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Abstract

Understanding the molecular mechanisms of life
requires decoding the functions of the proteins in
an organism. Various high-throughput experimen-
tal techniques have been developed to characterize
biological systems at the genome scale. A fun-
damental challenge of the post-genomic era is to
assign biological functions to all the proteins en-
coded by the genome using high-throughput bio-
logical data. To address this challenge, we pro-
pose a novel Laplacian Network Partitioning in-
corporating function category Correlations (LNPC)
method to predict protein function on protein-
protein interaction (PPI) networks by optimizing
a Laplacian based quotient objective function that
seeks the optimal network configuration to max-
imize consistent function assignments over edges
on the whole graph. Unlike the existing ap-
proaches that have no unique optimization solu-
tions, our optimization problem has unique global
solution by eigen-decomposition methods. The
correlations among protein function categories are
quantified and incorporated into a correlated pro-
tein affinity graph which is integrated into the PPI
graph to significantly improve the protein function
prediction accuracy. We apply our new method
to the BioGRID dataset for the Saccharomyces
Cerevisiae species using the MIPS annotation
scheme. Our new method outperforms other related
state-of-the-art approaches more than 63% by the
average precision of function prediction and 53%
by the average F1 score.

1

Discovering biological functions of an organism is a central
goal of functional genomics. Although function assignment
for every protein using traditional experimental techniques
could take decades, the current accumulated data from dif-
ferent biological sources make it possible to automatically
predict protein functions to guide laboratory experiments and
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speed up the annotation process. Existing methods typically
make prediction one function at a time, fundamentally, al-
though in reality most biological functions are intertwined
to be carried out together. For example, “Metabolism” and
“Protein Fate” [Mewes er al., 1999] are closely related and
often annotated to the same protein. Therefore, the under-
lying relationships among biological functions convey valu-
able information which could be utilized to improve the over-
all protein function prediction accuracy [Wang et al., 2012;
2013]. However, to the best of our knowledge, very lim-
ited computational research has been done to make use of
the functional correlations. In this study, we propose a Lapla-
cian Network Partitioning Incorporating Function Category
Correlations (LNPC) approach to incorporate the functional
correlations into a network based method for protein function
prediction. We first propose a novel Laplacian Network Par-
titioning (LNP) method, as part of LNPC, to formulate pro-
tein function prediction as an optimization problem to maxi-
mize the function assignment consistency over edges on the
whole protein interaction network. After that we introduce
a statistical model to quantify the function category corre-
lations, based on which we construct a correlated protein
affinity graph and integrate it into biological protein interac-
tion networks. The experimental results show that our LNPC
method outperforms other state-of-the-art methods.

1.1 Network Based Methods for Protein Function
Prediction

High-throughput technologies for protein-protein interaction
(PPI) screening have created large-scale data across human
and many model species [Ito ef al., 2001; Uetz et al., 2000;
Ho et al., 2002; Tong et al., 2001; Edgar et al., 2002;
Pellegrini et al., 1999; Enright et al., 1999; Harbison et al.,
2004], which are routinely represented as networks, with
nodes representing proteins and edges representing the de-
tected PPIs. The availability of protein interaction networks
has spurred on the development of network based computa-
tional methods to elucidate protein functions [Sharan er al.,
2007].

The most natural and straightforward method to predict
protein function on PPI networks is neighbor counting, be-
cause it is observed that 70-80% of proteins share at least
one function with its interacting partner [Titz et al., 2004].
Schwikowski et al. [Schwikowski et al., 2000] suggested a



majority voting (MV) approach that labels a protein with the
functions occurring most frequently in its interacting part-
ners. Hishigaki et al. [Hishigaki et al., 2001] used x? statis-
tics to identify the functions that are over-represented in the
interacting partners of a protein. However, only using the
immediate interaction partners limits predictions to proteins
with at least one interaction partner with known annotation.
Moreover, the possible annotations for an unknown protein
are limited by the annotations of its interacting partners. Chua
et al. [Chua et al., 2006] tackled these two problems by fur-
ther considering the functions annotated to the indirect inter-
acting partners of a protein in addition to the direct interacting
partners. In general, such neighbor counting approaches only
take advantage of the local structures of a PPI network.

