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Abstract

Complex networks describe a wide range of sys-
tems in nature and society. To understand the com-
plex networks, it is crucial to investigate their inter-
nal structure. In this paper, we propose an online
community detection method for large complex
networks, which make it possible to process net-
works edge-by-edge in a serial fashion. We inves-
tigate the generative mechanism of complex net-
works and propose a split mechanism based on the
degree of the nodes to create new community. Our
method has linear time complexity. The method has
been applied to six real-world network datasets and
the experimental results show that it is comparable
to existing methods in modularity with much less
running time.

1

Complex networks describe a wide range of systems in nature
and society [Barrat ef al., 2004]. Frequently cited examples
include the Internet, a network of routers and computers con-
nected by physical links, and the citation network, a network
of papers linked by citations. To understand the formation,
evolution, and function of complex networks, it is crucial
to investigate their internal structure, not only for uncover-
ing the relations between internal structure and functions in
complex networks, but also for practical applications in many
disciplines such as biology and sociology [Ratti ef al., 2010;
Szell et al., 2012].

The problem of community detection is one of the out-
standing issues in the study of network structure. A wide vari-
ety of community detection methods have been developed to
serve different scientific needs. For example, [Ahn et al.,
2010] reinvent communities as groups of links rather than
nodes and show that this unorthodox approach successfully
reconciles the antagonistic organizing principles of overlap-
ping communities and hierarchy. [Ziv er al., 2005] propose
a principled information-theoretic algorithm for community
detection. However, when processing large complex net-
works, most existing community detection methods become
impractical owing to the requirement that the whole network
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structure be available at each step of the method. For this
reason, there has been a strong interest for online community
detection method which make it possible to detect community
without accessing the whole network structure at each step.

In this paper, we consider the generative mechanism of
complex networks which has mainly not been considered
in past studies and propose an online community detection
method. Our method has O(m) time complexity and O(nk)
space complexity. The results of applying our method and
some other feasible methods to real-world network datasets
suggest that our method is scalable and competitive in perfor-
mance.

2 Related Work

Traditional methods of community detection, such as spec-
tral bisection, the Kernighan-Lin algorithm and hierarchical
clustering based on similarity measures are not ideal for the
types of real-world network datasets with which current re-
search is concerned [Newman, 2004b]. Modularity is a re-
cently introduced quality measure for community detection.
It was first proposed in [Newman, 2004bl. [Good et al.,
2010] describe the performance of modularity maximization
in practical contexts and present a broad characterization of
its performance in such situations. However, [Fortunato and
Barthelemy, 2007] find that modularity optimization may fail
to identify communities smaller than a scale which depends
on the total size of the network and on the degree of intercon-
nectedness of the communities. A check of the communities
obtained through modularity optimization is thus necessary.

Modularity can be generalized in a principled fashion to in-
corporate the information contained in edge such as direction
and weightiness. [Leicht and Newman, 2008] consider the
problem of finding communities in directed networks. [New-
man, 2004a] point out that weighted networks can in many
cases be analyzed using a simple mapping from a weighted
network to an unweighted multigraph. [Lancichinetti and
Fortunato, 2009] generate directed and weighted networks
with built-in community structure and show how modularity
optimization performs on their benchmark.

A wide variety of modularity optimization methods have
been developed [Leskovec et al., 2010]. For example,
[Clauset et al., 2004] present a hierarchical agglomeration al-
gorithm for detecting community. [Newman, 2006] show



that the modularity can be expressed in terms of the eigen-
vectors of a characteristic matrix for the network and that this
expression leads to a spectral algorithm for community detec-
tion. [Chen er al., 2011] introduce a game-theoretic frame-
work to address the community detection problem based on
the social networks structure. [Li and Schuurmans, 2011]
propose an iterative rounding strategy for identifying the
communities that is coupled with a fast constrained power
method that sequentially achieves tighter spectral relaxations.
[Chan and Yeung, 2011] propose a convex relaxation scheme
to give an iterative algorithm which solves the general k-
partition problem. [Wu et al., 2011] first projects node coor-
dinates to the unit sphere and then applies the classic k-means
to find communities. [Chen et al., 2009] present a new com-
munity mining measure, max-min modularity, which consid-
ers both connected pairs and criteria defined by domain ex-
perts in finding communities, and then specify a hierarchical
clustering algorithm to detect communities in networks. A re-
cent comparative analysis of community detection algorithms
isin [Lancichinetti and Fortunato, 2009].

