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Abstract
Water pipe failures can not only have a great im-
pact on people’s daily life but also cause significant
waste of water which is an essential and precious
resource to human beings. As a result, preventative
maintenance for water pipes, particularly in urban-
scale networks, is of great importance for a sustain-
able society. To achieve effective replacement and
rehabilitation, failure prediction aims to proactively
find those ‘most-likely-to-fail’ pipes becomes vital
and has been attracting more attention from both
academia and industry, especially from the civil
engineering field. This paper presents an already-
deployed industrial computational system for pipe
failure prediction. As an alternative to risk ma-
trix methods often depending on ad-hoc domain
heuristics, learning based methods are adopted us-
ing the attributes with respect to physical, envi-
ronmental, operational conditions and etc. Further
challenge arises in practice when lacking of profile
attributes. A dive into the failure records shows that
the failure event sequences typically exhibit tem-
poral clustering patterns, which motivates us to use
the stochastic process to tackle the failure predic-
tion task. Specifically, the failure sequence is for-
mulated as a self-exciting stochastic process which
is, to our best knowledge, a novel formulation for
pipe failure prediction. And we show that it out-
performs a baseline assuming the failure risk grows
linearly with aging. Broad new problems and re-
search points for the machine learning community
are also introduced for future work.

1 Introduction
Clean water, distributed through a complex and growing net-
work of water pipes, is essential for people’s daily life. In
fact, the large-scale urban water pipe networks are in fast
growth to meet the increasing demand arising from the fast
developing urban areas. However, the structural deterioration
has presented great challenges to worldwide water utilities,
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posing a critical threat to not only the daily life but also a
sustainable society since water is an essential and precious
resource of human beings. For example, it is estimated that
more than $32 billion cubic meters of treated water physically
leak annually through distributed network worldwide [King-
dom et al., 2006]. And the corresponding total annual cost is
around $ 14 billion [Kingdom et al., 2006]. As reported in
[Carter and Rush, 2012], the New York City has spent $54.6
million to manage its break pipes from 1997 to 2011. As
few municipalities can afford to systematically inspect all of
their pipes in their water network due to scale of the water
network and the difficulty of inspections — most pipes are
laid underground, the task of proactively pinpointing those
‘most-likely-to-fail’ pipes, which enables cost-effective re-
placement and rehabilitant, becomes an important problem
for a sustainable society.

Formally, given 1) a prediction time point or window, 2)
the pipe-specific failure sequence and 3) the associated at-
tributes, one aims to predict the failure likelihood on a single
pipe-wise level. It leads to a binary supervised learning prob-
lem if the failed pipes are regarded as positive samples and
non-failure ones negative; and if one further considers the fact
that negative samples are censored, survival analysis models
are assumed to better capture this subtle difference of the cen-
sored data from other type data during learning. This paper
further formulates the problem into a stochastic process.

The pipe failure problem has been an issue of concerning
for municipal engineers since the early studies [Arnold, 1960;
Clark, 1960; Niemeyer, 1960; Remus, 1960]. Traditionally,
subject matter experts (SME) devise certain business rules to
decide which pipes are risky and should receive top fixing
priority. While such an intensive domain knowledge driven
methodology usually involves ad-hoc rule definition and is
not conveniently scalable when new attributes arrive. Ex-
isting pipe integrity management methodologies mostly fo-
cus on oil and gas, and many risk factor framework have
been proposed in these areas such as the report from the
Pipeline Research Council International and the manual by
[Muhlbauer, 2004], where 9 categories are classified in the
former and 4 in the latter. Compared with oil/gas transmis-
sion pipelines, urban water distribution network usually has
less data available in fine-granularity. A practical way is to
categorize the factors into physical indicators, load, corro-
sion, weather and historical failure record.
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Another research line adopts the methodologies from
statistic field to analyze the failure problem. One can re-
fer to [Kleiner and Rajani, 2001] for an early review. Many
early work focus on descriptive analysis towards pipe fail-
ures. [Shamir and Howard, 1979] calculate the average num-
ber of failures on a unit year and unit pipe length. And the
spatial and temporal patterns of water distribution pipe fail-
ure in the City of Winnipeg are examined in [Goulter and
Kazem, 1998]. On the other hand, predictive modeling is also
investigated. [Kleiner and Rajani, 1999] addresses the prob-
lem of forecasting the aggregated number of pipe failures for
the network, which is key to beforehand planing. [Pelletier
et al., 2003] performs survival analysis to predict the evolu-
tion of the annual number of pipe breaks and to estimate the
impact of different replacement scenarios in real case studies.
[Tian et al., 2011] uses Cox survival analysis as a pilot study
for pipe failure prediction. In a recent work, a rank boost-
ing algorithm is adopted by [Wang et al., 2013] to rank the
pipe break risks. However, to our best knowledge, no previ-
ous work has presented an already-deployed system and be-
ing continuously generating the environmental and business
benefits to the concerned metropolitan. Moreover, from the
machine learning perspective, we originally propose to for-
mulate the pipe failure events into a self-exciting stochastic
process model.

