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Abstract

This paper explores a PAC (probably approx-
imately correct) learning model in cooperative
games. Specifically, we are given m random sam-
ples of coalitions and their values, taken from some
unknown cooperative game; can we predict the val-
ues of unseen coalitions? We study the PAC learn-
ability of several well-known classes of cooperative
games, such as network flow games, threshold task
games, and induced subgraph games. We also es-
tablish a novel connection between PAC learnabil-
ity and core stability: for games that are efficiently
learnable, it is possible to find payoff divisions that
are likely to be stable using a polynomial number

of samples.
1 Introduction
Cooperative game theory studies the following model. We
are given a set of players N = {1,...,n},and v : 2V — R

is a function assigning a value to every subset (also referred
to as a coalition) S C N.

The game-theoretic literature generally focuses on revenue
division: suppose that players have formed the coalition N,
they must now divide the revenue v(N) among themselves in
some reasonable manner. However, all of the standard solu-
tion concepts for cooperative games require intimate knowl-
edge of the structure of the underlying coalitional interac-
tions. For example, suppose that a department head wishes
to divide company bonuses among her employees in a canon-
ically stable manner using the core — a division such each
coalition is paid (in total) at least its value. In order to do so,
she must know the value that would have been generated by
every single subset of her staff. How would she obtain all this
information?

Indeed, it is the authors’ opinion that the information re-
quired in order to compute cooperative solution concepts
(much more than computational complexity) is a major ob-
stacle to their widespread implementation.

Let us therefore relax our requirements. Instead of query-
ing every single coalition value, we would like to elicit the
underlying structure of coalitional interactions using a sample
of m evaluations of v on subsets of N. To be more specific,
let us focus on the most common learning-theoretic model:
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the probably approximately correct (PAC) model [Kearns and
Vazirani, 1994]. Briefly, the PAC model studies the follow-
ing problem: we are given a set of points X1, ...,X,, € R"
and their values ¥1,...,%mn. There is some function f that
generated these values, but it is not known to us. We are in-
terested in finding a function f* that, given that x1,...,X;,
were independently sampled from some distribution D, is
very likely (“probably”) to agree with f on most (“approxi-
mately”) points sampled from the same distribution.

Procaccia and Rosenschein [2006] provide some prelimi-
nary results on PAC learning cooperative games, focusing on
simple games (this is a technical term, not an opinion!) —
where v(S) € {0,1} for every S C N. Their results are
mostly negative, showing that simple games require an ex-
ponential number of samples in order to be properly PAC
learned (with the exception of the trivial class of unanim-
ity games). However, the decade following the publication
of their work has seen an explosive growth in the number
of well-understood classes of cooperative games, as well as
a better understanding of the computational difficulties one
faces when computing cooperative solution concepts. This is
where our work comes in.

1.1 Our Contribution

We revisit the connection between learning theory and coop-
erative games, greatly expanding on the results of Procaccia
and Rosenschein [2006].

In Section 3, we introduce a novel relaxation of the core: it
is likely (but, in contrast to the classic core, not certain) that
a coalition cannot improve its payoff by working alone. We
show that if a game is learnable, then likely core outcomes
can also be learned (in that case we say the game is PAC sta-
bilizable). This result justifies our focus on learning the val-
ues of coalitions, by relating this task to the our ultimate goal
of finding “good” outcomes. Interestingly, we also prove that
monotone simple games are efficiently PAC stabilizable even
though they are not efficiently PAC learnable.

Motivated by the foregoing connection, in Section 4 we ask
whether or not classes of games are efficiently learnable, that
is, whether there is a polynomial-time algorithm that receives
a polynomial number of samples, and outputs an accurate hy-
pothesis with high confidence. Our main results are that net-
work flow games [Maschler et al., 2013, Chapter 17.9] are ef-
ficiently learnable with path queries (but not in general), and



so are threshold task games [Chalkiadakis et al., 2010], and
induced subgraph games [Deng and Papadimitriou, 1994].
We also study k-vector weighted voting games [Elkind et al.,
2009], MC nets [Ieong and Shoham, 2005], and coalitional
skill games [Bachrach and Rosenschein, 2008].

