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Abstract
We propose a machine learning approach to geo-
physical inversion problems for the exploration of
earth resources. Our approach is based on nonpara-
metric Bayesian methods, specifically, Gaussian
processes, and provides a full distribution over the
predicted geophysical properties whilst enabling
the incorporation of data from different modali-
ties. We assess our method both qualitatively and
quantitatively using a real dataset from South Aus-
tralia containing gravity and drill-hole data and
through simulated experiments involving gravity,
drill-holes and magnetics, with the goal of char-
acterizing rock densities. The significance of our
probabilistic inversion extends to general explo-
ration problems with potential to dramatically ben-
efit the industry.

1 Introduction
The discovery of resources in the Earth’s crust is a problem
of crucial importance for continued global economic devel-
opment, so modern investigation methods make use of vast
amounts of geophysical data to improve the efficiency of re-
source exploration. In a geological inversion problem, prop-
erties such as temperature, conductivity, density, magnetic
susceptibility and permeability are inferred from related ob-
servations such as gravity, magnetics and seismic reflexion.

Two components are crucial in a geophysical inversion:
the assessment of uncertainty over the predicted geophysi-
cal properties, and the joint reasoning from multiple sources
of information. Uncertainty allows for principled decision-
theoretic approaches to minimize the risk of acquiring more
measurements. Joint reasoning through the estimation of sta-
tistical dependencies provides a natural mechanism to fuse
many of the available data modalities.

In this paper we formulate geophysical inversion as a ma-
chine learning problem, and propose an approach based on
Gaussian processes regression that naturally provides both a
predictive distribution over the inverted quantities and a prin-
cipled method to fuse different types of observations. We
apply our method to a real dataset from South Australia con-
taining gravity and drill-hole data with the goal of charac-

terizing rock densities for geothermal target exploration, and
also to simulated validation data involving gravity, drill-hole
and magnetic observations.

2 Related Work

One of the most popular methods to solve inversion problems
in Geophysics is the UBC software developed at the Univer-
sity of British Columbia — Geophysical Inversion Facility,
based on the work by Li and Oldenburg [1996] and Li and
Oldenburg [1998]. This software is widely used in the in-
dustry and in academia, in particular for gravity inversions,
magnetic inversions and mineral exploration [Oldenburg et
al., 1998]. These methods have the advantage of being rela-
tively easy to understand and quick to obtain an initial solu-
tion to an unconstrained inversion problem. However, one of
the major drawbacks of these techniques is that they do not
provide uncertainty estimates for the properties of interest.

Inverse problems have also been studied in the machine
learning community for general problems[Carreira-Perpiñan,
2001], and for geophysical problems Yurtsever et al. [2011].
From the geostatistics community, a comprehensive overview
of stochastic process priors for inverse problems can be found
in Tarantola [2005]. However, these methods seem to be un-
derexploited in the mineral exploration area. Gaussian pro-
cesses are, in fact, a Bayesian formulation of the nonparamet-
ric priors which have been used in Geostatistics for interpola-
tion and regression problems under the name of Kriging, see
e.g. Cressie [1993] and Stein [1999]. However, extensions of
standard regression approaches are required for an inversion
problem because the observations are indirectly related to the
property of interest.

The importance of the joint analysis of multiple data types
in realistic 3D geological modeling has been studied, for ex-
ample, by Guillen et al. [2008] and Fullagar and Pears [2007].
Very recent work by Shamsipour et al. [2012] has carried out
stochastic inversions of gravity and magnetic data. The main
advantage of our approach is that we provide a consistent
probabilistic model, where we can use principled marginal
likelihood objectives for model selection and leverage all the
machinery developed in the machine learning community in
recent years to perform inference with large datasets.
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3 Gaussian Processes for Joint Inversions
In this section we describe our approach to the problem of
geophysical inversion. We start by introducing Gaussian pro-
cess priors in standard regression settings. The formulation is
then extended to inversion problems for which linear forward
models exist. We then detail how our modeling approach can
naturally be extended to multi-task settings. Finally, tractable
implementation of this potentially costly model is discussed.