The main contributions of this paper are in five folds:
1) We implement a web based ’environmental computing‘

system addressing the real-world large scale urban pipe net-
work maintenance supporting system, and it has been de-
ployed in a real commercial environment, generating contin-
uous impacts and benefits for a better sustainable society;

2) We evaluate the system’s prediction performances quan-
titatively against the traditional subject matter expert driven
risk matrix method on the real-world large scale dataset. And
our study further discovers some specific limitations of the
risk matrix method, and verify the viability of data-driven ap-
proach towards pipe analysis;

3) Attributes closely relevant to failure are identified by
computational modeling, leading the agencies to better un-
derstand the root cause of pipe failure, which in turn improves
and streamlines the pipe construction and maintenance;

4) Perhaps more interestingly, the temporal clustering pat-
terns of failure time stamps are unveiled and mathematically
modeled by a self-exciting stochastic model, which outper-
forms a linear aging baseline. And it can work flexibly in the
absence of enough attribute information; while this is often
the case in practice. We are not aware of any prior work for-
mulating the self-exciting point process for pipe failure pre-
diction problem, nor even for asset management literatures;

5) Our novel formulation for the pipe failure prediction
identifies the new problems for the machine learning com-
munity beyond conventional classifiers, leaving a broad room
to boost the performance based on the this seminal work.

2 System overview
In this section, we first describe the system’s main use cases,
and then the studied dataset as well as the modules that com-
prise the J2EE web system are briefed. There are mainly three

scenarios for the system, as summarized: 1) Help operator
find the ‘likely-to-fail’ pipes; 2) Help decision maker allocate
the maintenance budget; 3) Help agency reveal important fac-
tors leading to failure.

2.1 Dataset description
The used dataset is a real-world urban network from one
costal metropolis, which consists of over 600,000 pipes in
fresh water system and nearly 100,000 for salt. Most of the
pipes are laid after 1950 and the average age is over ten years.
For most samples, there is a number of profile attributes asso-
ciated with each pipe. Basically, the attributes can be cat-
egorized into pipe physical indicators, load, corrosion and
weather etc. In addition, as time goes by, the pipe failure
event will be processed and recorded by the agency on a rou-
tinely basis. As a result, each pipe is assumed to be associated
with profiling attributes and the failure records.

However, still a portion of pipes whose attributes are
recorded incompletely, or not well documented, resulting in
only knowing their failure records and the year when they are
laid. This fact calls for new formulation beyond the off-the-
shelf supervised learning methods.

2.2 Functional modules
The presented system is mainly comprised of four modules:
a) data cleansing; b) pattern display; c) model training; d)
risk prediction. It is also equipped with a GIS component to
highlight the high-risky pipes on the map, and allows the user
to directly manipulate the pipes from this interface instead of
using a table-style list. An overview is shown in Fig.1.

Data preprocessing: The raw data are from two datasets:
a) ‘profile’ dataset: pipe-specific profile attribute informa-
tion, such as material type, length, completion year, location
etc; and b) ‘working order’ dataset: historical pipe failure
records, location and the completion year. In order to repop-
ulate the failure information, the correspondence matching
between the two datasets is performed. Specifically, the ‘pipe
id’ serves as the foreign key for joining, and in the cases when
the ’pipe id’ is missing in one dataset, location is used to find
the most likely pipe in the other.

Pattern display: To give a visual perception, the cleansed
data is plot regarding with various aspects including water
type (fresh or salt), district, material, diameter range, and
length range etc. Different visualization chart is adopted such
as histogram, bar, and bubble to plot certain distributions.

Model training: Learning based classifier and stochastic
process model, together with risk matrix approach are evalu-
ated and integrated in the system for pipe failure prediction.

Risk prediction: Prediction results are displayed and can
be exported in different formats including shapefile, office
xlsx, and csv file for further processing and supports the de-
cision making. Meanwhile, pipes scored with different risk
levels can be highlighted as the hot spots in the map.

