. Line 5 of Alg. 1 computes the
values at the output of the inverter. Line 6 of Alg. 1 adds the
output of the inverter to the T truth table, storing the result
in the temporary T ′ truth table as the choice of the inverter is
not final. The first T ′ table for our running example is shown
in Table 2.

ci ¬ci i1 i2 co Σ

False True False False False False
True False False False False True
False True True False False True
True False True False True False
False True False True False True
True False False True True False
False True True True True False
True False True True True True

Table 2: Truth table T ′ after connecting an inverter to the
primary input ci

Each time a component is drawn from the component li-

1638

brary and connected to unconnected input/internal variables,
a decision tree is induced by the TREEINDUCER subroutine.
A component is preferred if it leads to a binary decision tree
with a smaller number of leaf nodes. Continuing our run-
ning example, the decision tree induces from the truth table
T ′ shown in Table 2 is shown in Fig. 5.

F TT

T

T F

F

F

i1

i2

i1

i2

co

¬ci ¬ci

Figure 5: Binary decision diagram induced from Table 2

The tree shown in Fig. 5 has eight leaf-nodes and this is
the value returned by the EVALUATE function in Alg. 1. Af-
ter computing the quality of the tree shown in Fig. 5, CDE,
tries all other possible components. For example, after a few
attempts, CDE tries connecting a XOR gate to the primary
inputs ci and i1. The resulting truth table is shown in Table 3.

ci i1 ci ⊕ i1 i2 co Σ

False False False False False False
True False True False False True
False True True False False True
True True False False True False
False False False True False True
True False True True True False
False True True True True False
True True False True True True

Table 3: Truth table T ′ after connecting an XOR gate to the
primary inputs ci and i1

Clearly, the quality of the second tree, shown in Fig. 6, and
having 6 leaf-nodes is better than the first one (with 8 nodes),
hence the XOR gate is preferred. The process continues un-
til the resulting decision tree has only a root and leaf nodes,
i.e., it is a stump tree. The resulting functional decomposi-
tion for our running example is shown in 7. The difference,
from the original design comes from the fact that we run CDE
separately for each primary output and then we combine the
resulting Boolean functions. Despite that the design is very
similar to the original and exhaustive checking verifies that
the implemented Boolean function is equivalent to that of the
original full-adder.

We next extend the results from running CDE on the full-
adder to a benchmark of Boolean functions.

T

T F

FF T

i2 i2

co

ci ⊕ i1ci ⊕ i1

Figure 6: Binary decision diagram induced from Table 3

ci

i1

i2

Σ

co
p

q

r

s

Figure 7: Decomposition of the full-adder shown in Fig. 1

6 Experimental Results
We have implemented CDE in Python using the Orange data
mining and machine learning software suite [Curk et al.,
2005] for inducing the binary decision trees. We have run
all our experiments on a recent Linux platform based on a 2.8
GHz Intel i7 CPU and equipped with 4 GB of RAM.

6.1 Benchmark
We evaluate the performance of CDE on a benchmark of com-
binational circuits (see Table 4). The function decomposi-
tion benchmark contains small circuits and the 74XXX se-
ries functions which are manually decomposed by Hansen et
al. [Hansen et al., 1999].

6.2 Experimental Results
CDE computed decompositions for 13 out of 15 benchmark
instances. The algorithm could not compute decompositions
for MUL3 and 74181 within the preallocated time quota of 15
min. In all successful cases the returned Boolean functions
were logically equivalent to the target function.

CDE produces interesting results in generating functions
that do not only result in all metrics equal to 1 but also being
equivalent (having equivalent system descriptions). This is
the case for the instances HA, SUB1, PAR4 and PAR6. The
design of the full subtractor is shown in Fig. 8 while Fig. 9
shows a scalable n-bit adder.