3.1 Gaussian Processes for Regression
Gaussian processes are flexible nonparametric priors that
have been used successfully in various machine learning tasks
such as regression and classification (see e.g. Rasmussen and
Williams [2006]). The probability distribution of a func-
tion f(x) is a Gaussian process (GP) if for any finite subset
of points x1, . . . ,xN , the function values f(x1), . . . , f(xN )
follow a Gaussian distribution. We denote a Gaussian process
with:

f(x) ∼ GP(µ(x), k(x,x�)), (1)
µ(x) = E[f(x)], (2)

k(x,x�) = E[(f(x)− µ(x))(f(x�)− µ(x�))], (3)

where µ(x) and k(x,x�) are the mean function and the co-
variance function of the GP respectively. A Gaussian pro-
cess is completely determined by its mean function and its
covariance function. In a regression setting it is customary to
assume a GP prior over the latent functions f(x) and a like-
lihood model where these latent functions are corrupted by
Gaussian noise. In this case, the predictive distribution at a
test point x∗ is Gaussian with simple analytical forms for its
mean and variance.

The parameters of the covariance function and the param-
eters of the noise process are usually referred to as the hyper-
parameters of the GP. These can be learned from data by op-
timization of the marginal likelihood. Under the GP prior
and the Gaussian likelihood assumptions, it is possible to
marginalize the latent functions analytically, and the result-
ing marginal likelihood is also a Gaussian distribution.

3.2 Gaussian Processes for Inversion
Here we focus on inversion problems for which a linear for-
ward model that relates the parameter of interest (i.e. geo-
physical property) to the observations can be formulated. For
explanatory purposes, we take the problem of gravity inver-
sion as a running example. In this case, it is well known that
the density of a body at a particular location and the observed
vertical component of the gravitational field are related via an
integral operator (see e.g. Kearey et al. [2002], Ch 6).

Additionally, as in many popular geophysical inversion ap-
proaches, we work upon a discretized version of the forward
model, where the 3-dimensional region of interest has been
partitioned into cells, each having a constant value of the pa-
rameter of interest. In the case of our gravity example, physi-
cal principles imply that the vertical component of the gravi-
tational field measured by a sensor is a linear combination of
the contributions of all the cells as a function of their posi-
tions and densities. For details on how these physical models
over voxel cells are obtained see Li and Oldenburg [1998].

Problem Formulation
Let {φ(j)} denote the unknown values of the geophysical
parameter at locations {z(j)}Mj=1, and let {y(i)} be the re-
lated observations at the locations {x(i)}Ni=1, with x, z ∈ R

3.
Our goal is to reason about the geophysical parameter in
the region of interest ({φ(j)}) given the related observations
({y(i)}). In the gravity inversion problem, {y(i)} are mea-
surements of the variations of the vertical component of the
gravitational field and {φ(j)} are the values of the density of
the anomalous body responsible for these variations.

Forward Model
Assuming a linear forward model we have that:

f = Gφ, (4)
where f is the vector of noiseless observations; φ is the vec-
tor of unknown parameters at the 3D locations; G is a known
N × M sensitivity matrix that relates the values of the geo-
physical property at different locations to the observations.
For a gravity forward model the values of the matrix G can
be determined analytically, assuming simple shapes such as
prisms (see e.g. Nagy et al. [2000]). In particular, for a prism
determined by its start and end coordinates zo and ze, we can
compute the corresponding sensitivity at location x by using:

Gx,z = γg(z)
��z̄e

1

z̄o
1

��z̄e
2

z̄o
2

��z̄e
3

z̄o
3
, (5)

where γ is the gravitational constant;
g(z) = z1 log(z2+r)+z2 log(z1+r)−z3 arctan

z1z2
z3r

; (6)

z̄o = zo − x; z̄e = ze − x; and r =
�
z21 + z22 + z23 .