3 Methodology
3.1 Attribute selection
Examination of the attributes associated with the pipes will
help to identify those factors that appear most susceptible to
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(a) Data preprocessing (b) Pattern display

(c) Model training (d) Risk prediction

Figure 1: System modules demonstration.

failure. Once these attributes have been identified, hopefully
it will lead to a means of reducing the failure rate in the fu-
ture by improving the key conditions if feasible. Through
a model variable correlation analysis and feature importance
qualifying, we summarize the final selected attributes feeding
to the computational model in Table 1. One should note that
the importance ranking is based on the available pipe profile
information under a supervised learning fashion, which may
not be perfectly precise because some of the raw data are dif-
ficult to collect or estimate especially for the external factors
like rainfall, highway impact etc. Some other relevant fac-
tors are excluded for certain reasons: e.g. ‘bury depth’ is ex-
cluded due to its strong correlation with ‘zoneImp’ and ‘joint
number’ is strongly correlated to ‘length’. ‘Pressure’ is also
excluded due to unacceptable amount of missing values.

Table 1: Pipe-specific attributes considered in the system.

factor description

1 Material material type, such as PE, GI, GIL etc.
2 Length pipe length
3 Diameter pipe diameter
4 Age time since the completion date
5 ZoneImp supply zone impact, categorical
6 Rainfall nearby average rainfall volume
7 WCNo water crossing number
8 HighImp nearby highway impact, categorical
9 Excavate road excavation impact, numerical

3.2 Binary classifiers using attribute information
The system is equipped with several predictive models and
also allows easy extension for integrating more new mod-
els. Cox Model [Cox, 1972] (together with a new survival
analysis algorithm: Multi-Task Logistic Regression (MTLR)
[Yu and Baracos, 2011]), Artificial Neural Network (ANN),

Logistic Regression (LGR) and Chaid Tree are available in
the system which explore the massive labeled training data.
However, there are still some limitations: From the practi-
cal perspective, one problem is for some pipes, especially for
those constructed before 1970, of which the associated at-
tribute information is largely incomplete, inconsistent, or un-
reliable. And collecting the relevant attributes information is
often costive and difficult, such as estimating the water tur-
bidity, the rainfall, and the soil type etc.; the other subtle but
worth-noting issue is one cannot guarantee the current system
has identified exhaustively all factors with respect to pipe fail-
ure, and sometimes training based on incomplete covariants
may be misleading. From the theoretical perspective, con-
ventional binary classifiers like ANN, Logistic Regression or
Chaid tree cannot naturally explore and model the particu-
lar property for ‘censored’ samples compared with the Cox
model and the MTLR models [Yu and Baracos, 2011] etc.

As the prediction score obtained from classifiers such as
ANN, Chaid Tree is not a posterior likelihood, it makes
the risk measurements from fresh and salt systems are in-
comparable since in many cases the system user customizes
and uses different models for different systems. To ad-
dress this issue, the parametric Sigmoid model [Platt, 1999;
Lin et al., 2007] is used in the system to calibrate the failure
likelihood on an equal footing for cross-system risk ranking.
Another advantage is knowing the likelihood naturally leads
to the obtain of the failure number expectation for the next
year. And it is informative for the decision maker to better
determine and allocate the budget in advance.

3.3 Modeling temporally clustered failures using
one-dimensional self-exciting process

Apart from the attribute-complete samples, there are still a
few, whose attributes are missing in both fresh and salt sys-
tems. For these pipes, the above classifiers cannot be trained
as no attribute data is available. On the other hand, it is ap-
pealing to suppose pipes are prone to leak repeatedly shortly
after a recent failure event (even the previous failure has been
fixed up) either inherently due to the damage brought by the
previous failures, or externally lasting external impacts, such
as road excavation. In another word, we conjecture the be-
hind mechanism is not only due to events triggering the next
in the causal sense, but also the clustering reflects the corre-
lation of event occurrence due to unobserved variables such
as geological factors and urban activities. Our inspection to
the failure records verifies this idea and some examples are
shown in Fig.2. In addition, such temporal clustering pat-
terns are also observed and discussed in the previous litera-
ture [Goulter and Kazem, 1998], in the context of civil en-
gineering study. And their empirical study further shows the
temporal decay rate obeys an exponential distribution since
the occurrence time instance. As a result, we are motivated to
quantitatively model the failure behavior from the temporal
perspective, by leveraging the historical event samples.