1.2 Related Work

Aside from the closely related work of Procaccia and Rosen-
schein [2006], there are several papers that study coali-
tional stability in uncertain environments. Chalkiadakis and
Boutilier [2004] and Li and Conitzer [2015] assume that
coalition values are drawn from some unknown distribu-
tion, and we observe noisy estimates of the values. How-
ever, both papers assume full access to the cooperative game,
whereas we assume that m independent samples are ob-
served. Other works study coalitional uncertainty: coalition
values are known, but agent participation is uncertain due to
failures [Bachrach et al., 2012a; 2012b; Bachrach and Shah,
2013].

Our work is also related to papers on eliciting and learn-
ing combinatorial valuation functions [Zinkevich et al., 2003;
Lahaie and Parkes, 2004; Lahaie et al., 2005; Balcan and Har-
vey, 2011; Balcan et al., 2012; Badanidiyuru ef al., 2012]. A
player’s valuation function in a combinatorial auction is sim-
ilar to a cooperative game: it assign a value to every subset
of items (instead of every subset of players). This connec-
tion allows us to draw on some of the insights from these pa-
pers. For example, as we explain below, learnability results
for XOS valuations [Balcan et al., 2012] informed our results
on network flow games.

2 Preliminaries

2.1 Cooperative Games

A cooperative game is a tuple G = (N,v), where N =
{1,...,n} is a set of players, and v : 2" — R is called
the characteristic function of G. When the player set IV is
obvious, we will identify G with the characteristic function
v, referring to v as the game. A game G is called simple
if v(S) € {0,1} for all S C N; G is called monotone if
v(S) < v(T) whenever S C T'. One of the main objectives
in cooperative games is finding “good” ways of dividing rev-
enue: it is assumed that players have generated the revenue
v(IN), and must find a way of splitting it. An imputation for G
is a vector x € R™ that satisfies efficiency: > ., x; = v(N),
and individual rationality: x; > v({i}) for every i € N.
The set of imputations, denoted I(G), is the set of all possi-
ble “reasonable” payoff divisions among the players. Given a
game G, the core of G is given by

Core(G) ={x € I(G) |VS C N :z(S) > v(9)}.

The core is the set of all stable imputations: no subset of
players S can deviate from an imputation x € Core(G) while
guaranteeing that every ¢ € S receives at least as much as it
gets under x.

2.2 PAC Learning

We provide a brief overview of the PAC learning model; for a
far more detailed exposition, see [Kearns and Vazirani, 1994;
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Shashua, 2009]. PAC learning pertains to the study of the
following problem: we are interested in learning an unknown
function f : 2V — R. In order to estimate the value of f,
we are given m samples (S1,v1), ..., (Sm, Um), Where v;
f(S;). Without any additional information, one could make
arbitrary guesses as to the possible identity of f; for example,
we could very well guess that f*(S;) = v; forall j € [m],
and 0 everywhere else. Thus, in order to obtain meaningful
results, we must make further assumptions. First, we restrict
f to be a function from a certain class of functions C: for
example, we may know that f is a linear function of the form
f(8) = > ics wi, but we do not know the values wy, . . ., wp,.

Second, we assume that there is some distribution D over 2%V
such that Sy,...,S,, were sampled i.i.d. from D. Finally,
we require that the estimate that we provide has low error
over sets sampled from D.