Prior and Likelihood Models
In this work we assume a Gaussian process prior over the rock
properties of interest φ and an isotropic likelihood model:

φ(z) ∼ GP(0, κφ(z, z
�)), (7)

y = f + η with (8)

η ∼ N (η|0, σ2I), (9)
where κφ(·, ·) is the covariance function in the parameter
space and σ2 is the noise variance. The GP prior over the
functions φ translates into a Gaussian prior over the geophys-
ical quantities at the locations of interest:

φ ∼ N (φ|0,Kφφ), (10)
where Kφφ is the M×M covariance matrix obtained by eval-
uating the kernel κφ(·, ·) at the locations of interest {z(j)}Mj=1.

Inversion
Inversion within a Bayesian framework is straightforward as
it corresponds to computing the posterior distribution of the
parameters of interest φ given our observations y. This is
easily obtained by conditioning, where we need to compute
the covariance structures:

Kyφ = GKφφ, (11)

Kyy = GKφφG
T + σ2I. (12)

Hence we obtain that the predictive distribution is given by:
φ|G,y ∼ N (φ|µφ|y,Σφ|y) with: (13)

µφ|y = KT
yφK

−1
yy y (14)

Σφ|y = Kφφ −KT
yφK

−1
yy Kyφ. (15)
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3.3 Multi-task settings
Our ultimate goal in addressing geophysical inversion prob-
lems is to fuse different data sources within a single prob-
abilistic framework. As an initial step, we have adopted a
multi-task learning approach based on the model of Bonilla et
al. [2008]. This model assumes that the covariance between
two different geophysical quantities (tasks) at two distinct lo-
cations decomposes as:

κ(χ(x), φ(x�)) = kχφκ(x,x
�), (16)

where χ and φ denote distinct geophysical quantities, such
as density and magnetic susceptibility, and kχφ is the covari-
ance between these quantities. This means that instead of
having uncorrelated priors with distinct κφ(·, ·) and κχ(·, ·)
as in Equation (7), we share “statistical strength” by using
the correlated prior in Equation (16). Despite the simplicity,
our experiments show that, under certain assumptions on the
dependency of the quantities of interest, this model performs
well, and observing data from an additional source does im-
prove the quality of the inversion results, especially when the
observations are very sparse.

3.4 Hyper-parameter Learning
Let the set of hyper-parameters θ include the parameters of
the covariance function κφ(·, ·) and the noise variance σ2.
We learn these hyper-parameters by maximization of the log
marginal likelihood. As in the regression case, we can inte-
grate out φ analytically and obtain the marginal likelihood:

y|G,θ ∼ N (y|0,GKφφG
T + σ2I), (17)

where, for notational simplicity, we have omitted the implicit
dependency of Kφφ on the kernel hyper-parameters.

3.5 Computational Considerations
The flexibility of our approach comes at the expense of a high
computational cost in space and time. While computing the
inverse covariance matrix is expensive at O(N3), our frame-
work is more sensitive to the resolution of the output grid
because computing Kyy = GKφφG� + σ2I requires large
matrix multiplications at a cost of O(NM2 +MN2). In our
problem M � N because the output grid spans three dimen-
sions, while the observations span two dimensions on the sur-
face or one dimension along drillholes. This section outlines
an approximation of Kyy to reduce the cost of using a large
grid to O(M logM) and an additional O(N2) to populate the
elements of the covariance matrix from a lookup table.

Let K = GKφφGT be the noiseless version of Kyy .
Hence, the (i, j)th entry of K is given by:

Kij =
M�

a=1

M�

b=1

G(xi, za)κφ(za, zb)G(xj , zb), (18)

Where G(x, z) is the sensitivity at observation location x cor-
responding to the cell at location z as defined in Equation (5).
If we assume that the covariance function κφ(·, ·) is station-
ary, and the cell locations {z(i)}Mi=1 lie in a regular spatial
grid, the number of distinct entries in Kφφ is reduced from

O(M2) to O(M). Similarly, given that our sensitivity func-
tion G(x, z) is stationary, if we assume that our observation
locations {x(i)}Ni=1 are placed on a regular grid and lie above
the cell columns, the total number of distinct entries in G is
reduced from NM to M .