A series of investigations to pipe failure in New York and
Philadelphia [O’Day, 1982; Ciottoni, 1983] conclude that age
is not an influential factor, and our empirical study also sug-
gests a simple assumption: the background rate of failure rate
is relatively time-stationary as shown in Fig.5 for failure age
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distribution. Based on these assumptions, we formulate the
time-stationary and temporal-clustered failures into a compu-
tationally efficient (with some mathematical approximation)
self-exciting stochastic process.

Formally, given a sequence of failure events with time
stamp t1, t2, ..., tn, we investigate a specific class of point
processes termed as Hawkes Process [Hawkes, 1971], com-
monly used in earthquake analysis [Ogata, 1988; 1998], and
recently used in the criminological literature [Johnson, 2008],
which is modeled by a conditional intensity function:

λ = μ+ α
∑
tk<t

g(t− tk).

In line with the observation made by [Goulter and Kazem,
1998], an exponential kernel is used:

λ = μ+ αw
∑
tk<t

e−w(t−tk).

where μ is the background rate controlling the intrinsic fail-
ure event influence time window, and α is the amplitude of
the influence, while w−1 bears the physical implication for
the average waiting time until a new failure comes. And ac-
cording to [Rubin, 1972], the likelihood is given by:

L =
n∏

i=1

λ(ti)exp{−
∫ T

0

λ(s)ds}.

To solve this problem, maximum likelihood estimation is per-
formed in an Expectation-Maximization fashion to infer the
model’s parameters. While [Lewis et al., 2011] address the
kernel form self-exciting terms specifically, here we begin the
derivation in the context of general Hawkes process where
g(x) is not specified. Let t0 = 0 and tn+1 = T , first one can
obtain the log likelihood function in the form:

log L(μ, α|t1, t2, ..., tn)

=

n∑
i=1

log λ(ti)−
∫ T

0

λ(t)dt

=
n∑

i=1

log λ(ti)−
∫ T

0

(μ+ α
∑
tj<t

g(t− tj)dt)

=
n∑

i=1

log λ(ti)−
⎧⎨
⎩μT +

n∑
i=0

∫ ti+1

ti

α
∑
tj<t

g(t− tj)dt)

⎫⎬
⎭

=
n∑

i=1

log λ(ti)−
{
μT +

n∑
i=0

i∑
j=1

α(G(ti+1 − tj)−G(ti − tj))

}

=
n∑

i=1

log λ(ti)−
{
μT +

n∑
j=1

n∑
i=j

α(G(ti+1 − tj)−G(ti − tj))

}

=
n∑

i=1

log λ(ti)−
{
μT +

n∑
j=1

α(G(T − tj)−G(0))

}
.

Observing log function is concave and G(0)=0, one can fur-

Figure 2: Illustration of the temporal cluster pattern of fail-
ures (the dates correspond to the failure time stamp; top two
lines are pipes from fresh system, the bottom from salt).

ther derive the lower bound for the objective function:

log L(μ, α|t1, t2, ..., tn)

=
n∑

i=1

log

{
μ+

i−1∑
j=1

g(ti − tj)

}
−

{
μT +

n∑
j=1

αG(T − tj)

}

≥
n∑

i=1

{
piilog

μ

pii
+

i−1∑
j=1

pij log
g(ti − tj)

pij

}
− μT −

n∑
j=1

αG(T − tj).

where in the E-step:

pk+1
ij =

αkg(ti − tj)

μk +
∑i−1

j=1 αg(ti − tj)
, j = 1, ..., i− 1.

pk+1
ii =

μk

μk +
∑i−1

j=1 αg(ti − tj)
.

Note that the above choices of pij and pii make the above

lower bound tight when μ = μk and α = αk, which ensures
that log-likelihood increases monotonically during the itera-
tions. And in the M-step, the partial derivatives in terms of
the objective function are given as:

∂L
∂μ

=
n∑

i=1

pii
μ

− T = 0.

∂L
∂α

=
∑
i>j

pij
α

−
n∑

j=1

G(T − tj) = 0.

Thus the updating μ and α in the kth iteration are:

μk+1 =
1

N

n∑
i=1

pkii, αk+1 =

∑
i>j p

k
ij∑n

j=1 G(T − tj)
.