In contrast, several methods have been proposed toward
global optimization by taking into account the full topology
of the network. Vazquez et al. [Vazquez et al., 2003] aimed
at assigning a function to each unannotated proteins so as to
maximize the number of edges that connect proteins assigned
with the same function, and solve the problem by simulated
annealing. Karaoz et al. [Karaoz et al., 2004] developed the
same idea with an iterative local search method. Nabieva et
al. [Nabieva et al., 2005] treated the optimization problem as
a generalization of multi-way k-cut problem, and used integer
linear programming method to solve the problem. Although
these researches have shown effective experimental results,
the presented methods are not able to produce a unique so-
lution for the optimization problem, which makes them of
less practical use in real applications. In this study, we not
only adopt the ideas in these previous work to seek the op-
timal network configuration to maximize consistent function
assignments over edges on the whole graph, but also refor-
mulate the optimization objective as a quotient discriminant
function. Most importantly, the proposed optimization objec-
tive can be efficiently and uniquely resolved by the standard
generalized eigen-decomposition method.

1.2 Protein Function Prediction Using Function
Category Correlations

A protein is usually observed to play several functional roles
in different biological processes within an organism, thus it is
natural to annotate a protein with multiple functions. In pro-
tein function prediction, the biological functions are usually
correlated to each other, because most biological processes
accomplish together with other processes but seldom happen
individually. If a protein is known to be annotated to one cate-
gory, it is very likely also annotated to those categories highly
correlated to the annotated one. Apparently, we can lever-
age the underlying category relationships to improve the pro-
tein function prediction. For example, when applying Func-
tional Catalogue (FunCat) 2.1 annotation scheme [Mewes et
al., 1999] to the yeast genome, we observe that there is a
big overlap between the proteins annotated to function “Cell
Fate” (ID: 40) and “Cell Type Differentiation” (ID: 43). As
shown in Fig. 1, among 268 proteins annotated with func-
tion “Cell Fate” in the yeast genome, 168 proteins are also
annotated with function“Cell Type Differentiation”, but the
average number of proteins annotated with other functions is
only about 51. Thus, we speculate these two functions are
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Figure 1: Distribution of numbers of proteins known to be an-
notated with function “Cell Fate” (ID: 40) and also annotated
with other main functional categories in Funcat 2.1 annota-
tion scheme.

highly correlated from the statistics of the annotated data. If
a protein is assigned with function “Cell Fate” by experimen-
tal or computational algorithms, we can infer that this protein
also has a high probability to be annotated with function “Cell
Type Differentiation”. With this recognition, we propose a
correlated protein affinity graph to incorporate the function
category correlations and integrate it into biological protein
interaction networks to significantly enhance the overall pre-
diction performance.

2 Materials

Physical interaction network. We construct the PPI network
using the protein interaction dataset compiled by BioGRID
[Stark et al., 2006] for the Saccharomyces Cerevisiae (yeast)
species. The resulting network is an undirected graph, where
each vertex represent a protein and an edge represent an ob-
served physical link. For all the reported results, we consider
only the proteins making up the largest connected compo-
nent of the physical interaction map from the BioGRID 2.0.56
dataset, which end upwith 4403 proteins and 86167 physical
interaction links.

Function annotation dataset. In this study, we use the
FunCat annotation scheme (version 2.1) by Munich Infor-
mation Center for Protein Sequences (MIPS) [Mewes et al.,
1999] due to its clear tree-like hierarchical structure. 27 main
functional categories are defined in FunCat 2.1 annotation
scheme, among which 17 functions are annotated to the yeast
genome. The function identifiers (ID) and the descriptions of
these 17 main functional categories are listed in Table 1.

3 Protein Function Prediction via Laplacian
Network Partitioning Incorporating
Function Category Correlations

3.1 Problem Formalization

We formalize the protein function prediction problem. We
have n proteins, of which [ proteins have known annotations.
Our task is to annotate the rest n—I proteins using the network
data. In this problem, there are K biological functions. Thus



Table 1: Main functional categories in Funcat 2.1 annotation scheme.

