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Abstract

We propose a new approach that exploits the
good properties of core-guided and model-guided
MaxSAT solvers. In particular, we show how to ef-
fectively exploit the structure of unsatisfiable cores
in MaxSAT instances. Experimental results on in-
dustrial instances show that the proposed approach
outperforms both complete and incomplete state-
of-the-art MaxSAT solvers at the last international
MaxSAT Evaluation in terms of robustness and to-
tal number of solved instances.

1 Introduction

Maximum Satisfiability (MaxSAT) is an optimization version
of the well-known Satisfiability (SAT) problem. Recently, we
have seen the successful application of MaxSAT techniques
to solve several industrial or real combinatorial optimization
problems: software package upgrade, debugging of hardware
designs, fault localization in C code, bioinformatics, course
timetabling, planing, scheduling, routing, electronic markets,
combinatorial auctions, etc. See [Ansétegui e al., 2013b;
Morgado et al., 2013] for citations.

Solving exactly combinatorial optimization problems, i.e.,
finding and certifying the best possible assignment, can be
NP-hard from a computational point of view. However, many
industrial problems are slightly beyond the reach of state-of-
the-art techniques, and for many real domains we are often
interested on improving in a reasonable time the best current
assignment. Notice that even a small gain in the quality of the
assignment can lead to important practical consequences for
real domains.

This seems to suggest we should focus on developing in-
complete algorithms for industrial problems. The experi-
ence achieved from the international SAT and MaxSAT com-
petitions, shows us that the right research avenue is to fo-
cus first on improving complete or exact algorithms. Then,
with the proper modifications, we can get an incomplete al-
gorithm. Besides, we can always incorporate our complete
algorithm into incomplete approaches such as Large Neigh-
borhood Search [Shaw, 1998]. In LNS, we heuristically dive
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into promising regions of the search space (neighborhoods)
that are explored with complete solvers.

The aim of this paper is to improve and combine effec-
tively and efficiently techniques from complete state-of-the-
art solvers MaxSAT solvers. In particular, we pay special
attention to how to exploit the structure of the unsatisfiable
cores in a MaxSAT instance. Finally, develop a complete al-
gorithm that can be used in an incomplete approach.

In the MaxSAT community, we find two main classes of
complete algorithms: branch and bound [Heras et al., 2007;
Li et al., 2009; Kiigel, 2010] and SAT-based [Ansétegui et
al., 2013b; Morgado et al., 2013]. SAT-based approaches
clearly dominate on industrial instances. SAT-based MaxSAT
algorithms reformulate a MaxSAT instance into a sequence of
SAT instances. By solving these SAT instances the MaxSAT
problem can be solved. Intuitively, the SAT instances encode
whether it is possible to find an assignment to the MaxSAT
instances with a cost less than or equal to a certain k. The se-
quence is built in increasing order of k and it can be split into
two parts. The instances in the first part are all unsatisfiable
while the instances in the second one are all satisfiable. The
value of k£ where the first satisfiable instance is located gives
us the optimum of the MaxSAT instance. This transition from
unsatisfiable to satisfiable SAT instances is usually associated
with an easy-hard-easy pattern in terms of the hardness of the
SAT instances [Shen and Zhang, 2003].

By solving the unsatisfiable SAT instances MaxSAT
solvers refine the lower bound, while by solving satisfiable
instances they refine the upper bound. Within SAT-based
MaxSAT algorithms we find two main classes: (i) those that
refine the lower bound, and guide the search with the un-
satisfiable cores obtained from unsatisfiable SAT instances
(core-guided algorithms) and, (ii) those that refine the upper
bound, and guide the search with the satisfiable assignments
obtained from satisfiable SAT instances (model-guided algo-
rithms). Both approaches have strengths and weaknesses and
there have been already some hybrid approaches [Morgado et
al., 2012; Ansétegui and Gabas, 2013].