3 Online Community Detection Method

3.1 Preliminaries

A network G {V,E} is a set of n nodes V
{v1,v2,...,v,} connected by a set of m edges E = {e;; =
{vi,v;}}. The network considered here is undirected, un-
weighted and without self-loops or isolated node. Let P =
{C1,...,Ck} denote a partition of V, it is a division of V'
into K non-overlapping and non-empty communities C; that
cover all of V. As a performance measure for the quality
of the partition, modularity was first proposed in [Newman,
2004b] and can be expressed as
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where edg(Cr) = |{eij|v; € Cr and v; € Cy}| is the num-
ber of intra-community edges within C}, and deg(CY,) is the
degree of O, defined as deg(Cy) = >_, <, deg(v;) where
deg(v;) is the degree of node v;. Hence community detection
can be formulated as an optimization problem

max q(P) 2
P

and [Brandes et al., 2008] prove the conjectured hardness of

this problem both in the general case and with the restriction

to number of partitions K.

3.2 Analysis of network expansion

Unlike most previous approaches, we consider networks as
a result of expanding. It is growing by the addition of new
edges. Given an existing network Gy_1 = {V;—1,F:_1},
there are three cases for a new edge e, = {v;,v,} to be
added in G;_1, namely, (a)link a new node to an existing
node, {vi,vj} n ‘/;,1 = {Ul} or {U,‘,’Uj} N ‘/t,1 = {’Uj};
(b)link two existing nodes, {v;,v;} C V;_1; (c)link two new
nodes, {v;,v;} N Vi1 = ((See Fig. 1).

Correspondingly, we do modularity optimization in a in-
cremental way. For initial network Gq = 0, it is clearly that
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Figure 1: Three cases for a new edge to be added in an exist-
ing network: (a)link a new node to an existing node; (b)link
two existing nodes; (c)link two new nodes

the best partition P is an empty set too. For subsequent net-
works G¢,t = 1,2, ..., we derive our algorithm under those
three cases separately as follow.

Case (a): link a new node to an existing node. Without
loss of generality, we assume v; is the existing node and v; is
the new node. It is easy to prove that a partition with maxi-
mum modularity has no community that consists of a single
node with degree one. It seems that we should assign v; to
an existing community. However, this greedy approach will
almost certainly lead to a local maximum. In worst case, all
nodes are in a same community and result in zero modularity.
Hence a split mechanism is necessary.

Let us recall the generative mechanism of complex net-
works. The first widely accepted model for the observed
stationary scale-free distributions of complex networks was
proposed by [Barabési and Albert, 1999] and its importance
is recognized by academia [Newman, 2003; Boccaletti ef al.,
2006]. It is based on two generic mechanisms: (a) networks
expand continuously by the addition of new nodes; (b) new
nodes attach preferentially to communities that are already
well connected. Specifically, a new node v; will attach an
existing node v; with probability p(v;) in proportion to the
degree of node v;.

p(vi) o< deg(v;) 3)

In other words, it is abnormal to observe a new node attaching
an existing node with few edges and this phenomenon may
indicate the emergence of a new community. This inspire us
to split the new node to a new community with probability
Dspiit that decreases with increases in the degree of the exist-
ing node. And the limit of p,p;;¢, as the degree of the existing
node approaches infinite, should be zero. We choose pgpiit
inversely proportional to the degree of the existing node.

1

deg(v;) + 1 @

Psplit =



(b)

O New node join an existing community

New node as a new community

Figure 2: Split mechanism: (a)A new node attaches to an ex-
isting node with degree two, it join the same community of
the existing node; (b)Another new node attaches to the previ-
ous new node with degree one, it split to a new community.