Formally, we are given a function v : 2V — R, and two
values € > 0 (the accuracy parameter) and § > 0 (the con-
fidence parameter). An algorithm A takes as input €, 0 and
m samples, (S1,v(S1)), ..., (Sm,v(Sm)), taken i.i.d. from
a distribution D. We say that .A can properly learn a function
f € C from a class of functions C (C is sometimes referred to
as the hypothesis class), if by observing m samples — where
m can depend only on n (the representation size), é, and %
— it outputs a function f* € C such that with probability at
least 1 — 6,

Prf(S)# 7(S)] <<

The confidence parameter § indicates that there is some
chance that A will output a bad guess (intuitively, that the
m samples given to the algorithm are not representative of
the overall behavior of f over the distribution D), but this is
unlikely. The accuracy parameter ¢ indicates that for most
sets sampled from D, f* will correctly guess the value of S.

Note that the algorithm 4 does not know D; that is, the
only thing required for PAC learnability to hold is that the
input samples independent, and that future observations are
also sampled from D. In this paper, we only discuss proper
learning; that is, learning a function f € C using only func-
tions from C.

We say that a finite class of functions C is efficiently PAC
learnable if the PAC learning algorithm described above runs
in polynomial time, and its sample complexity m is polyno-
mial in n, 1, and log }.

Efficient PAC learnability can be established via the exis-
tence of conmsistent algorithms. Given a class of functions C
from 2"V to R, suppose that there is some efficient algorithm
A that for any set of samples (.S;,v;)7; is able to output a
function f* € C such that f*(S;) = v; for all j € [m], or de-
termine that no such function exists. Then A is an algorithm

that can efficiently PAC learn C given m > é log % samples.
Conversely, if no efficient algorithm exists, then f cannot be
efficiently PAC learned from C.

To conclude, in order for a class C to be efficiently PAC
learnable, we must have polynomial bounds on the sample
complexity — i.e. the number of samples required in order to
obtain a good estimate of functions in C — as well as a poly-

time algorithm that finds a function in C which is a perfect



match for the samples. We observe that in many of the set-
tings described in this paper, the sample complexity is low,
but finding consistent functions in C is computationally in-
tractable (it would entail that P = NP or that NP = RP).
In contrast, the result of Procaccia and Rosenschein [2006]
establishes lower bounds on the sample complexity for PAC
learning monotone simple games, but there exists a simple al-
gorithm that outputs a hypothesis consistent with any sample.

When the hypothesis class C is finite, it suffices to show
that log |C| is bounded by a polynomial in order to establish
a polynomial sample complexity. In the case of an infinite
class of hypotheses, this bound becomes meaningless, and
other measures must be used. When learning a function that
takes values in {0, 1}, the VC dimension [Kearns and Vazi-
rani, 1994] captures the learnability of C. Given a class C,
and a list S of m sets S1,..., Sy, we say that C shatters S
if for every b € {0,1}™ there exists some v, € C such that
v(b)(S;) = b; for all j. We write

VCdim(C) = max{m | 38, |S| = m,C can shatter S}.

When learning hypotheses that output real numbers (as
opposed to functions that take on values in {0, 1}), the no-
tion of pseudo dimension is used in order to bound the
complexity of a function class. Given a sample of m sets
S =651,...,5, € N, we say that a class C shatters S
if there exist thresholds r1,...,7r,, € R such that for every
b € {0, 1} there exists some vp, € C such that vy, (S;) > 7;
ifb; =1, and v, (S;) < r; if b; = 0. We write

Pdim(C) = max{m | 3§ : |S| = m, C can shatter S}.

It is known [Anthony and Bartlett, 2009] that if Pdim(C) is
polynomial, then the sample complexity of C is polynomial
as well.

3 PAC Stability

In the context of cooperative games, one could think of PAC
learning as the following process. A central authority wishes
to find a stable outcome, but lacks information about agents’
abilities. It solicits the independent valuations of m subsets
of agents, and outputs an outcome that, with probability 1—4,
is likely to be stable against any unknown valuations.

More formally, given ¢ € (0, 1), we say that an imputation
x € I(G) is e-probably stable under D if

Pr[e(8) > 0(8)] 2 1.