SAT-based MaxSAT solvers use Pseudo-Boolean (PB)
constraints to create the SAT instances in the sequence.
It is known that efficiency of SAT-based MaxSAT solvers
heavily depends on how complex are these PB constraints,
and how efficiently we manage them. Respect complex-
ity, our current approach, as in [Andres et al., 2012; Mor-



gado et al., 2014], only adds cardinality (Card) constraints
(PB constraints with coefficients equal to 1) even if the
MaxSAT instance is weighted. Respect management, un-
like [Morgado er al., 2014; Narodytska and Bacchus, 2014;
Martins et al., 2014], where Card constraints are incremen-
tally constructed, our best approach does not use yet these
incremental strategies for Card constraints. It exploits the
structure of the unsatisfiable cores to produce a more efficient
encoding for the Card constraints.

As we have mentioned, the algorithm we present is able
to produce upper bounds during the search process. We also
use these upper bounds to extend a very effective technique
used in SAT solvers called phase saving [Pipatsrisawat and
Darwiche, 2007] to MaxSAT.

Finally, we show an extensive experimental investigation
on industrial instances. From the results, we can conclude
that our approach outperforms clearly both in terms of ro-
bustness and number of solved instances the winners of the
international MaxSAT Evaluation 2014 (MSE14) at the com-
plete and incomplete tracks.

This paper proceeds as follows. Section 2 introduces
some preliminary concepts. Section 3 presents the com-
plete MaxSAT algorithm. Section 4 discusses how to en-
code efficiently in SAT the Card constraints generated by the
MaxSAT algorithm. Section 5 explains how to exploit the
upper bounds generated by the MaxSAT algorithm. Section 6
shows the experimental evaluation. Finally, Section 7 con-
cludes.

2 Preliminaries

Definition 1 A literal [ is either a Boolean variable x or its
negation . A clause c is a disjunction of literals. A SAT
formula is a set of clauses that represents a Boolean formula
in Conjunctive Normal Form (CNF), i.e. a conjunction of
clauses.

Definition 2 A weighted clause is an ordered pair {c,w),
where c is a clause and w is a natural number or infinity
(indicating the cost of falsifying c, see Definitions 4 and 5). If
w is infinite the clause is hard, otherwise it is soft.

Definition 3 A Weighted Partial MaxSAT (WPMS) formula
is an ordered multiset of weighted clauses:

Y= OO>7"'a OO>>

where the first s clauses are soft and the last h clauses are
hard. The presence of soft clauses with different weights
makes the formula Weighted and the presence of hard clauses
makes it Partial. The ordered multiset of weights of the soft
clauses in the formula is noted as w(yp). The top weight
of the formula is noted as W (), and defined as W (p) =
Sw(p) + 1. By pg we refer the set of soft clauses and by
wH to the set of hard clauses. Finally, the set of variables
occurring in the formula is noted as var(p).

Example 1 Given the following WPMS formula:
<<(E1,5> <{I?2,3> <(L’3,3> <.’b1 V LC27OO> <.’£1 V £C37 >, <f
T3,00)), we have that w(p) = (5,3,3), W(p) = 1
$s = <<I1’5>7 <1‘2,3>, <£C3,3>>, YH = <<‘T1 V T, 00 > <§1
T3,00), (Ta V Tz, 00)) and var(p) = {1, 2, x3}.

<<Clvw1>7"'v<csvws>7<Cs+1; <Cs+h7

<N<H
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Definition 4 An assignment for a set of Boolean variables X
is a function T : X — {0,1}, that can be extended to liter-
als, (weighted) clauses, SAT formulas and WPMS formulas
as follows:

I(z) =1— I (z)

lm) = maX{I(ll)
}) = min{Z(¢1),.
w)) = w (1 - I(c))

T((e1s0n)s oo e 1) = S50 Tl 0)
We will refer to the value returned by an assignment T on
a weighted clause or a WPMS formula as the cost of L.

SZ(m)}
I(Cn)}

Definition 5 We say that an assignment 1 satisfies a clause
or a SAT formula if the value returned by I is equal to 1. In
the case of SAT formulas, we will refer also to this assignment
as a satisfying assignment or solution. Otherwise, if the value
returned by T is equal to 0, we say that T falsifies the clause
or the SAT formula.

Definition 6 The SAT problem for a SAT formula ¢ is the
problem of finding a solution for . If a solution exists the
formula is satisfiable, otherwise it is unsatisfiable.