Therefore, Ki,j can be expressed using functions that op-
erate on the discrete displacements between observation loca-
tions and/or cell centers. Let G̃ and κ̃φ be the stationary func-
tions (that operate on discrete displacements) corresponding
to G and κφ respectively. Hence we have that:

Ki,j =
M�

a=1

M�

b=1

G̃(xi − za)κ̃φ(za − zb)G̃(xj − zb). (19)

In order to further improve the efficiency of our algorithm,
we introduce the following approximation. We sum over the
same template grid of sensor-cell displacements regardless of
each sensor’s position over the output grid. This means that
we can characterize Equation (19) by using only displace-
ment variables.

Let K̃(·) be the stationary function corresponding to K and
hx ∈ Hx denote the displacement between two observation
locations (x and x�). Similarly, let ha,hb ∈ Hz denote dis-
placements between an observation location (x) and a loca-
tion in the 3D volume of interest (z). Hx and Hz are sets of
displacements defined over three dimensions, although in our
problem setup the displacement between sensors has a height
component of zero. Hence we have that:

K̃(hx) =
�

hb∈Hz

G̃(hb)
�

ha∈Hz

G̃(ha)κ̃φ(hx + hb − ha),

(20)
where we note that the cardinality of the discrete displace-
ment sets Hx and Hz is not much greater than the number of
cells M . For example, if we consider a cube with M cells
as the volume of interest, the number of distinct discrete dis-
placements is |Hz| = 4M . We can now recognize that Equa-
tion (20) computes an element of a nested discrete convolu-
tion. We first convolve G̃ with κ̃φ and then convolve the out-
put of this operation with (a flipped version of) G̃. This pro-
cess is depicted in Figure 1, which shows the grids used for
a squared exponential covariance function, and a gravity sen-
sitivity model. Discrete convolution is applied to these grids
to compute a covariance-vs-sensor-displacement lookup ta-
ble (where we are only interested in the slice with no vertical
displacement).
K̃ is most efficiently computed using zero padded, dis-

crete frequency space convolutions based on the fast Fourier
transform.The convolution theorem states that the cost of this
approach is O(M logM) time, while the covariance matrix
over observations is populated by N2 table lookups.

The change in behavior introduced by our approximation
is is illustrated in Figure 2. We have assumed that the grid
around the sensors extends uniformly regardless of position
- which actually removes the edge effects from the covari-
ance matrix, causing the function to behave as if the integra-
tion had padding cells. The emergent difference between the
covariance functions is shown in the bottom row, where the
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Figure 1: Computation of an approximate covariance func-
tion using discrete convolutions (denoted with

�
). The

matrices K̃φφ and G̃ are evaluated over regular displace-
ment grids, and convolved to obtain a covariance-vs-sensor-
displacement lookup table K̃.

Figure 2: Top: The common dependence of two nearby sen-
sors using matrix multiplication (left) and a stationary dis-
placement template (right) is illustrated for observations near
the grid boundaries. Bottom: The corresponding covariance
matrices computed over a grid of sensors.

envelope induced from the finite grid is visible in the multipli-
cation case (left image) but not the convolution result (right).

4 Outline of Experiments
Our experiments focus on the 3D inversion problem for de-
termining the density contrast of rocks below the Earth’s sur-
face. This is crucial in many applications, including the char-
acterization of hot dry rocks up to 5km deep when explor-
ing geothermal energy targets (see e.g. Huenges and Ledru
[2010], Ch 2). However, gravity alone provides a very poor
depth resolution so it is necessary to fuse additional sources
of information into the inversion models in a principled way.

Our experiments investigate gravity inversion on both a
real dataset and a simulated scenario. On the simulated
dataset, we perform joint inversions with gravity and drill-
hole observations on a realistic geological structure and also

(a) (b)

Figure 3: (a) The density of the dipping body along with the
location of the two simulated drill-holes. (b) Simulated grav-
ity observations corresponding to the dipping body.

investigate the inclusion of magnetic susceptibility observa-
tions. On the real dataset, we study a region in the Cooper
Basin in South Australia, fusing ground-based gravity obser-
vations with drill-hole core samples that provide very sparse
direct observations of the density.

4.1 Simulated Data
The simulated structure is a dipping body, where a slab of
dense, magnetically susceptible material is present. It is in-
clined from the surface and has properties typical of igneous
rock that may have intruded into the crust. The geometry of
this scenario is shown in Figure 3a where the density of the
dipping body is shown, along with two simulated drill-holes
— one drill-hole passes through the body, while the nearer
one misses the body.