An algorithm A can PAC stabilize a class of functions C
from 2%V to R if, given £,6 € (0,1), and m i.i.d. samples
(S1,v(51)), .- (Sm,v(Spm)) of some v € C, with probabil-
ity 1 — 4, A outputs an outcome x that is e-probably stable
under D, or outputs that the core is empty. If m is polynomial
inn, % and log %, and A runs in polynomial time, we say that
C is efficiently PAC stabilizable.

There is an immediate relation between PAC learnable and
PAC stabilizable function classes:

Proposition 3.1. Let v,v* : 2V — R be two functions such
that Prg..p[v(S) = v*(S)] > 1 —¢; ifx € Core(v*), then
X is e-probably stable under D for v.
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Proof. Suppose that v* is a function that satisfies
Prs.p[v(S) = v*(S)] > 1 — &, and suppose that
x € Core(v*). Then,

>
P [(8) > v(S))

Pr [u(S) = v*(S)

> SP:rD[:c(S) > v(S) [v(S) =v"(5)]- S~D

>1-(1l—-eg)=1-¢

O

We mention that Proposition 3.1 says nothing about the ef-
ficiency of finding probably stable outcomes. In order to find
a PAC-stable outcome using a PAC learned function, it is es-
sential that v belong to a class of functions that can be learned
in polynomial time, and for which a core outcome can be
found in polynomial time.

Moreover, there is an important subtlety here. Let G*
(N, v*) be the PAC learned hypothesis of G = (N, v). Propo-
sition 3.1 states that if x € Core(G*), then the probability
that x violates a core constraint in G is small. However, there
are two potential risks: first, it is possible that Core(G*) = 0,
but Core(G) # (). This is not a concern if the learned hypoth-
esis is guaranteed to have a non-empty core, or if Core(G*)
contains Core(G).

Second, even if Core(G*) # (), we are not guaranteed
that x € Core(G*) is a valid payoff division for G, if
v*(N) # v(N). In our motivating setting, we assume that
v(NN) is known, so the latter is not a major concern.

These issues do not arise if v*(S) < v(S) forall S C N.
In that case, Core(G*) contains Core(G); thus, if the latter is
non-empty, so is the former.

While it may be generally hard to find a core outcome for
a cooperative game, it is easy to do so for monotone simple
games, where the core has a very simple characterization (see
e.g. [Maschler et al., 2013, Chapter 17]) via veto players. We
say that a player ¢ € N is a veto player if it belongs to all
winning coalitions; in other words, if v(S) = 1, then ¢ € S.

Fact 3.2. Let G = (N,v) be a monotone simple game, and
let V. C N be the set of veto players for G. If V = () then
Core(G) = 0; otherwise, Core(G) consists of all imputations
that assign a payoff of 0 to any i € N \ V; in particular, if
x € Core(G) theny ;.\, x; = 1.

Leveraging Fact 3.2, we obtain the following result.

Theorem 3.3. The class of monotone simple games is effi-
ciently PAC stabilizable.

The theorem is especially interesting because the class of
monotone simple games is not efficiently PAC learnable [Pro-
caccia and Rosenschein, 2006].

Proof of Theorem 3.3. First, if our samples contain two dis-
joint winning coalitions, then the core of G is surely empty,
and we report that the core is empty. Thus, let us as-
sume that all winning coalitions intersect. This implies that
our input samples correspond to an input from a unanimity
game [Maschler et al., 2013].



A unanimity game Uy = (N, uy ), has uy (S) = 1 if and
only if V' C S. According to Fact 3.2,

Thus, finding a probably stable outcome for G amounts to
finding a probably stable outcome for {fy,. Procaccia and
Rosenschein [2006] show that unanimity games can be ef-
ficiently PAC learned; thus, according to Proposition 3.1,
unanimity games are PAC stabilizable. Moreover, deciding
whether the core of a monotone simple game can be done in
polynomial time (simply decide whether ¢ is a veto player by
checking whether v(N \ {i}) = 1), so we can easily identify
the set of veto players in the learned game, and find x such
that

1—e< Pr [z(S) > uv(S)]

inzl

Core(G) = Core(Uy) = {x e RY
eV

S~D
:SPN’rD[at(S)z1AV§S]+5121;>[3U(S)20/\V¢_S]
= Pr[x(S)> 1]V CS]- Pr[VCSl+ PriV¢s].