Particularly, given an exponential kernel as g(t − tj) =

we−w(t−tj), we use the approximation e−w(T−ti) ≈ 0 when
wT � 1 as suggested in [Lewis et al., 2011] which shows
the scale parameter w and α can be obtained by:

wk+1 =

∑
i>j p

k
ij∑

i>j(ti − tj)pkij
, αk+1 =

1

n

∑
i>j

pkij

4 Experimental results
4.1 Results on attribute-complete data
The area under the Receiver Operating Characteristic (ROC)
curve [Fawcett, 2006], aka. the Area Under Curve (AUC), is
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used to assess the predictive models in this paper. ROC has
become a standard metric in the area[Provost et al., 1997].
We evaluate the performance of all testing methods regardng
with overall performance as the prediction year varies from
2001 to 2011. Table 2 gives a rough statistics about the well
recorded failure counts along the years. Also, the risk ma-
trix method is quantitatively compared. Risk matrix method
is popular for pipe integrity management. The main idea is to
assign score to each pipe by considering the impact of the risk
factors: 1) material; 2) age; 3) failure record; and 4) surround-
ing condition. For the samples with comeplete attributes, we
evaluate three classifiers and two survival analysis models be-
cause we are interested in verifying whether the survial anal-
ysis models that are able to inherently handle censored data
would outperform the other type data based approaches. For
all tests, cross-validation is performed and the final AUC is
obtained by averaging the hold-out testing results. In partic-
ular, for samples of fresh system, the cross-fold is set to ten;
while for salt, cross-fold is five due to its smaller size.

Table 2: Recorded failure/total number of pipes (proportion).

Year Fresh Salt

2001 1081/146354(0.74) 489/37707(1.30)
2002 1032/163268(0.63) 501/42079(1.19)
2003 1178/183738(0.64) 589/46025(1.28)
2004 1121/208749(0.54) 526/50757(1.04)
2005 1749/235055(0.74) 626/55991(1.12)
2006 1319/259045(0.51) 486/60742(0.80)
2007 2941/283275(1.04) 675/64314(1.05)
2008 3413/298863(1.14) 704/68320(1.03)
2009 2557/326125(0.78) 721/74812(0.96)
2010 2537/370247(0.69) 655/82581(0.79)
2011 2687/405416(0.66) 696/87279(0.80)

Table 3: Mean AUC and percentage of true failures covered
by the top 2% of the prediction ranking list. Prediction year
= 2011, hold-out fold = 10 for fresh system, and 5 for salt.

Chiad ANN LGR COX MTLR

AUC-fresh 0.853 0.836 0.846 0.822 0.835
Cover-fresh 23.1% 22.8% 22.7% 21.8% 22.0%

AUC-salt 0.840 0.840 0.838 0.825 0.829
Cover-salt 21.3% 21.3% 21.2% 20.5% 20.8%

4.2 Results on attributes-missing dataset using
Hawkes Process model

We are interested in estimating the self-exciting term in the
Hawkes process model thus those with zero failure record
are excluded due to they can only influence the unconditional
background failure rate μ. Thus basically we will select the
pipes that has failed for at least once. As a case study, we col-
lect 676 pipes whose attributes are missing/incomplete or in
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Figure 3: Model sensitivity test on attribute-complete sam-
ples across year 2001 to 2011. The auc measure for risk ma-
trix method is on the right side, others on the left.

(a) Fresh: all materials (b) Salt: all materials

(c) Fresh: exclude GI & GIL (d) Salt: exclude GI & GIL

Figure 4: Evaluation between data-driven and knowledge-
based risk matrix methods using attribute-complete samples;
prediction year = 2011. The diagonal in red is baseline.

low quality for fresh system, and 200 for salt. The completion
date of these pipes are known1.

We use a concrete example to illustrate the experiment de-
sign: given a pipe with failures at: t1, t2, ..., tn, the first n-1
events are used as the training samples, and we have many
samples for training the same model; while the last event at tn
is used to build the reference ground truth for model testing.
Specifically, the pipe is regarded as a positive testing sample
if its last failure so far falls within a certain period after the
failure at tn−1, i.e. tn ∈ (tn−1, tn−1 + T ]. A practical T is

1In fact, as shown in the EM training algorithm derivation for
the time-stationary Hawkes Process model, the model does not sen-
sitively rely on the observation window T . Thus a rough estimation
of T is enough. And for those pipes of which the completion date is
unknown, the model is also workable as long as the failure records
are complete and accurate, while this is often the case because the
pipe failure will receive immediate processing and recording.
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Figure 5: Left: failure rate fitting using the learned model
on the first and the third pipe as exemplified in Fig.2 and the
pipe age distribution of the first failure event on the attribute-
missing samples; Right: Hawkes model learning convergence
behavior. One shall be conscious for the first failure pipe age
distribution, the decrease after 18000 days is probably due to
the fact observation window is always censored. The aver-
age age of the sampled pipes in the plot is 12175 days and
the standard deviation is 5706.9 days. It suggests our time-
stationary assumption is not violated to a large extent.