Definition 7 Given an unsatisfiable SAT formula ¢, an un-
satisfiable core p¢ is a subset of clauses pc C ¢ that is also
unsatisfiable.

Definition 8 A SAT algorithm for the SAT problem, takes as
input a SAT formula p and returns an assignment L such that
Z(p) = 1 if the formula is satisfiable. Otherwise, it returns
an unsatisfiable core pc.

Given unlimited resources of time and memory, we say that
a SAT algorithm is complete if it terminates for any SAT for-
mula. Otherwise, it is incomplete.

Definition 9 The optimal cost (or optimum) of a WPMS for-
mula ¢ is cost(p) = min{Z(p) | Z : var(p) — {0,1}}
and an optimal assignment is an assignment I such that
Z(p) = cost(p). We will refer to this assignment as a so-
lution for ¢ if T(p) # co. Any cost above (below) cost(yp) is
called an upper (lower) bound for .

Example 2 Given the WPMS formula p of Example 1, we
have that cost(¢) = min{6,8,11,00} = 6 and the optimal
assignment I maps (x1,x2,x3) to (1,0,0).

Definition 10 7The Weighted Partial MaxSAT problem for a
WPMS formula ¢ is the problem of finding a solution for .
If a solution does not exist the formula is unsatisfiable.

Definition 11 A WPMS algorithm for the WPMS problem,
takes as input a WPMS formula  and returns an assignment
T, such that, Z(p) > cost(p).

Given unlimited resources of time and memory, we say
that a WPMS algorithm is complete or exact if for any input
WPMS formula ¢ and returned I, Z(p) = cost(yp). Other-
wise, we say it is incomplete.

Definition 12 An integer linear Pseudo-Boolean (PB) con-
straint is an inequality of the form wix1 + - - - + wpxy, op kK,
where op € {<,>,=,> <}, k and w; are integer coeffi-
cients, and x; are Boolean variables. A PB at-most constraint
is a PB constraint where op is <. A cardinality (Card) con-
straint is a PB constraint where the coefficients w; are equal
to 1.



3 WPM3 MaxSAT Algorithm

Algorithm 1: WPM3

Input: ¢ = ({c1,w1), ..., (Cs, Ws), (Cot1,00), ..., (Cs+h, 00))

<AM5 wSiT‘ai> = <<<<1>7 Oa w1>7 ey <<S>7 Oa w8>>7 OO>
while true do

(st,C,I) := sat(p, AM, Wstrat)

if st = SAT then
if Wstrat =

min({w;}) thenreturn (Z,Z(p))
wj Ew(AM),w;#0

| Wstrat = decrease(AM, Wstrat)

else

if Wsirqr = oo then return ((), o)

Winin = min(w(AMc))

AM = AM[<AJ7 kj, wj>/<Aja kj, w; — wmzn)]
jec jec

(A, ka) := optimize(yp, AMc)
AM = AM + ({(A, ka, Wmin))

11
12

Function sat(o, AM, wsirat)

1t = U {e Vi) U{ CNF(A;,k)) Va;,a; }
(ci,wi)Eps (A]"rk]"rw.]'>€AM?wj 2Wstrat

2 (st, ok, T) := satsolver(¢*)

s C={j [ {a;} Nt # 0}
4 return (st,C,T)

Function optimize(p, AM)

1 A = +AJ
(Aj,Kj,wij)eAM
2ub:= Y A

(Ajkj,wj)eAM
3 while true do
4 k:=ub—1
s | (st T) = sat(p, (A, K, ), )
6 if st = sAT then ub :=Z({(c;, 1) | {c;,w;) € @)
€A

)

7 else return (A, ub)

In this section, we present the WPM3 complete algorithm
for the MaxSAT problem. Given an input WPMS formula
, WPM3 solves the formula by testing the satisfiability of a
sequence of SAT instances ©* where 0 < k < W (). Each
SAT instance ©* encodes whether there is an assignment to ¢
with a cost < k. Notice that SAT instances with k < cost(y)
are unsatisfiable, otherwise they are satisfiable. The optimum
corresponds to the k of the first satisfiable SAT instance.