The background material in this volume has been assigned
the average density of the Earth’s crust (2.67g/cm3). The
dipping body was assigned a density of 2.9g/cm3 and a mag-
netic susceptibility of 2× 10−4 in SI (which is used in a later
scenario). A voxel grid of 50×50×25 cells was used. Grav-
ity observations (in milliGals) were forward simulated onto
an array of 50× 50 observations centered above each column
of voxel cells. These observations are computed as anomalies
(the difference between the gravity observed and the grav-
ity from a grid filled with the mean density of 2.67). IID
Gaussian noise with a standard deviation of 1% of the mean
anomaly observations was applied to these observations, pro-
ducing the observations shown in Figure 3b. Note that the
sensitivity of gravity readings drops off quickly with depth,
so the deep dipping body produces only a subtle smear-like
signature to the right of the body’s anomaly.

4.2 Real Dataset: Cooper Basin
The real dataset contains Bouger anomaly gravity measure-
ments and core-sample densities from the Cooper Basin for-
mation in South Australia. This data has been provided by the
South Australian Department of Manufacturing, Innovation,
Trade, Resources and Energy (DMITRE). The Cooper Basin
formation is comprised of a basin-shaped basement, over-
lain with multiple sedimentary layers. The basement rocks
are metamorphic, ranging from high grade gneisses to lower
grade schist, and contain numerous intruded granite bodies.
The large granite structures induce moderate to strong lows
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(a) (b)

Figure 4: Outputs of the Gaussian process inversion algo-
rithm using only gravity observations of the dipping body.

in the regional gravity datasets due to their relatively lower
densities. The sedimentary layers overlaying the basement,
particularly the Eromanga basin, contain significant hydro-
carbon accumulations, so significant drilling and geophysical
data collection has been conducted in the region.

Data Preparation
For the Cooper Basin data we used the Bouguer anomaly,
which accounts for the Earth’s total mass, variations in ra-
dius with latitude, the effect of elevation on the measurements
and the mass of the local topography such as mountains and
valleys. In addition, raw drill-hole information provided the
depth of samples and corresponding densities (drawn from
analysis of the target formation). The drill samples tend to
occur on the formation boundaries, although there are many
exceptions. To mitigate the influence of this clustering around
boundaries, density measurements over the extent of each tar-
get formation were averaged - averages over lines can be nat-
urally incorporated into the inversion algorithm.

5 Empirical Results and Analysis
This section presents empirical results of our inversion algo-
rithms on the simulated dataset (dipping body) and the real
dataset (Cooper basin).

5.1 Dipping Body
Gravity observations were inverted in isolation by applying
the GP inversion algorithm to learn the hyperparameters of
an anisotropic polynomial covariance function. Because the
accuracy of gravity surveys is well understood, appropriate
small noise variances were included in the model.

The inversion produced the mean shown in Figure 4a. The
GP formulation also provides uncertainty, which is shown in
Figure 4b. This inversion is ill posed; we cannot infer whether
a gravity signature corresponds to a large mass deep down, or
a small mass on the surface, so there is little inherent depth
resolution. The uncertainty in this case appears featureless
because of the uniform sampling pattern. The mean is more
interesting, as it shows the body extending down from the sur-
face, although the inclination of the body cannot be resolved.
Forward simulation of gravity observations on the predictive
mean confirms that this is indeed one of the infinite number
of valid solutions to the problem, selected through the prior
over density structure.

Fusing drill-hole measurements with the gravity observa-
tions can further constrain particular features, because the

(a) (b)

Figure 5: Outputs of the Gaussian process inversion algo-
rithm after fusing gravity and drill observations of the dipping
body.