Function Function Description Number of proteins
ID (Yeast) annotated
01 Metabolism 1397
02 Energy 336
10 Cell Cycle and DNA Processing 981
11 Transcription 1009
12 Protein Synthesis 476
14 Protein Fate (Folding, Modification, Destination) 1125
16 Protein with Binding Function or Cofactor Requirement (Structural or Catalytic) 1019
18 Regulation of Metabolism and Protein Function 246
20 Cellular Transport, Transport Facilitation and Transport Routes 995
30 Cellular Communication/Signal Transduction Mechanism 231
32 Cell Rescue, Defense and Virulence 515
34 Interaction with the Environment 446
38 Transposable Elements, Viral and Plasmid Proteins 59
40 Cell Fate 268
41 Development (Systemic) 67
42 Biogenesis of Cellular Components 827
43 Cell Type Differentiation 437

the task is to assign one or more biological functions to each
of the unannotated proteins.

Mathematically, we represent the annotated proteins as
(z1,--- ,x;), and unannotated proteins as (xjy1,- -+ ,Tp)-
The protein network data is given by the an n x n affinity
matrix W with W;; indicating the affinity between z; and z ;.
Using graph theory terminology, we say the protein network
is a graph G = (V, E), where the nodes V' corresponds to
proteins {1, ...,x,}, and the edges E are edge weights .

As in most previous approaches [Schwikowski et al., 2000;
Hishigaki et al., 2001; Chua et al., 2006; Vazquez et al., 2003;
Karaoz et al., 2004; Nabieva et al., 2005; Sharan et al., 20071,
the function prediction is carried out for one function at a
time, repeating K time for K functions. In each prediction
task, we use indicator y; = +1 for protein z;, where y; = +1
indicates that protein x; has the function in question, y; = —1
indicates that protein x; does not have the function in ques-
tion.

Our work begins with an observation that in essence, under
the one-function-at-a-time prediction framework, the func-
tion prediction becomes a graph node partitioning problem
under the constraints that annotated proteins are fixed to the
known function assignments. It is known that [Pothen et al.,
1990; Chung, 1997; Shi and Malik, 2000; Ding et al., 2007]
“spectral graph partitioning” has been shown to be a state-of-
the-art partitioning approach.

Motivated by this observation, (1) we further recognized
that the original prediction model [Vazquez et al., 2003;
Karaoz et al., 2004; Nabieva et al., 2005] can be transformed
into a Laplacian network partitioning (LNP) model closely
related to spectral graph partitioning model. (2) In the LNP
model, we relax the indicators {y;}. This requires a proper
re-formulation to enforce the constraints (enforce annotated
proteins to have their known functions). We provide an ef-
fective quadratic formulations to resolve this problem. (3)
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In this LNP approach, we can easily incorporate the protein
function category correlations as detailed later in Sect. 3.3.
These 3 steps are the main contributions of this work.

3.2 Computational Algorithms

Compared with local neighbor counting approaches
[Schwikowski et al., 2000; Hishigaki et al, 2001;
Chua er al., 2006], global optimization approaches usu-
ally demonstrate better performance in predicting protein
functions [Vazquez et al., 2003; Karaoz et al., 2004,
Nabieva et al., 2005]. Vazquez et al. [Vazquez et al., 2003]
proposed to exploit the global topology of the whole PPI
network by annotating proteins to minimize the number of
times different annotations are associated with neighboring
proteins. Karaoz et al. [Karaoz et al., 2004] developed a sim-
ilar approach by augmenting the physical protein interaction
networks using gene-expression data. Their optimization
objective can be formulated as following:

n n
ST Wiyny | = max (W),
i=1 j=1,j#1 Y
¥ =1 Vi € S+,
Y = —1 VieS_,

(1)
s.t.

where in the constraints (the “boundary condition”), S is the
set of proteins that are annotated to have the function of in-
terest (positive samples), and S_ is the set of those annotated
proteins which do not have the function (negative samples).
Here we denote i = [y1, ..., y,]T and assume W;; = 0.

In this study, we reformulate the optimization objective in a
better way and provide the unique optimal solution this prob-
lem. We first note that the constraints in Eq. (1) can be satis-



fied by following penalty function:

— EL‘GSJr Yi ZIiES, Yi ’ T
= ( SIS ) =7
‘S}rp if $i€S+ andxj €S+
\Si|2 if v, €S_andz; € S_ )
Ey=4q _, .. f[v;€S;andz;eS_
s {xz € S_andz; € 5y
0 otherwise

This quadratic function p(%) reaches the maximum value of
4 when the constraints are completely satisfied. Our solution
let those annotated proteins be also dynamic variables. Thus
the constraints becomes:

max p(§) ()

Second, we note that the maximization of 37 W3 can be
equivalently written as:

min i (D — W), 4)

Yy

where D = diag(dy,ds, -+ ,d,) and d; = Zj W;; is
the degree of vertex (protein) ;. This is because y* Dij —
J'Wy = 3 Duyi — g Wy = X di —y Wy =
const —y? W, noting that y;+1 implies y? = land Y ;" d;
is a constant.