Roughly speaking, from every unsatisfiable SAT instance
the algorithm finds and keeps an unsatisfiable core. WPM3 is
designed to be aware of the global structure of theses cores.
This is used both for producing more efficient cardinality
(Card) constraint encodings (see Section 4) and focus the
search on subproblems of the input MaxSAT instance.
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The algorithm maintains a set of soft at-most Card con-
straints AM. We note these constraints as (A, k, w), where
A is an ordered multiset of indexes of the original soft
clauses, k indicates at most how many clauses from A can
be falsified, and w is the cost for falsifying this soft con-
straint. The at-most constraints are used to do not accept
those solutions whose cost exceeds the current k, where
k=3 Aoy w;)eAn i - wj. Moreover, the algorithm guar-
antees that k& < cost(p). The idea of maintaining multiple at-
most Card constraints instead of a single one was originally
introduced in [Ansétegui et al., 2009a] for PM2 algorithm.
Notice that from the AM set the global core structure can be
obtained.

We start (line 1) by adding to AM a soft at-most constraint
for each original soft clause. Then, the algorithm will iterate
(line 2) till it is able to determine cost(p). This will happen
if it detects that the set of hard clauses is unsatisfiable (line 8,
cost(y) = o) or when it is able to generate the first satisfi-
able instance (line 5, cost(¢) = k = Z(p)). We obviate for
the moment the role of w;,; and we consider it is oo for the
first iteration and min({w;}) for the rest.

w; Ew(AM),w;#0

Function sat (line 3) builds the SAT instance cpk at the
current iteration and sends it to the SAT solver. ©* is con-
structed through the union of the following sets expressed as
SAT clauses: (i) the set of hard clauses, (ii) the reification to
variables b; of soft clauses, (iii) the reification to variables a;
of the translation into CNF of the at-most constraints in AM,
and finally (iv) the unit clauses @;. The new b; variables are
true if the respective original soft clause becomes false. They
are used to encode the at-most constraints which restrict the
number of falsified soft clauses. The new a; variables are
true if the respective at-most constraint becomes false. The
unit clauses @; encode that we would like to satisfy all the
at-most constraints. If this is not possible, some of them will
appear into the unsatisfiable core wg.

Example 3 Given ¢ ((x1,1), (x2,1), (x3,1), (T1 V
Tg, 00), (T1 VT3,00), (T2 V T3, 00)). At an intermediate step
we have the set AM = (((1,2),1,1),((3),0,1)). Then,

oF = {Z1 VT2, T1 VT3, TaVTs}U {x1 Vb1, 22V b2, 3V b3}

@] {CNF(bl + b < 1) \/ahal,CNF(bg < O) \/az,ag}

To our best knowledge, the idea of introducing Card con-
straints as soft constraints in a core-guided algorithm was
initially proposed in [Andres et al., 2012] for Answer Set
Programming (ASP) optimization problems, and recently
adapted to MaxSAT problems in [Morgado et al., 2014]. The
approach in [Narodytska and Bacchus, 2014] (best solver
for industrial instances at MSE14) also uses soft Card con-
straints. These approaches work locally and are not aware of
the global core structure and therefore they can not exploit it.

Going back to WPM3 algorithm, if function sat returns
satisfiable (st = SAT) (line 4), then we return the optimal
assignment Z and its cost (line 5). Otherwise (line 7), C
is the set of indexes of at-most constraints involved into the
last unsatisfiable core. If the core only involves original hard
clauses, we can return unsatisfiable (line 8). If there are at-
most constraints involved in the core, then, we need to relax



some of them since they only allow assignments or solutions
with a cost strictly less than cost(p).

At this stage (lines 9-12), we need to relax the set of AM
constraints, but guaranteeing we do not exceed cost(y). Ba-
sically, we need to replace the set of at-most constraints AM ¢
involved in the last core with a new set of at-most constraints
which allows assignments with a higher cost.

Since we will only use Card constraints we first apply the
idea described in the WPM1/WBO [Ansétegui erf al., 2009b;
Manquinho et al., 2009] MaxSAT algorithms to deal with
Weighted instances (lines 9-10). It basically prevents the
algorithm to introduce PB constraints instead of Card con-
straints when the at-most constraints involved in the core have
different weights. In this case, we compute the minimum
weight w,,,;,, of the constraints in AM¢ (line 9), and replace
every soft constraint (A4;, k;, w;) by two copies with weights
Wj — Wi and Wy,iy,. The first set of copies will remain in
AM (line 10) while the second will be replaced by the new
at-most constraint (A4, k4, W) (line 12). Notice we guar-
antee that 32y . o yeans | Aj | -wi =32 w(e).