Metric Gravity
Only

Gravity &
Drill Holes

UIQ 0.480 0.589
Corr. 0.538 0.620

(a)

Method RMSE
(g/cm3)

GP 1.06
UBC 2.06

(b)

Table 1: Quantitative evaluation of inversion results on the
dipping body. (a) UIQ index [Wang and Bovik, 2002] and
correlation between the predicted density and the true density
for GP inversion. (b) Mean square error of GP vs UBC.

drill samples the density directly at specific locations. In our
scenario one of the simulated drill-holes passes through the
body. Using the multi-task model, updated mean and variance
volumes are obtained: Figure 5a and Figure 5b. The problem
remains ill posed, but (as the variance shows), the model is
now confident at depth where drill observations are provided,
adding two columns of low-variance. The drill-holes can only
improve the model in the vicinity where they are correlated to
the volume, so the overall quantitative improvement in pre-
diction quality is relatively weak. In the regions the model is
most incorrect, it is also assigning a high variance.

By comparing the side-profiles of the reconstructed body
with the gravity only case and the synthetic truth, there is a
valuable qualitative difference — the incline of the body is
resolved. These side-profiles are compared in Figure 6. Table
1 shows a quantitative evaluation of our GP inversion method
(a) having additional drill-hole data and (b) compared to the
UBC solution.

5.2 Fusing Magnetic Observations
Magnetic field measurements on the Earth’s surface vary sig-
nificantly with respect to location, and are weakly influenced
by induced magnetism from dense, iron-rich minerals below
the surface. While drill-holes and gravity provide indirect
measurements of a common attribute (density), additional ob-
servations of Total Magnetic Anomaly (TMA) (which is the
anomaly of the Earth’s magnetic field magnitude) can only be
fused with gravity and drill-holes if a relationship can be cap-
tured between the physical attributes of magnetic susceptibil-
ity and density. The current GP model was extended to fuse
TMA by learning a simple covariance relationship between
these attributes, producing a multi-sensor multi-task covari-
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Figure 6: Side-profiles of the dipping body in the mean pre-
dictive density before (left) and after (middle) fusing infor-
mation from the drill-holes. (right) Ground truth.

(a) (b)

Figure 7: Simulated magnetic data along with gravity and
drill-hole data. (a) Forward magnetism simulation for the
dipping body (no drill-holes were simulated; glyphs indicate
magnetic field direction). (b) Incomplete gravity coverage
was simulated over the dipping body, with two full drillholes.

ance model consistent with the physical sensors.
The benefit of fusion is most clearly seen when the cov-

erage pattern differs between sensors. The dipping body has
been assigned a positive susceptibility, and gravity observa-
tions were simulated over only half of the test region, accom-
panied by drill-holes (Fig. 7b). TMA was available over the
full region, but without any direct measurements of suscep-
tibility. The magnetic anomaly observations were forward
simulated above ground level for the Earth field vector at the
Cooper Basin’s location, yielding the observations in Fig. 7a.

The inversions were initially run independently, leading
to poor predictions of both density and susceptibility from
lack of information. By then allowing the GP to model a
stochastic coupling between the density and susceptibility,
the joint inversion was able to use complementary informa-
tion from each dataset. This has led to inversion results that
closely resemble the full coverage inversions. In addition,
the predictive variance assigns maximum confidence to loca-
tions where all sensor modalities were available together. The
fused density (Fig. 8a and Fig. 8b) and susceptibility (Fig. 9a
and Fig. 9b) are provided for this case.

5.3 Cooper Basin Inversion
The inversion algorithm was applied to the real Cooper Basin
data to obtain the two predictive means shown in Figure 11.
The location of this data is shown in Figure 10 (left) marked
as a black rectangle, along with the processed observations
(center) that show the incomplete and irregular gravity cover-
age available. The figure on the right shows the gravity mea-
surements forward simulated from the GP predictive mean,
which are both consistent with the observations and provide

(a) Fused density mean

(b) Fused density variance

Figure 8: Joint inversion results for density with fusion model
that includes gravity and magnetic data of the dipping body.