But this means that x is also e-probably stable with respect to
D and G, because for every S C N, v(S) = 1 implies that
VCs.

O

4 PAC Learnability of Common Classes of
Cooperative Games

Theorem 3.3 shows that even when a class C is not PAC learn-
able using a polynomial number of samples, it is still possi-
ble to PAC stabilize it. In what follows, we explore both PAC
learnability and PAC stability in common classes of cooper-
ative games. We show when can one leverage efficient PAC
learnability in order to obtain PAC stability, and identify cases
where this is not possible. Some of our computational in-
tractability results depend on the assumption that NP # RP,
where RP is the class of all languages for which there exists
a poly-time algorithm that for every instance I, outputs “no”
if I is a no instance, and “yes” with probability > % ifitisa
“yes” instance. It is believed that NP # RP [Hemaspaandra
and Ogihara, 2002].

4.1 Network Flow Games

A network flow game is given by a weighted, directed graph
I' = (V,E), withw : E — R, being the weight function
for the edges. Here, N = FE, and v(S) = flow(T'|s,w, s, t),
where flow denotes the maximum s-t flow through I', where
edge weights are given by w, and s, € V.

We begin by showing that a similar class of functions is not
efficiently learnable. We define the following family of func-
tions, called min-sum functions which are defined as follows:
there exists a list of vectors w1y, ..., w,,. Forevery S C N,
f(S) = mingepn wi(S), where wi(S) = > . gwy;. If
m = 1, we say that the min-sum function is trivial. We note
that Balcan et al. [2012] study the learnability of XOS valua-
tions, where the min is replaced with a max.

Lemma 4.1. The set of non-trivial min-sum functions is not
efficiently PAC learnable unless NP = RP.
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Proof Sketch. Our proof relies on the fact that CNF formulas
with more than two clauses are not efficiently PAC learnable
unless NP = RP [Pitt and Valiant, 1988]. The reduction
shows that for any CNF formula ¢ and any distribution D over
the inputs to ¢ there is some min-sum function f, with player
set N/, and a distribution D’ over N’ such that f4(S) = 1
if and only if ¢(var(S)) = 1, where var(S) is a variable
assignment corresponding to the players chosen in S. Thus,
efficient PAC learnability of fy implies the PAC learnability
of ¢. O

Theorem 4.2. Network flow functions are not efficiently
learnable unless NP = RP.

Proof. Our proof reduces the problem of learning min-sum
functions to the problem of learning network flow functions.
Given a min-sum target function f, defined by wy, ..., wy,
and a distribution D over samples of /N, we construct the di-
rected graph " = (V, E) as follows.

For every weight vector wy = (wiy, . .., W), we define
vertices ¢, /+ 1, and n edges from ¢ to £+ 1, where the capac-
ity of the edge e;¢ is w;¢. Finally, we denote the vertex k + 1
as the target ¢, and the vertex 1 as the source s. Given a set
S C N, we write Eg = {e;¢ | £ € [k],i € S}. We observe
that the flow from s to ¢ in the constructed graph using only
edges in Fg equals f(.S); in other words, flowp(Es) = f(5)
for all S € N. Now, given a probability distribution D over
2V, we define a probability distribution over E as follows:
Prp/[Eg] = Prp[S] for all S C N, and is O for all other
subsets of E.

We conclude that efficiently PAC learning flow under the
distribution D’ is equivalent to PAC learning f, which cannot
be done efficiently by Lemma 4.1. O

Learning network flow games is thus generally a difficult
task. In order to obtain some notions of tractability, let us
study a variant of network flow games, where we limit our
attention to sets that constitute paths in I'. In other words, we
limit our attention to distributions D such that if D assigns
some positive probability to a set S, then S must be an s-
t path in I'. One natural example of such a distribution is
the following: we make graph queries on I' by performing a
random walk on I' until we either reach ¢ or have traversed
more than | V| vertices.