Function optimize (line 11) allows to determine which is
the new ¢ we will test. This function, basically, solves
exactly the subproblem that involves the new at-most con-
straint we will generate on the original soft clauses, and the
hard clauses. The result is the set of indexes of original
soft clauses A of the new at-most constraint (notice that and
index can be repeated) and the number of clauses k4 that
we will at most allow to be falsified. To our best knowl-
edge, the idea of solving a subproblem of the original opti-
mization instance ¢ was originally applied for MaxSAT in
WPM2 algorithm [Ansotegui ef al., 2010]. In [Davies and
Bacchus, 2011] a similar approach is applied calling a MIP
solver to solve the subproblem. Recently, in [Ansétegui et
al., 2013al, this process is extended and named as cover
optimization. The best strategy reported consists on refin-
ing iteratively the upper bound on the subproblem using the
model-guided MaxSAT algorithm in [Berre, 2006]. We apply
it within function optimize, although depending on the par-
ticular family of instances other strategies or algorithms can
have better performance. At this point we have increased &
by (ka —Z<Aj,kj,w]>eAMc k;)-wpn towards cost (). Oth-
erwise, without the optimize step, we can only increase k by

Treating explicitly the new at-most constraint (line 12)
and its relation to the constraints it substitutes is funda-
mental, not only for function optimize, but also to encode
more efficient Card constraints (see Section 4). In contrast,
this information, the global core structure, is not explic-
itly present in recent approaches as [Morgado et al., 2014;
Narodytska and Bacchus, 2014] and therefore harder to be
exploited efficiently.

During this description, we have obviated the role of wgyyqt
(lines 5 and 6). It corresponds to the application of the
stratified approach introduced in [Ansotegui et al., 2009c].
The stratified approach consists in sending to the SAT solver
only a subset of the soft clauses, i.e., those with a weight
> Wstrqt- Function decrease updates conveniently wgirqt.
This can help to reduce the size of the unsatisfiable cores,
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produce simpler at-most constraints and progress faster to the
optimum. We also apply hardening techniques like the ones
described in [Ansétegui et al., 2012; Morgado et al., 2012;
Ansotegui et al., 2013al.

4 Efficient Card Constraints for MaxSAT

In the last decade, we have seen many contributions on
how to encode efficiently PB and Card constraints into
SAT [Bailleux and Boufkhad, 2003; Sinz, 2005; Eén and
Sérensson, 2006; Bailleux et al., 2009; Asin et al., 2011].
The goal is to achieve an arc-consistent encoding (i.e., with
good propagation properties) as small as possible.

Since WPM3 only uses Card constraints, let us consider
the Card constraint: by + --- + b,, < k. From the sake of
clarity, the encoder is split into two black boxes: the sum and
the operator op (in our case representing <). The sum takes as
input a list of n variables [by, . .., b,] and returns a set of SAT
clauses S and a list of m variables [o01, . . ., 0,,]. The operator
takes as input the o variables and integer k£ and returns a set
of SAT clauses O P. The encoding of the Card constraint into
SAT corresponds to the union S U OP.

<S, [01, e
OP = op(k,[o1,-..,0m])

In our case, we use the Cardinality Networks encoding in
[Asin et al., 2011]. There, m = k + 1 and the sum builds a
SAT formula such that if ¢ of the input b variables are set to
true then the first ¢ of the output o variables are set to true and
the rest to false. Therefore, op returns the unit clause o ;.

Our first observation is that it is crucial for the efficiency
of the MaxSAT solver in which order the b variables are fed
into the sum. In previous MaxSAT solvers, the order of the
b variables was not taken into account. They were just added
in the same order of their respective soft clauses.