Here we use deg(v;)+1 instead of deg(v;) to avoid determin-
istic split when deg(v;) = 1. Fig. 2 depict our split mecha-
nism. When a new node attaches to an existing node with
degree two, it join the same community of the existing node;
when another new node attaches to the previous new node
with degree one, it split to a new community.

For a complete review of the statistical mechanics of net-
work topology and dynamics of complex networks, one can
refer to [Albert and Barabdsi, 2002]. And [Mitzenmacher,
2004] briefly survey some other generative models that lead
to scale-free distributions.

Case (b): link two existing nodes. Existing nodes may
belong to a same community or not(See Fig. 3). If both nodes
belong to a same community, the new edge just increase the
number of intra-community edges in the community so we do
nothing. If they belong to different communities, we evaluate
Aq(v;,vj), which is defined as modularity gain for node v;
moving from it’s community Cf;) to node v;’s community
Ch(j)» and Agq(v;,v;)’s counterpart Ag(vj,v;). If either of
them larger than zero, we move one node according to maxi-
mum modularity gain principle.

Notice that Ag(v;,v;) can be calculated in constant time
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through follow equation

Aq(vi,v;) = q(P") — q(P)
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where deg(v;, Cx) = |{ei;j|lv; € Ci}| is number of edges
from the node v; to community C}, and Cy;y is the commu-
nity which the node v; belongs to.

We can improve modularity via other types of adjustments.
For example, the modularity gain of merging two communi-
ties C ;) and Cy(j) is

deg(Cr(i), Cr(y))
Aq(Crio Cry) = = Pt

_ deg(Ci(i))deg(Crj))
2m?

where deg(C;), Cr(;)) is number of edges between
community Cj;) and community Clj). Sometimes
Aq(Cr(s), Cr(jy) can be positive and significantly larger than
Aq(vj,v;) and Ag(v;,v;). However, merging two commu-
nities may cause that subsequent optimazitions suffer from
overlarge community size. For the sake of simplicity, we do
not take those complex adjustments.

Case (c): link two new nodes. As a partition of maximum
modularity does not include disconnected communities, those
two nodes should not join any existing communities but form
a new community themselves.

(6)

3.3 The proposed algorithm

Taken together, our method take a sequence of edges as input
and do modularity optimization incrementally. If only one
node of current edge belongs to the existing network, we split
another node to a new community with probability inversely
proportional to the degree of the existing node; If both nodes
of current edge belong to the existing network but they be-
long to different communities, we move one node according
to maximum modularity gain principle; If neither node of cur-
rent edge belongs to the existing network, we just assign them