set to a half year in our test. The prediction score for each
pipe is calculated by the failure rate integral within the pe-

riod:
∫ tn−1+T

tn−1
λ(t)dt where the parameters are learned using

the training samples. Based on this protocol, we train and test
the Hawkes models for fresh and salt systems respectively.
The ROC are presented in Table 4. And the iterative model
parameter convergence and the fitting examples are plot in
Fig.5. Note the linear aging model is compared as a baseline
where the failure rate is modeled as λ = Constant× age.

Table 4: ROC evaluation on attribute-missing samples.

fresh system salt system

Hawkes self-exciting 0.676 0.612
Linear aging baseline 0.487 0.536

4.3 Discussion
Some observations are made as listed in the following:

Risk matrix method is prone to focuses on the most pre-
dominant aspects and deteriorate largely on a subtle clas-
sification boundary: As observed from Fig.3, all data-driven
methods are consistently superior than the empiric-driven risk
matrix approach for any given prediction year. And Fig.4
gives a more subtle example: by excluding the samples with
material type ‘GI’ or ‘GIL’2, the performances deteriorates
severely with respect to both salt and fresh systems. This is
reasonable considering these two types are relatively vulner-
able than other types. Once such samples are excluded, the
risk matrix method become weaker because the classifying
boundary is probably a nonlinear combination of attributes.

2GI: Galvanized Iron; GIL: Lined Galvanized Iron

Our results are in line with [Cox, 2008] discussing about lim-
itations of the risk matrix approach.

Binary classifiers, which do not consider the labels in the
training set are from censored observation, achieve compa-
rable performance on the censored data: [Yu and Baracos,
2011] point out that the binary classifier cannot fully cap-
ture the characters of the censored data. While in our testing,
we found both the classical Cox model and the state-of-the-
art MTLR show no significant superiority against the binary
classifiers. In our analysis, this may be due to on one hand,
the implicit nonlinear feature transformation as performed by
ANN, Chaid can boost the performance; on the other hand,
the labeling noise or unobserved labels brought by the cen-
sored observation can be addressed by the classifiers to some
extent. Considering [Yu and Baracos, 2011]’s heavier train-
ing overload, in our application, the Chaid tree and Logistic
Regression are recommended for their interpretability and ef-
ficiency especially when the training data grows fast and more
attributes arrive incurring the high-dimensionality issue.

Formulating the failure event sequence into a self-exciting
stochastic process model is beneficial against a simple lin-
early aging baseline or random guess: We also observe that
the self-exciting Hawkes Process model achieves an accept-
able result, and the temporal cluster grouping is visually
demonstrated in our plot. Perhaps more importantly, our
method gives a rigorous description about the particular tem-
poral patterns of pipe failures, and we believe this methodol-
ogy will also apply to many other asset management scenar-
ios.

5 Conclusion and future work

An already-deployed pipe failure prediction system was de-
tailed. We show that binary classifiers are comparable to
the ‘censored’ survival analysis models and the imbalanced
dataset is not a big issue from our empirical study. More-
over, we propose another way of looking at the pipe failures
by formulating it as a self-exciting stochastic process, where
the attributes are not a must as in other models.

This work opens up a new space for the machine learn-
ing community to address the pipe failure prediction problem
and asset management applications, which is different from
conventional learning paradigms and worth future studies: 1)
Spatial-temporal modeling is appealing since the pipe fail-
ures exhibit somewhat spatial grouping as pointed by [Goul-
ter and Kazem, 1998]; 2) this paper tackles the different types
of failure indiscriminately since the failure type information
is currently unavailable, while taking the type into account
will lead to a multivariate point Hawkes process worth fur-
ther investigation; 3) the possible underlying failure correla-
tion among the nearby pipes can also be modeled by a multi-
dimensional Hawkes process; 4) it is challenging but inter-
esting to explore if one can repopulate the missing-attributes
from the temporal patterns of failures, one relevant work is
[Stomakhin et al., 2011]. It is also appealing to study if the
graph matching method [Tian et al., 2012] can be applied to
model the topological pattern of pipe networks, which is as-
sumed to have the connection with pipe failures.
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