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1 Introduction
In multiagent systems (MAS) the outcome of the actions of an
agent usually depends on the actions of other agents, which
may have conflicting goals. Moreover, since the other agents
may be unknown and may not be benevolent, an agent gener-
ally cannot assume the other agents would be willing to help
without getting anything in return. If each agent would sim-
ply take those actions that are individually best, the result will
often be sub-optimal for each of them, like in the well known
prisoner’s dilemma. Therefore, agents in a MAS need to ne-
gotiate on what actions each will take.

Maximizing a utility function for a set of independent
agents is also the goal of Distributed Constraint Optimiza-
tion Problems (DCOP), but these problems are fundamentally
different from negotiation problems, since DCOPs assume
there is one global function to be optimized and the agents
co-operate in order to find a good solution. In cases where
the agents have their own private utility function, are selfish,
and are unknown, one cannot apply a DCOP algorithm.

One could suggest to apply an optimization algorithm to
find the solution for which the the sum of the individual utility
functions is maximized. However, since agents are selfish and
autonomous, there is no guarantee that all agents will agree
with such a solution, as a strict subset of the agents may come
to a solution in which each agent achieves higher utility than
it would obtain from the socially optimal solution. Moreover,
agents may disagree on what is the most fair solution.

Most existing negotiation algorithms assume simple sce-
narios where the utility of each agent is modeled as a linear
function that is easy to calculate. They mostly work only
for bilateral negotiations [Lai et al., 2008] and assume the
range of options is small, or they require the presence of a
trusted, impartial mediator [Klein et al., 2003]. They assume
that for any given utility value it is always possible to find
a proposal that indeed yields this utility value [Faratin et al.,
2000]. These assumptions are rarely satisfied in real-world
situations. In this thesis we focus on complex problems and
address a number of realistic assumptions that make the ap-
plication of existing negotiation algorithms unfeasible:

• The space of solutions is huge.
• Utility is non-linear and difficult to calculate.
• The environment is only partially observable.
• The environment changes due to actions of others.

• Decisions have to be made within a limited time frame.

• Solutions may involve many agents, possibly human.

Many difficult problems belong to this class, e.g: school time
table construction [Willemen, 2002], route scheduling for
package delivery companies [MJC2, 2011], automated stock
trading, or the online purchase of holiday packages.

We introduce a new family of negotiation algorithms
named Negotiation Based Branch & Bound(NB3) that apply
a Branch & Bound search tree to search for solutions that
can be proposed to the other agents. We test it on two test
cases: the Negotiating Salesmen Problem and the strategic
board game Diplomacy. The first is a new, artificial problem
that adds negotiation to the well known Traveling Salesman
Problem. The second is an existing strategy game, normally
played by humans, in which negotiation skills are essential.

2 The NB3 Algorithm
In order to solve the problem of negotiating in complex en-
vironments, we propose to use a Branch & Bound search al-
gorithm to explore the space of possible agreements, and find
those that may be good enough to propose to other agents. An
agent in the MAS may run this algorithm to negotiate with the
other agents. Since the MAS is assumed to be heterogeneous,
the algorithm does not assume anything about the algorithms
that the other agents are running. They may also be running
NB3, or any other negotiation algorithm, or they may even be
humans.

We assume that each agent has a set of possible actions it
can execute, and a joint plan is defined as a set of actions of
several agents. The search space is the space of all such joint
plans. The execution of a joint plan yields a certain amount
of utility for each agent. Therefore, each agent has its own
utility function over the space of joint plans and each agent
aims to maximize its own utility function. The higher the
utility a certain plan yields to an agent α, the more likely it is
that α will agree with the execution of that plan.