Given a directed path p = (wq,...,wg), we let w(p) be
the flow that can pass through p; that is, w(p) = min.e, we.

Theorem 4.3. Network flow games are efficiently PAC learn-
able if we limit D to be a distribution over paths in T.

Proof. Given an input ((p1,v1),- .., (Pm, Um)), we let @,
manieep]. Vy.

We observe that the weights (@W.)ecp are such that
w(pj) = w(p;) for all j € [m]. This is because for any
e € pj, We = Vj, SO mineepj W, > v;. On the other hand,
w, < w, forall e € E, since w, > v; for all v; such that
e € pj, and in particular we > maxj.eep; Vj = We. Thus,
Mileep, We < Mileep, we = v;. In other words, by sim-
ply taking edge weights to be the maximum flow that passes
through them in the samples, we obtain a graph that is con-
sistent with the sample in polynomial time.



Now, suppose that the set of weights on the edges of
the graph according to the target weights w. is given by
{a1,...,ar}, where k < n. Then there are (k + 1)” <
(n 4+ 1)™ possible ways of assigning values (@, ).cp to the
edges in E. In other words, there are at most (n + 1)"
possible hypotheses to test. Thus, in order to (e, d)-learn
(we)ec &, where the hypothesis class C is of size < (n +1)",
we need a number of samples polynomial in é,log% and
log |C] € O(nlogn).

Corollary 4.4. Network flow games are efficiently PAC sta-
bilizable if we limit D to be a distribution over paths in T.

Proof. Theorem 4.3 establishes that if one is limited to path
queries, network flow games are efficiently PAC learnable. In
order to prove PAC stabilizability, we need to show that core
outcomes can be found in polynomial time.

It is well-known that computing core outcomes in network
flow games is easy: given an edge set C' C E that is a mini-
mum cut in the graph, pay each e € C' an amount equal to the
flow that passes through it. We conclude that finding prob-
ably stable outcomes for network flow games can be done
in polynomial time if we limit ourselves to path queries on
T. 0

4.2 Threshold Task Games

In Threshold task games (TTG) each player ¢ € N has an in-
teger weight w;; there is a finite list of tasks 7, and each task
t € T is associated with a threshold ¢(¢) and a payoff V' (¢).
Given a coalition S C N, welet T|s = {t € T | q(t) <
w(S)}. The value of S is given by v(S) = max,ey|, V(t).
In other words, v(S) is the value of the most valuable task
that .S can accomplish. Weighted voting games (WVGs) are
the special case of TTGs with a single task, whose value is 1;
that is, they describe linear classifiers.

Without loss of generality we can assume that all tasks in 7~
have strictly monotone thresholds and values: if ¢(t) > ¢(t')
then V'(¢) > V (¢'). Otherwise, we will have some redundant
tasks. For ease of exposition, we assume that there is some
task whose value is 0 and whose threshold is 0. Let Cy,(Q)
be the class of k-TTGs for which the set of task values Q C R
of size k. The first step of our proof is to show that Cy;,(Q) is
PAC learnable.

Lemma 4.5. The class Cy,4(Q) is PAC learnable

Proof Sketch. In order to show this, we first bound the sample
complexity of Cy4(Q). We claim that Pdim(Cy4(Q)) < (k+
1)(n+ 2). The proof relies on the fact that the VC dimension
of linear functions is n + 1.