Algorithm 1: Online Community Detection Algorithm

Input: a sequence of edges {e1,..., e, ...,er}
Output: partition P = {C},...,Ck}

1 Vo+0,Eg« 0, P+ 0, K« 0;
2 fort < 1toT do
(b) 3 fetch e; = {v;, v };
4 Vi < Vica U{vi, 05}, By <= Er_1 U {er}s
Node of community A 5 if {v;,v;} NV,_1 = () then
6 gK+1P<— IE{UCZ" ”j}§}
. 7 — U K+1745
Node of community B o K« K+ 1;
9 else
10 if {v;,v;} C Vi_, then
Figure 3: Two situations of a new edge link two existing 1 if C’k(i) + Ck(j) then
nodes. (a)Nodes belong to a same community; (b)Nodes be- 12 if max(Aq(v;, vj), Aq(vj, v;)) > 0 then
long to different communities. 13 if Ag(v;, vj) > Aq(vj, v;) then
14 Cr(iy « Cry/{vi}:
to a new community. Obviously, our online community de- Cr(s) ¢ Cri) Uviks
tection algorithm has O(m) time complexity. And the space 16 else
complexity is O(nk) because we need to store deg(v;, Cx) V7 L Cr(y) < Criin/{vih
for calculating modularity gain in constant time. The algo- 18 Cr(iy < Criiy U{v};
rithm is summarized in Algorithm 1. -
19 else
4 Experiments 2 if {121"’ Ui} NVia = {vi} then _
21 raw x from Bernoullz(m),
In this section, we present experimental results of our online 23 if = 0 then
community detection method and compare it with some other 3 ‘ Criiy < Cy (iU {v; };
methods. For simplicity, we use OL to refer to our method,  ,4 else
CNM to refer to an agglomerative method [Clauset et al.,  ,5 Cri1 < {v;};
2004] and Eig to refer to the eigenvector-based method [New- 5 P+ PU{Cki1};
man, 2006]. . K« K +1:
We use six real-world network datasets from Stanford
Large Network Dataset Collection!, which commonly used 28 else . 1
by other researchers for community detection, their edge 29 draw z from Bernoulli( e, y1);
sizes varying from 93,439 to 1,992,636(See Table 1). These 30 if z = 0 then
datasets are 31 | Cri) < Crgy U{vils
e ca-CondMat: Collaboration network of Arxiv Con- z else Cresn  {v:}:
densed Matter [Leskovec et al., 2007]; 34 P PU{Crsi}:
e ca-HepPh: Collaboration network of Arxiv High En- 35 K+ K+1,
ergy Physics [Leskovec et al., 20071, L =
o ca-AstroPh: Collaboration network of Arxiv AsStro 3¢ peturn P:
Physics [Leskovec er al., 2007]; .
e cit-HepTh: Arxiv High Energy Physics paper citation
network [Leskovec et al., 2005];
e cit-HepPh: Arxiv High Energy Physics paper citation [ Network | Node Size | Edge Size ]
network [Leskovec et al., 2007] ca-CondMat | 23,133 93.439
ca-HepPh 12,008 118,489
e web-Stanford: Web graph of Stanford.edu [Leskovec er ca-AstroPh 18772 198,050
al., 2009]. Cit-HepTh 27,770 352,285
The edges should be processed in order of creation. However, cit-HepPh 34,546 420,877
the datasets do not have timestamps on the edges. We process web-Stanford | 281,903 1,992,636

the edges in order of their appearance in the raw dataset file.
Table 1: Summary of network datasets

"http://snap.stanford.edu/data/
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Figure 4: Running time ¢(in seconds) of six datasets with dif-
ferent edge size m by OL, Eig and CNM.

We use C# to implement our algorithm?. For comparison,
we employ implementation of CNM algorithm and Eig algo-
rithm in igraph package® in R software*. Both CNM algo-
rithm and Eig algorithm are written in C language. We carry
out experiments on a Windows based Genuine Intel(R) CPU
i3 @ 3.20GHz machine with 4.00GB memory.

Maximum and average modularity and variance of modu-
larity over 10 runs by OL as well as modularity over 10 runs
by Eig and CNM are reported in Table 2. We can see that OL
outperforms Eig consistently for all six datasets and outper-
forms CNM except the last dataset, and the gap between OL
and CNM in the last dataset is less than 0.02. The variance is
low, so we need not run multiple times.

Average running time(in seconds) over 10 runs by OL, Eig
and CNM are reported in Table 3 and Fig. 4. OL also has
significantly advantage in terms of running time. It is linear
in edge size as we expected. For networks with two millions
of edges, it can give result in six seconds which is six hundred
times faster than CNM.

To evaluate the convergence speed of OL, we plot the aver-
age temporal modularity over 10 runs by OL(See Fig. 5). We
can see that OL can give a acceptable modularity immediately
after process start and the modularity becomes stable in early
stage for all six datasets.

5 Conclusion

In this paper we have examined the problem of detecting
community in large complex networks, which is formulated
as an optimization problem in which one searches for the
maximum of the quantity known as modularity over possi-
ble partition of a network. We have considered the gener-

ative mechanism of complex networks and presented a new
Our C# implementation can be downloaded from

http://www.cs.zju.edu.cn/people/gpan/
3http://igraph.sourceforge.net/

*http://www.r-project.org/
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method which allows us to perform online modularity maxi-
mization. The method has been applied to a variety of real-
world network datasets and our experiments give very en-
couraging results. Not only is the proposed method scalable
in terms of both time and space complexity, but it also gives
competitive performances. Our future research will consider
the use of quality measures other than modularity for solving
the community detection problem under an online optimiza-
tion framework, as well as apply the method to directed and
weighted complex networks.
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