However, the b variables should be added taking into ac-
count the structure of the unsatisfiable cores. In particular,
variables belonging to the same core should be as close as
possible. In our algorithm the set A in an at-most constraint
(A, k, w) is ordered. In line 1 of function optimize (see Sec-
tion 3) when we generate the set A of the new at most con-
straint, we concatenate the sets of b variables of the at-most
constraints that it replaces. Respect to latest advances in
MaxSAT [Morgado et al., 2014; Narodytska and Bacchus,
2014] a deeper explanation of their efficiency could be that
these algorithms implicitly preserve the order.

Our second observation has to do again with the structure
of the unsatisfiable cores we have detected so far. As we have
just commented, the new at-most constraint (A, k., Wyin)
(line 12 of WPM3) replaces/merges other at-most constraints.
In the end, we can consider that there is a tree structure that
represents how we have merged the unsatisfiable cores and
where the root node is the new at-most constraint. Instead
of creating a Cardinality Network for the new constraint we
can reproduce this tree structure. We basically reproduce
the totalizer encoding proposed originally in [Bailleux and
Boufkhad, 2003]. The leaf nodes join the at-most constraints
related with a single soft clause of the input formula (i.e.,

,0m]) := sum([b,...,by])



with k& = 0) that appeared in the same core. The leaf nodes
are encoded with Cardinality Networks.

Example 4 Imagine at-most constraint (A3, 5, 1) (root node)
replaces at-most constraints (A1,3,1) and (As,1,1) (child 1
and child 2). Let us see how we start constructing the tree.
Children are processed recursively in the same way.

|A3|=10 |A1]=6 |[Az|=4
sum<5H sum<5 sum<4
(8',[03,...,08]) := totalizer([o], ..., og), [03, ..., 02])

S .=8'ustus? oP?:={G;} UOP'UOP?

The advantage of preserving this structure, in contrast to
having a single Card constraint, is that we can again exploit it
to derive smaller encodings. In particular, we can restrict the
sums of the nodes using the lower bounds of their siblings.
The upper bound for a non root node is set to the difference
between the upper bound of its parent and the sum of the
lower bounds of its siblings. We apply this in a top-down
update process.

Example 5 Ar example 4, the upper bound for the root node
is 5. Child 1 (child 2) already contributes with a lower bound
of 3 (1), therefore the new upper bound for child 1 (child 2) is
5—1=4(5-3=2).

|A3]|=10 |A1]=6 |Az|=4
sum<5 sum<4 sum<2
(8',[03,...,08]) := totalizer([o], ..., 03], [0%, ..., 03])
1b=3 Ib=1

S .=5'usStus? OP?:={5;} UOP'UOP?

Function optimize can provide assignments I,,;, which are
upper bounds (see Section 5) for the whole formula ¢. Using
this upper bound, we can set the upper bound for the root
node which corresponds to the cost of the assignment [,; on
the set of soft clauses related to it.

Finally, notice that for a given at-most constraint we build
from scratch its SAT encoding when we feed it into the SAT
solver. Recently, in [Martins et al., 2014] it has been proposed
to build Card constraints incrementally. We will explore ex-
tending our approach in this sense. As we will see in Sec-
tion 6, even without the incremental extension, our approach
outperforms the rest of the solvers.

5 Upper Bounds and Phase Saving

In Section 3, we have described a complete core-guided al-
gorithm that keeps increasing a lower bound towards the op-
timum. However, its design and, in particular, function opfi-
mize, which implements a model-guided MaxSAT algorithm,
allows to produce upper bounds for ¢ during its execution.
Whenever function optimize finds a new solution to the sub-
problem, we can just extend this solution to the rest of the
formula and check its cost. We do this by considering that,
those clauses in a undefined state under the solution to the
subproblem, are falsified !. Function optimize keeps track of

!This can be improved looking at the structure of the undefined
clauses.
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the assignment to the subproblem whose extension to the rest
of the formula had the lowest cost. The cost of this assign-
ment is an upper bound for the whole problem. We will refer
to it as the best global assignment found by function optimize.