Generally speaking, we need to combine both Eqgs. (3—4)
into a single objective to minimize them. For example, we
can optimize:

min (1= 8)7" (D —W)§ — 85" E] ©)

where 0 < 5 < 1 is a tradeoff parameter. The problem with
the this formulation lies in that the tradeoff parameter (3 is
hard to select in practice. Different choice of 3 leads to dif-
ferent solution. Here we propose a way to bypass this diffi-
culty by defining the following optimization objective [Wang
et al., 2010d; 2010c]:
J"Ey
YD - W) ©
This formulation achieves the two objectives Egs. (3—4) with-
out additional parameters. The solution to the problem in
Eq. (6) is well established. It is given by the generalized
eigenvalue problem, A\EY = (D — W), the eigenvectors
U}, corresponds to the eigenvalues A\ where 0 = A < Ao <
- < Ap. Because ¥ is a constant vector [Chung, 1997],
we use the second smallest eigenvector v as the desired so-
lution. We call this approach for protein function prediction
as Laplacian Network Partitioning (LNP) because it partitions
the nodes of the network into two parts. Note that the solution
to problem Eq. (6) is unique, while in many previous works
the global unique solution to the optimization problem is not
guaranteed.
Once v from Eq. (6) is computed, we can obtain the final
the function assignment for an unannotated protein x; by the
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simple decision

J— +1’
yi=q_1

This corresponds to use O as the decision value and is not
necessarily optimal, especially in the case in protein func-
tion prediction, where only a small fraction of proteins are
annotated to a given biological function. Taking into ac-
count the unbalanced distribution of training data, we ad-
just the decision boundary such that the weighted training
errors are minimized. Let ey (b) and e_(b) be the num-
bers of misclassified positive and negative training samples
for a given decision boundary b. We choose the optimal
decision boundary as following [Wang er al., 2009; 2012;

2013]:
er(b) e_<b>>
+ . 8
AT ®)

The function assignment for an unannotated protein z; is then
determined by:

if 772(2) >0

i 5(i) < 0 ™

b = arg min (
b

4L if Ta(i) > b

i = {—1, if (i) < b ©)

3.3 Construction of Correlated Protein Affinity
Matrix (W)

Existing approaches construct the protein affinity matrix, W
in Eq. (1), only from the biological experimental data, such
as those from the high-throughput technologies, while the
correlations among protein functions are usually overlooked.
Since the function correlations convey valuable information
to infer protein function assignment as discussed earlier in
Sect. 1.2, it is expected to improve the the overall predictive
accuracy by making use of them. We thus propose the follow-
ing scheme to construct a Correlated Protein Affinity Matrix
(CPAM), W, to incorporate the function correlations as fol-
lowing:

W =Wy +~W, (10)

where Wy is the affinity matrix built upon the biological ex-
perimental data same as that in previous approaches, W is
the pairwise function annotation similarity matrix to incor-
porate the correlations among protein functions, and ~ is a
parameter used to balance the influence of the two affinity
2z Wo(ind)

Zi,j,i;éj WL(iaj) ’

In protein function prediction, one protein can be assigned
to multiple functions simultaneously, therefore the proteins
assigned to two different functions may overlap. Intuitively,
the bigger the overlap is, the more closely the two functions
are related to each other. Considering this function corre-
lations, the function assignments to a protein are no longer
independent, but can be inferred one another. In the extreme
case, such as parent-child hierarchy in the protein function
annotation systems, once we know a protein is annotated to
a child protein function, we can immediately annotate the
parent function to the same protein. In this subsection, we
concentrate on modeling the correlations among protein func-
tions and incorporating them into protein affinity graphs.

matrices and empirically selected as v =
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Figure 2: Correlation matrix among the 17 functions in Fun-
Cat 2.1 annotated to yeast genome.