Assume by contradiction that there exists some S of size L,
where L = (k+1)(n+2), and some values r1,...,r; € Ry
such that for all b € {0, 1} there is some TTG f, € Cyt4(Q)
such that fy(S;) > r; when b; = 1, and f,,(S;) < r;
when b; = 0. We assume that 0 < r; < --- < rp. Let
us write the task set to 7 = {¢1,...,%;}, each with a value
V(t¢) € Q; we order our tasks by increasing value. Now, by
the pigeonhole principle, there exists some task ¢, and some
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J* such that 7=, ..., 7y (ni1y € [V(te),V(tey1)). In par-
ticular, if we write S* = {S;-,..., S}« (n+1)} then for ev-
ery b € {0,1}%, there is some fi, € Cuy(Q) (defined by
an agent weight vector wy,, and task thresholds le, e T,?),
such that for all S; € S*, if f,(S;) > r; it must be that
fb( ) > Vy, le., Wb(Sj) > Tgb. If fb(Sj) < T then
Wh (S ) < TP. Thus, ((wp, TP))p is a set of n-dimensional
linear classifiers that is able to shatter a set of size n+2, a con-
tradiction. To conclude, Pdim(Cuy(Q)) < (k+ 1)(n + 2),
which implies that the sample complexity for PAC learning
TTGs is polynomial.

It is easy to constuct an efficient algorithm that is consis-
tent with any sample from Cy;,(Q) via linear programming

(details omitted). O

The following lemma (proof omitted) shows that if we take
a sufficient number of samples, a game v € Cy, can be PAC
approximated by a game U € Cy,4(Q), where () are the ob-
served values of v.

Lemma 4.6. Given m > (k 4 1)1 log 5 independent sam-
ples (S1,v(51)); - -, (Sm,v(Sw)) from v € Cyy; let Q =
Uiz {v(S5)}- The event PrSND[v(S) ¢ Q] < € occurs with
probability at least 1 — 0.

Theorem 4.7. Let Cyy be the class of k-TTGs; then Cyy is
PAC learnable.

Proof Sketch. Let (S1,v(S1)), ..., (Sm,v(Sm)) be our set
of samples. According to Lemma 4.6, we can choose m such
that with probability > 1 — 2, Prg.p[v(S) ¢ Q] <

let © be the TTG v with the set of tasks reduced to Q; that is
o(S) = v(S) if v(S) € Q, and is the value of the best task
that S' can complete whose value is in () otherwise. Thus, we
can pretend that our input is from ¥ € Cyu,(Q). According
to Lemma 4 5, if m is sufficiently large then with probabil-
ity > 1 — § we will output some v* € Cyu,y(Q) such that
Prs.p[v (Sg v*(9)] > 5. Thus, with probability
> 1 — 4, we have that both Prg.p[0(S) = v*(S)] > 1 - §
and Prs.p[v(S) = ©(S)] > 1—5. We claim that v* PAC ap-
proximates v. Indeed, it is easy to verify that Prg..p[v(S) #
v*(9)] < Prgp[v(S) # 9(S)] + Prs.p[o(S) # v*(S%

which is at most ¢.

We observe that the output of the algorithm described in
Theorem 4.7 is a TTG for which coalition values do not
exceed values in the original TTG. However, this does not
guarantee that we can obtain a stable outcome using this
method, unless we assume that the value of the original game
is known. Indeed, it is possible that the core of the original
game is not empty, whereas the learned game has an empty
core.

Finally, even if we are able to PAC learn and output a TTG
with a non-empty core, it is not necessarily the case that a
core outcome can be computed in polynomial time. This is
because computing the core of a TTG is known to be NP-
hard [Chalkiadakis et al., 2010], unless weights are given in
unary (i.e. the bit precision is polylogarithmic).

Corollary 4.8. If the value v(N) is known, the class of TTGs
with poly-size weights and values is PAC stabilizable.



4.3 Induced Subgraph Games

An induced subgraph game (ISG) is given by a weighted
graph I' = (IV, E), where for every pairi,j € N, w;; € Z
denotes the weight of the edge between ¢ and j. We let W
be the weighted adjacency matrix of I". The value of a coali-
tion S C Nis given by v(S) = >_,c 5D e Wijs i-e. the
value of a set of nodes is the weight of their induced subgraph.

Theorem 4.9. The class of induced subgraph games is effi-
ciently PAC learnable.