We can exploit further the best global assignment we get
from function optimize. State-of-the-art SAT solvers ap-
ply a technique called phase saving introduced in [Pipat-
srisawat and Darwiche, 2007]. In SAT solvers, when non-
chronological backtracking is applied due to a conflict, lots
of variable assignments get lost and have to be revealed again
during search. The idea is to avoid redoing this work by stor-
ing the phase of the variables when we find a conflict. Then,
we assign to the next decision variables the stored polarity till
we find a new conflict and update the polarities again. This
technique has been shown to be quite effective. We can ex-
tend this idea to MaxSAT in the following way. Within func-
tion optimize we let the SAT solver apply phase saving in
the regular way (line 5). Then, if the best global assignment
found so far has the same cost for the subproblem as the so-
lution found by function optimize, we store the polarity of the
variables in the best global assignment. We use these polari-
ties to guide the search of the SAT solver in line 3 of WPM3,
disabling the regular phase saving that would be applied. In
particular, we only store the polarities of the original variables

in .

6 Experimental Results

We have evaluated our approach on the industrial instances
from the MaxSAT Evaluation 2014 (MSE14) [Argelich et al.,
2006 2014]. We run our experiments on a cluster featured
with 2.6GHz processors and a memory limit of 3.5 GB. The
instance set of MSE14 is divided into three categories de-
pending on the variant of the MaxSAT problem: MaxSAT
(MS), Partial MaxSAT (PMS) or Weighted Partial MaxSAT
(WPMS). In each category, instances are grouped by fami-
lies: 2 for MS, 22 for PMS and 8 for WPMS. Since families
have different number of instances, we considered more fair
to present the solvers ranked by mean family ratio of solved
instances.

We provide results for the new wpm3 MaxSAT solver
and the best solvers of the MSE14. We have excluded the
MaxSAT solver ISAC+ [Ansétegui et al., 2014], since it
is a portfolio and our intention here is to compare ground
solvers. The ground solvers with the best overall performance
at MSE14 for industrial instances were: eva500a [Narodyt-
ska and Bacchus, 2014], mscg [Morgado et al., 2014] and
open-wbo [Martins et al., 2014]. We also present results for
an initial version we implemented within the or-tools pack-
age [Google, 2009] which is only core-guided.

Table 1 shows our first experiment, where we evaluate the
impact of each improvement on WPM3 (with a timeout of
1800 seconds). All the variations on WPM3 are implemented
on top of the glucose SAT solver (version 3.0) [Audemard and
Simon, 2009] . The different variations and corresponding
implementations are named wpm3 with different subindexes.
Subindex , stands for cover optimization (see Section 3). Re-
garding how Card constraints are encoded, ; stands for core
based tree, ;. stands for core based tree with refinement of the



MS Ind. PMS Ind. | WPMS Ind. | Total Ind.
100% 55 | 100% 568 100% 410 | 100% 1033
wpm3ikop | 88,5% 43 | 84,0% 499 | 74,0% 367 | 81,7% 909
wpm3iko 87,5% 42 | 83,4% 494 | 73,9% 366 | 81,3% 902
wpm3iy 87,5% 42 | 82,5% 483 | 73,0% 359 | 80,4% 884
wpm3io 87,5% 42 | 83,4% 494 | 72,9% 358 | 81,0% 894
wpm3y 87,5% 42 | 81,9% 480 | 72,9% 358 | 80,0% 880
wpm3, 87.5% 42 | 82,9% 489 | 71,3% 349 | 80,3% 880
wpm3 87,5% 42 | 80,7% 470 | 70,4% 346 | 78,6% 858
pm2, 84,0% 39 | 78,9% 458 - -
pm2 84,0% 39 | 77,5% 445 - -
wpm1/wbo | 80,0% 36 | 61,8% 349 | 67,4% 348 | 64,4% 733

Table 1: WPM3 and improvements.

k upper bound in sub-sums (see Section 4). Finally, , stands
for phase saving extended to MaxSAT (see Section 5).