The main results of CDE are summarized in Table 5. The
second and third column of Table 5 show the number of nodes
and edges, respectively, of the system description returned by
Alg. 1. The ratio of these sizes to the original graph sizes
shown in Table 4 are given in the forth and fifth columns of
Table 5. We can see that these values are often close to 1
which means that the graphs are of similar size. The right-
most column of Table 5 shows the time in seconds it takes for
CDE to decompose the target Boolean function.

1639

name |V | |E| |PI| |PO|

HA 6 4 2 2
FA1 10 8 3 2
FA2 15 9 5 3
FA4 23 15 9 5
SUB1 12 10 3 2
MUX4 16 15 6 1
DEMUX4 15 11 3 4
MUL2 16 12 4 4
MUL3 32 27 6 6
PAR4 8 7 4 1
PAR6 12 11 6 1
74182 33 28 9 5
74L85 47 44 11 3
74283 50 45 9 5
74181 87 79 14 8

Table 4: Circuit decomposition benchmark

x

y

p
i

j

l
m

b

d

k

Figure 8: Full subtractor

Table 6 shows the distribution of the components and the
target and synthesized system descriptions. In general there
are many complete functional sets and the choice of CDE is
driven by, e.g., the ordering in the component library when
breaking ties due to equivalent quality of the Boolean deci-
sion tree. Because of this potential equivalence of compo-
nent library and gates, CDE may replace, for example, NAND
components with OR components and inverters. The results
in Table 6 show that the performance of CDE decreases with
increasing the size of the target Boolean function. The ratios
shown in this table are 1 if there is a 1:1 equivalence in gate
numbers between the original circuit and the synthesized cir-
cuit; ratios less than 1 indicate that the synthesized circuit has
more of that gate type than the original circuit.

FA FA

FAFA

HAHA

FA

FA

HA

ak−1

b3

ak−1

b4

b2

ak−1

ak b2

ak b1

ak b3

FA

FA FA HA

FA FA

b4

b3 b3

b4

b2 b2

a1 b1

a1

a1

a2

a2

a2 a1

b1a3 b1a2

ak−1

ak

ak

bk−1

bk

bk bk bk

a1a2

p1

p2

p3

p4

pk

pk+1pk+2p2k−1p2k

Figure 9: n-bit multiplier

name |V ′| |E′| |V |/|V ′| |E|/|E′| time [s]

HA 6 4 1 1 0.59
FA1 11 9 0.91 0 0.64
FA2 23 20 0.65 0 3.17
FA4 49 36 0.47 0 119.09
SUB1 12 10 1 1 0.66
MUX4 19 18 0.84 0 11.91
DEMUX4 17 13 0.88 0 1.23
MUL2 19 15 0.84 0 1.32
MUL3 - - - - -
PAR4 8 7 1 1 0.35
PAR6 12 11 1 1 0.92
74182 52 47 0.63 0 36.36
74L85 90 87 0.52 0 532.20
74283 108 103 0.46 0 135.17
74181 - - - - -

Table 5: Decomposed Boolean functions

name inverters XOR AND OR

HA - 1 1 -
FA1 - 1 1 0.5
FA2 - 1 0.67 0.4
FA4 - 0.22 0.27 0.24
SUB1 1 1 1 1
MUX4 2 0 0.8 0.33
DEMUX4 1.33 - 1 0
MUL2 0 2 1 0
MUL3 - - - -
PAR4 - 1 - -
PAR6 - 1 - -
74182 0.06 - 1.18 0.18
74L85 0.29 0 1.27 0.08
74283 0.55 0.29 0.4 0
74181 - - - -

Table 6: Component distribution metric

7 Conclusions

This work is introductory in a sense that, to the best of our
knowledge, there is no in-depth algorithmic analysis of the
problem of logic synthesis. As a future work we plan (1) to
improve the CDE algorithm, (2) to formulate more problems
related to logic synthesis, (3) to identify and implement more
metrics for evaluating the performance of algorithms. Prob-
lems related to the problem of circuit synthesis is counting
the number of decompositions and multi-parameter optimiza-
tion of decompositions. Finally, metrics that can improve our
evaluation include identification of maximal isomorphic sub-
graphs and similar.