Inversion method RMSE (g/cm3)
Gaussian process inversion 0.029
UBC inversion 0.073

Table 2: Cross-validation Errors for our GP inversion method
and UBC codes on the Cooper Basin dataset.

a plausible spatial interpolation between the observations.
The results of the inversion are presented in Figure 11 with

gravity only and with drill-hole data in the same region. It
appears that the features in the predictive mean are geolog-
ically reasonable and can be compared against existing geo-
logical knowledge of the area. For example, the low density
zone in blue in Figure 11 is likely to be controlled by a com-
bination of the base of the trough depo-centers described in
Section 4.2 and the low density granitic material that intrudes
the basement and deeper basin sediments. The NE strike of
the northern margin of this anomaly is consistent with dom-
inant NE structural trend in the region and the strike of the
faults that are likely to bound the basement highs. The higher
density anomalies that have been resolved at deeper levels
visible in Fig. 11 (right) are likely to relate to basement rocks
between intrusive bodies although this needs to be tested fur-
ther against other available datasets and interpretations.

Furthermore, while the ground truth density in the Cooper
Basin is not known, it is possible to obtain limited quantita-
tive results by cross-validating on the drill-holes (Table 2).
Crustal rock densities are close to 2.67g/cm3, so the er-
ror standard deviation is approximately 1% and 3% for our
method and the UBC result respectively. Cross-validation
was conducted using the GP inference algorithm, and as a
point of comparison the UBC software was run on the same
data. The results in this case suggest that our approach out-
performs our UBC setup. See section 6 below for a general
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(a) Fused susceptibility mean

(b) Fused susceptibility variance

Figure 9: Joint inversion results for susceptibility with fusion
model that includes gravity and magnetic data of the dipping
body.

comparison between these techniques.

6 Relation between UBC and GP inversions
Both UBC inversion and GP inversion can be framed into
a single Gaussian prior - Gaussian likelihood model. The
UBC solution is the mode of the posterior (MAP), which
can be obtained by minimizing the unnormalized negative log
posterior. However, UBC considers the geophysical param-
eters, e.g. densities, uncorrelated (a priori) and in the best
case having different but fixed variances (which depend on
depth). Such variances are set beforehand in order to achieve
a weighting effect that compensates the decay of the sensor
sensitivity with respect to the depth. GP inversion, on the
other hand, allows these parameters to be correlated. These
correlations are learned from the data through maximization
of the marginal likelihood (i.e. hyper-parameter learning).

7 Discussion
This project has applied Bayesian machine learning methods
to the problem of joint geophysical inversions. Our approach
allows for an assessment of uncertainty associated with inver-
sions of geophysical datasets, enabling the geophysicists and
geologists who will use the results in decision-making work-
flows to robustly assess the likelihood of predictions being ac-
curate throughout the model volume. In the longer term this
will allow interpretation workflows to include a quantifiable
assessment of uncertainty, something geophysical surveyors
as a community are only just beginning to tackle.

In future work we will investigate low-rank approxima-
tions to Kyy to address the cost of GP inference once the co-
variance matrix has been computed (see e.g. Quiñonero Can-
dela and Rasmussen [2005] for an overview). We will also

Figure 10: Satellite view of Australia with the Cooper Basin
region of interest highlighted by the blue bounding box (be-
low). The measured gravity anomalies (middle) and the pre-
dicted gravity anomalies (right) correspond to this blue box.

Figure 11: The predictive mean outputs of the Gaussian pro-
cess inversion algorithm on the Cooper Basin data. Gravity
only (left) and gravity with drill-holes (right).

investigate likelihood approximations that exploit the struc-
ture of spatial problems, such as those presented in Stein et al.
[2004]. Given that the inversion problem is ill posed, it is crit-
ical to form priors that capture the knowledge of geologists
about the plausible structure of rocks. Their prior knowledge
is also critical for characterizing non-linear dependencies be-
tween different rock properties, which are poorly constrained
by geophysical data alone.

Acknowledgements
The authors gratefully acknowledge funding for the project
“Data Fusion and Machine Learning for Geothermal Target
Exploration and Characterization” by the Australian Renew-
able Energy Agency (ARENA) and National ICT Australia
(NICTA). NICTA is funded by the Australian Government as
represented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

2883



References
Edwin V. Bonilla, Kian Ming A. Chai, and Christopher K. I.

Williams. Multi-task Gaussian process prediction. In Ad-
vances in Neural Information Processing Systems 20. MIT
Press, 2008.
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