An agent that runs the NB3 algorithm explores the space of
joint plans by splitting a search tree using a best-first search
strategy. Each node in the tree represents a subset of the space
of joint plans, and each arc between two nodes represents a
possible action of any of the agents. The branch from the root
to a given node n represents the partial joint plan consisting
of all actions associated with the arcs in the branch.
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For each node, the agent stores an upper bound and a
lower bound for the utility for each agent in the MAS. These
bounds are calculated based on a model the agent has about
the preferences of the other agents. If for a given node the
lower bounds for each agent participating in the plan are high
enough, our agent will propose the plan to the other agents.
If for a given node, for any of the agents participating in the
plan the upper bound is too low, then this node can be pruned
as it is unlikely that that agent will accept the proposal. The
question whether a node is good enough to be proposed or not
is decided by a time based concession strategy. The closer to
the deadline of the negotiations, the more the agent is willing
to concede to others.

The heuristic that determines which node to split depends
on the proposals that other agents have made so far. The more
another agent has conceded, the more the algorithm will be
inclined to search for proposals involving that agent. In this
way, we see that search and negotiation have become inter-
twined: not only do the proposals that are made depend on
the search, but also the search is influenced by the proposals
that have been made. This is an entirely novel concept in the
field of automated negotiations.

Another unusual approach we take is that of the ‘Free Com-
munication Protocol’. Most negotiation algorithms assume
the agents obey a strict protocol like the Alternating Offers
Protocol. We think however that it is unrealistic to assume
that other, unknown, agents will obey the same protocol (es-
pecially if they are humans). Therefore we assume that any
agent can make any offer at any time, so after making a pro-
posal an agent does not have to wait for a counter proposal
and can immediately continue making more proposals. More-
over, when an agent receives a proposal, it may accept it, re-
ject it, or simply ignore it (i.e. not reply at all). If an agent
makes a proposal but does not directly get a reaction, it is up
to the agent itself to decide how long to wait for a reaction.

3 Negotiating Salesmen Problem
We have defined a new problem to be used as a test case for
testing negotiation algorithms. We call this problem the Ne-
gotiating Salesmen Problem (NSP). It is a variant of the Trav-
eling Salesman Problem (TSP), but with the main difference
that there is more than one salesman, each of which is only
interested in minimizing its own, individual path length.

The idea is that there is a set of cities, and each one of them
has to be visited once by at least one of the salesmen. Initially,
each city is assigned to one salesman that has to visit it. The
salesmen are however allowed to exchange their cities, so that
they may be able to decrease the distances they have to cover.
For example: if a city v is assigned to agent α, but α prefers
to visit another city v′, which is assigned to agent β, then α
may propose to β to exchange v for v′. If β however also
prefers to have v′ over v it will not accept this deal. And if
no other agent wants to accept v either, then α is obliged to
travel along city v.

This domain is interesting because of its high complexity:
to calculate the value of one single proposal, one needs to
solve a TSP for every agent involved in the proposal. The
number of possible proposals is very large, so one may need

to evaluate a lot of proposals before finding one that is good
enough to propose or accept.

4 Diplomacy
Diplomacy is a popular board game that has exited since the
1950’s and is nowadays mostly played over the Internet. It is
played by seven players, that each represent one of the ‘Great
Powers’ of Europe at the beginning of the 20th century. Each
player owns a set of armies distributed over a map of Europe
and the goal is to conquer at least half of Europe. Although
players are essentially selfish, they need to form coalitions in
order to advance in the game. Therefore, negotiation is an
essential skill in this game.

This game is very interesting for our research, since it of-
fers a very large space of possible actions and agreements,
and the outcome of the actions of an individual player highly
depends on the actions of the other players. Like in many
other games there is no explicitly known utility function that
determines the value of a given board configuration. There-
fore, one needs to apply a heuristic approach. Moreover, the
game board constitutes a complex asymmetrical graph (con-
trary to games like chess where the board is a square grid), so
we cannot simplify the game by exploiting symmetries. Many
attempts have been made to create automated agents that play
Diplomacy, but most of them are not able to negotiate at all,
and if they do, their negotiation skills are poor.

5 Progress
Experiments with the Negotiating Salesmen Problem have
shown good results that indicate the NB3 algorithm is indeed
able to negotiate successfully under hard conditions. We are
currently implementing a version of the algorithm for Diplo-
macy.
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