The overlap of protein annotations measures the correla-
tion between function categories. We use the cosine similarity
to measure correlations between these two protein functions.
Let K -vector Z; represents the function assignment indication
vector for protein x;, such that Z;(k) = +1 if protein x; is
known to be annotated with the kth function, and Z; (k) = —1
if protein x; is known to be not annotated with the kth func-
tion. We write Z = [Z},...,2,]. Let 7 and 7 represent
the kth and lth rows of Z respectively. We define the func-
tion category correlation matrix, C € RE*X  to capture the
function correlation between two categories as following:

_ (Th, 77)
751172

Using the FunCat 2.1 annotation dataset for yeast genome,
the function correlations defined in Eq. (11) are illustrated
in Fig. 2. The high correlation value between functions
“Cell Fate” and “Cell Type Differentiation” depicted in Fig. 2
shows that they are highly correlated, which agrees with the
observations in Sect. 1.2. In addition, as shown in Fig. 2 some
other function pairs are highly correlated, such as “Tran-
scription” and “Protein With Binding Function or Cofac-
tor Requirement”, “Regulation of Metabolism and Protein
Function” and “Cellular Communication/Signal Transduction
Mechanism”, efc. All these observations comply with the bi-
ological nature, which justifies of the utility of the function
correlations from biological perspective.

A simple form to measure the overlap of the annotated
functions to two proteins is z7'Z;. The bigger the overlap
is, the more similar the proteins are. The problem with this
straightforward similarity measurement is that it treats all the
protein functions independently and therefore is unable to ex-
plore the correlations among them. In particular, it will give
zero similarity whenever two proteins do not share annotated
functions. However, two proteins with no common annotated
functions can still be strongly related if their annotated func-
tions are highly correlated. Therefore, instead of computing
the function annotation similarity by the dot product, we com-
pute it by ZI C' Z;. By normalization, the pairwise function
annotation similarity, Wi, is defined as following:

i —
7 O

EIIEN

Cri = cos(T, 1)

an

Wi (i, ) 12)
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Unannotated proteins are first initialized using MV approach.

Applying W} into Eq. (10), the correlated protein affinity
matrix is constructed, and the function correlations are nat-
urally incorporated. We call this approach Laplacian Net-
work Partitioning Incorporating Function Category Correla-
tion (LNPC) (in contrast to LNP where function correlation
is not used).

We note that, by taking into account the function correla-
tions, protein function prediction is an ideal case of multi-
label classification [Wang et al., 2012; 2013], which was re-
cently formalized in machine learning. Due to its wide ap-
plicability, multi-label learning [Wang et al., 2009; 2010d;
2010a; 2010b; 2011] has attracted a lot of attention in scien-
tific research in recent years.

4 Experimental Results and Discussion

We applied the proposed approach to the yeast interaction
data with 4403 proteins and 86167 interactions. We use
17 protein function categories which are annotated to yeast
genome (See Section 2). We evaluate our method using
the standard 5-fold cross validation, as in many previous
studies. We also implemented four methods proposed in
previous studies, including Majority Voting (MV) approach
[Schwikowski et al., 20001, Iterative Majority Voting (IMV)
approach [Vazquez et al., 20031, x? approach [Hishigaki et
al., 2001], FunctionalFlow (FF) approach [Nabieva et al.,
2005].

Cross validation. We use standard 5-fold cross validation
method. The proteins are divided into 5 equal-size groups
randomly. One group is assumed to be unannotated and the
rest 4 groups are annotated. We run all 5 prediction methods
to predict the functions for the kept-out group of proteins.
The predicted results are compared to the true functions of
these proteins. This is repeated 5 times to keep each group as
unannotated in turn, and final results are averaged.

Performance metrics. As in many previous studies, we
choose precision and F1 score to evaluate the prediction per-
formance. Let TP (true positive) be the number of pro-
teins which we correctly predict to have a given function,
FP (false positive) be the number of proteins which we in-
correctly predict to have the function, and FN (false nega-
tive) be the number of proteins which we incorrectly pre-
dict to not have the function. The “precision” is defined
as TP/(TP + FP), and the “recall” (also known as “sensi-
tivity”) is defined as TP/(TP + FN). In addition, we also
use the “F1 score” to evaluate precision and recall together,
which is the harmonic mean of precision and recall: defined
as (2 x Precision x Recall)/(Precision + Recall). F1 score is
extensively used in the related works and other domains such
as information retrieval. Typically, improving the precision
of an algorithm decreases its recall and vice versa, therefore
F1 score is a balanced performance metric. To measure the
overall prediction performance, we use average precision and
average F1 score over all 17 main functional categories to
evaluate our algorithm.