At the table, we present for each category and solver the
mean ratio of solved instances per family and the total number
of instances. We introduce results for wpm1/wbo [Ansétegui
et al., 2009b; Manquinho et al., 2009] and pm?2 algorithms 2.
wpm3 can be considered as a hybridization of these two al-
gorithms (see Section 3). As we can see, wpmd3 clearly out-
performs pm2. This is because, as described in Section 4,
we build Card constraints taking into account the order im-
posed by the unsatisfiable cores. If we add the cover opti-
mization technique, see wpmJ,, then we get a version that
would have ranked the first at MSE14 for industrial instances
in terms of the total mean family ratio. The next two versions,
wpm3; and wpm3,y, that further exploit the structure of the
cores and improve the construction of the Card constraint,
provide a total of 13 additional solved instances for PMS and
13 for WPMS. As we can see, the cover optimization tech-
nique always improves, in particular for Weighted instances
at version wpm3sk,. Finally, the extension of phase saving
for MaxSAT improves the average running time, and it helps
to solve 7 additional instances within the timeout.

MS Ind. PMSInd. | WPMSInd. | Total Ind.
100% 55 | 100% 568 100% 410 | 100% 1033
wpm3ikop | 88.5% 43 | 84.0% 499 | 74.0% 367 | 81.7% 909
or-tools 81.7% 36 | 81.9% 482 | 73.9% 369 | 79.8% 887
evab500a 86.5% 41 | 80.0% 476 | 72.8% 368 | 78.7% 885
mscg 86.5% 41 | 80.2% 468 | 68.5% 361 | 77.7% 870
open-wbo | 87.5% 42 | 81.0% 472 | 64.9% 335 | 77.3% 849

Table 2: WPM3 and or-tools compared to best MSE14
solvers

Table 2 compares our best version wpm3i,, with the
best performing complete solvers at MSE14 for industrial in-
stances. Clearly, wpm3;x., dominates both on mean family
ratio and total number of solved instances. A deeper analysis
reveals that wpm3,x.p has best ratio on 30 out of the 32 fam-
ilies that compose the categories, while eva500a (the second
one) has best ratio on 20.

Our last experiment is presented in Table 3. Since
wpmM3¢op 18 able to produce upper bounds we also compared

>pm2 algorithm is only designed for Partial MaxSAT instances
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wWpmM3ikop |0pen-wbo| gms |wpm?2014|optimax

50 50 49 53

wWPM3ikop 556 394 |502379| 547386 | 524 390
45 45 44 45

open-wbo | 466 344 458 361| 477 341 | 466 378
15 19 17 18

qms 511 281 522 286 534279 | 530 302
48 48 48 51

wpm?2014 | 427 369 477 387 |402 379 420 367

39 43 47 39
optimax 368 259 387270 |337284| 423260

Table 3: WPM3 compared to MSE14 best incomplete solvers.

it with the best performing solvers wpm2014 and optimaz 3

for industrial instances at the incomplete track of the MSE14.
We also compared with other MaxSAT solvers that did not
take part in the incomplete track but they are able to pro-
duce upper bounds: open-wbo [Martins et al., 2014] and
gms [Koshimura et al., 2012]. We do not include eva500a,
mscg or or-tools since they can not produce upper bounds.

The timeout for the incomplete track at MSE is set to 300
seconds. For a given instance, the winners are the solvers
that produce the best upper bound. The best solver is the one
that won on more instances. Since these results give us a par-
tial order, it can be misleading to report an overall winner.
In table 3, we present the dominance relation between pairs
of solvers on the three categories. For example, wpm3ixop
(open-wbo) is able to obtain a better or equal upper bound
than open-wbo (wpm3srop) on 50 (45) ms instances, 556
(466) PMS instances and 394 (344) WPMS instances. As
We can see, wpm3ikep practically dominates the rest of the
solvers. The exception is gms on PMS where gms outper-
forms by 9 instances wpm3;ep. For this case, we extended
the timeout to 1800 seconds. We found that wpm3y,, out-
performed gms by 5 instances. This is somehow expected
since wpm3k0p, Within this timeout, solves to optimality 40
instances more than gms.

7 Conclusions

We have proposed a complete algorithm for MaxSAT that can
be also used in an incomplete approach. We show how to
combine several techniques. We have shown how that the
design of the algorithm allows to exploit the structure of un-
satisfiable cores in MaxSAT instances to build more efficient
Card constraints. This opens a window to understand bet-
ter the performance of the latest solvers and probably further
improve them. Finally, we have shown that an extended no-
tion of phase saving for MaxSAT is effective. Our resulting
MaxS AT solver outperforms the winners for the complete and
incomplete track at the last MaxSAT Evaluation.
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