Given the simplicity of our approach, it shows promise
given that there are many optimizations that can be intro-
duced. Such optimizations include better objective functions,
applying heuristics to the simple greedy method, and learn-
ing sub-function component models that can be quickly sub-
stituted during the decomposition process.

1640

References
[Aguirre et al., 1999] Arturo Hernández Aguirre, Bill P.

Buckles, and Carlos A. Coello. A genetic programming
approach to logic function synthesis by means of multi-
plexers. In Proceedings of the 1st NASA/DOD workshop
on Evolvable Hardware, EH’99, pages 46–, Washington,
DC, USA, 1999. IEEE Computer Society.

[Aguirre et al., 2003] Arturo Hernández Aguirre, Edgar
C. González Equihua, and Carlos A. Coello Coello. Syn-
thesis of Boolean functions using information theory. In
Proceedings of the 5th international conference on Evolv-
able systems: from biology to hardware, ICES’03, pages
218–227, Berlin, Heidelberg, 2003. Springer-Verlag.

[Bernasconi et al., 2012] Anna Bernasconi, Valentina Ciri-
ani, Valentino Liberali, Gabriella Trucco, and Tiziano
Villa. Synthesis of p-circuits for logic restructuring. In-
tegration, the VLSI Journal, 45(3):282–293, 2012.

[Brayton et al., 1984] Robert King Brayton, Alberto L.
Sangiovanni-Vincentelli, Curtis T. McMullen, and Gary D.
Hachtel. Logic Minimization Algorithms for VLSI Synthe-
sis. Kluwer Academic Publishers, Norwell, MA, USA,
1984.

[Curk et al., 2005] Tomaž Curk, Janez Demšar, Qikai Xu,
Gregor Leban, Uros Petrovič, Ivan Bratko, Gad Shaulsky,
and Blaž Zupan. Microarray data mining with visual pro-
gramming. Bioinformatics, 21:396–398, February 2005.

[Gan et al., 2008] Zhaohui Gan, Tao Shang, Gang Shi, and
Chao Chen. Automatic synthesis of combinational logic
circuit with gene expression-based clonal selection algo-
rithm. In Proceedings of the 2008 Fourth International
Conference on Natural Computation - Volume 06, pages
278–282, Washington, DC, USA, 2008. IEEE Computer
Society.

[Hansen et al., 1999] Mark Hansen, Hakan Yalcin, and John
Hayes. Unveiling the ISCAS-85 benchmarks: A case
study in reverse engineering. IEEE Design & Test,
16(3):72–80, 1999.

[Hong and Muroga, 1991] Sung Je Hong and Saburo
Muroga. Absolute minimization of completely specified
switching functions. IEEE Trans. Comput., 40:53–65,
January 1991.

[Koza et al., 1996] J.R. Koza, D. Andre, F.H. Bennett III,
and M.A. Keane. Use of automatically defined functions
and architecture-altering operations in automated circuit
synthesis with genetic programming. In Proceedings of the
First Annual Conference on Genetic Programming, pages
132–140. MIT Press, 1996.

[McCluskey, 1956] E. J. McCluskey. Minimization of
Boolean functions. The Bell System Technical Journal,
35(5):1417–1444, 1956.

[Parhami, 2009] Behrooz Parhami. Computer Arithmetic:
Algorithms and Hardware Designs. Oxford University
Press, Inc., New York, NY, USA, 2nd edition, 2009.

[Roth, 1958] J.P. Roth. Algebraic topological methods for
the synthesis of switching systems I. Trans. Amer. Math.
Soc, 88(2):301–326, 1958.

[Temes and Lapatra, 1977] G.C. Temes and J.W. Lapatra. In-
troduction to Circuit Synthesis and Design, volume 15.
McGraw-Hill, 1977.

[Zupan et al., 1999] Blaž Zupan, Marko Bohanec, Ivan
Bratko, and Janez Demšar. Learning by discovering con-
cept hierarchies. Artif. Intell., 109:211–242, April 1999.

1641