4.1 Function Prediction

We compare the performances of Majority Voting (MV) ap-
proach [Schwikowski ef al., 2000], Iterative Majority Voting



Table 2: Average precision and average F1 score by the five
approaches in comparison over the main functional categories
by FunCat 2.1.

Approaches Average Precision  Average F1 score
MV 30.12% 28.56%
MV 30.92% 21.69%
x> 13.76% 7.32%
FunctionalFlow 17.99% 18.21%
LNPC 49.20% 43.70%

(IMV) approach [Vazquez et al., 2003], x? approach [Hishi-
gaki et al., 20011, FunctionalFlow (FF) approach [Nabieva
et al., 2005], and proposed Laplacian Network Partitioning
Incorporating Function Category Correlations (LNPC) ap-
proach, on the PPI graph built from BioGRID data of version
2.0.54 with annotation by MIPS Funcat scheme of version
2.1, using 5-fold cross validation.

The overall prediction performance measured by aver-
age precision and average F1 score are listed in Table 2.
The LNPC results are improved significantly over other ap-
proaches. This quantifies the advantages of the proposed
LNPC approach, and demonstrates that the reformulation on
the optimization objective with the additional constraint on
the annotated proteins does improve the prediction of protein
functions. The relative improvement on average precision of
the proposed approach over the best of the other approaches
is about (49.20% — 30.12%)/30.12% = 63.05%, and that on
average F1 score is more than 53%.

When calculating the overall performance of four previ-
ous approaches as shown in Table 2, we use their respective
optimal parameters: in MV approach we select the 3 most
frequently occurring functions in a protein’s neighbors; in 2
approach radius = 1 gives the best performance; in FF ap-
proach we assign functions according to the proportions of
positive and negative training samples as suggested by [Na-
bieva et al., 2005].

4.2 Effectiveness of utilizing Correlations among
Protein Function categories

We further analyze the effectiveness of using the function
correlations in protein function prediction. We compare the
prediction results of LNPC (utilizing the correlations among
function categories) against the baseline LNP (not using the
correlations).

Fig. 3 illustrates the LNPC results vs LNP results across all
17 function categories. LNPC approach consistently outper-
form the LNP approach in every function category. We also
notice that the improvements for “Metabolism”, “Biogenesis
of Cellular Components” and “Cell Type Differentiation” are
among the highest. By examining the correlation matrix C
defined in Eq. (11), the correlations among these function cat-
egories are relatively high, indicating the function correlation
is the direct cause of the improvements observed in Fig. 3.

Table 3 presents the overall prediction performance com-
parisons of LNP and LNPC by 5-fold cross validation. The
results show that the LNPC approach clearly outperform the
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Figure 3: Prediction performance utilizing correlations
among function categories (LNPC) vs the baseline (LNP) not
utilizing the correlation. LNPC results are improved across
all 17 function categories.

Table 3: Prediction performance comparison between LNP
and LNPC.

Average Average F1

Precision Score
LNP: W =W, 33.20% 36.24%
LNPC: W = Wy + Wy, 48.75% 42.50%

LNP approach. The result of Table 3 and Fig. 3 conclusively
demonstrate that utilizing the correlations among function
categories improve function prediction significantly.

5 Conclusions

We proposed a new Laplacian network partitioning approach
incorporating function category correlations for protein func-
tion prediction, and showed its promising performance com-
pared to other related state-of-the-art approaches. Our pro-
posed approach aims at global optimization to utilize the full
topology of the whole protein interaction networks. Unlike
the existing global optimization approaches, we formulate the
optimization objectives as a Laplacian based model, which
places the protein function prediction under the spectral clus-
tering framework from graph theory perspective and provides
state-of-the-art partitioning capabilities such that the predic-
tion performance is enhanced. The optimization problem by
the proposed approach is parameter free and can be efficiently
and uniquely solved by eigen-decomposition methods. How-
ever, most existing related work only used heuristic or sim-
ulating methods to solve the problem and cannot give out a
unique solution. Moreover, we proposed a statistical scheme
to model measure the correlations among protein function
categories, by which we introduced a protein affinity graph
to naturally incorporate the function category correlations.
After such correlated protein affinity graph is integrated into
proposed Laplacian network partitioning method, both over-
all and function-wise prediction performance are significantly
improved.
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