Proof Sketch. Let W be the (unknown) weighted adjacency
matrix of I'. Let us write eg to be the indicator vector for the
set S'in R™. That is, the i-th coordinate of eg is 1 if 7 € S, and
is 0 otherwise. We observe that in an ISG, v(S) = ef,Wes.
In other words, learning the coefficients of an ISG is equiv-
alent to learning a linear function with O(n?) variables (one
per vertex pair), which is known to have polynomial sample
complexity [Anthony and Bartlett, 2009].

Now, given observations (S1,v1), .., (Sm, Um), we need
to solve a linear system with m constraints (one per sample),
and O(n?) variables (one per vertex pair, as above), which is
solvable in polynomial time. The output of this linear opti-
mization is guaranteed to be consistent, and since a solution
exists (namely, W), we have a simple consistent poly-time
algorithm, and conclude that the class of ISGs is efficiently
PAC learnable. O

It is well known that computing a core outcome for ISGs is
NP-hard [Deng and Papadimitriou, 1994], unless all weights
are non-negative (in which case the core is never empty). In
order to ensure that we find a PAC stable outcome for the
latter case, we can slightly modify the solution by searching
for a non-negative solution. If a solution exists, we have ob-
tained an outcome that is PAC stable; if not, we drop the non-
negativity assumption, but are not guaranteed a poly-time al-
gorithm for finding a core outcome, nor its existence.

4.4 Additional Classes of Cooperative Games

Before we conclude, we present a brief overview of additional
results obtained for other classes of cooperative games.
k-WVGs: In weighted voting games (WVGs), each player
¢ € N has an integer weight w;; the weight of a coalition S C
N is defined as w(S) = > ,cgw;. A coalition is winning
(has value 1) if w(S) > ¢, and has a value of 0 otherwise.
Here, q is a given threshold, or quota. The class of k-vector
WVGs is a simple generalization of weighted voting games
given by Elkind ez al. [2009]. A k-vector WVG is given by k
WVGs: (wi;q1), ..., (Wk;qr). Aset S C N is winning if it
is winning in every one of the k WVGs.

Learning a weighted voting game is equivalent to
learning a separating hyperplane, which is known to be
easy [Kearns and Vazirani, 1994]. However, learning k-
vector WVGs is equivalent to learning the intersection of
k-hyperplanes, which is known to be NP-hard even when
k = 2 [Alekhnovich et al., 2004; Blum and Rivest, 1992;
Klivans et al., 2002]. Thus, k-WVGs are not efficiently
PAC learnable, unless P=NP; however, since they are simple
and monotone, they are PAC stabilizable according to Theo-
rem 3.3.
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Coalitional Skill Games: Coalitional Skill Games
(CSGs) [Bachrach and Rosenschein, 2008] are another well-
studied class of cooperative games. Here, each player ¢ has a
skill-set K(;; additionally, there is a list of tasks 7, each with
a set of required skills ;. Given a set of players S C N, let
K (S) be the set of skills that the players in S have. Let 7 (.5)
be the set of tasks {t € T | kx C K(S)}. The value of the
set 7(.S) can be determined by various utility models; for ex-
ample, setting v(S) = |7 (S)|, or assuming that there is some
subset of tasks 7* C T such that v(S) = 1iff 7* C T(S5);
the former class of CSGs is known as conjunctive task skill
games (CTSGs).

PAC learnability of coalitional skill games is generally
computationally hard. This holds even if we make some sim-
plifying assumptions; for example, even if we know the set of
tasks and their required skills in advance, or if we know the
set of skills each player possesses, but the skills required by
tasks are unknown. However, we can show that CTSGs are
efficiently PAC learnable if player skills are known.
MC-nets: Marginal Contribution Nets (MC-nets) [leong
and Shoham, 2005] provide compact representation for co-
operative games. Briefly, an MC-net is given by a list of
rules over the player set IV, along with values. A rule is a
Boolean formula ¢; over N, and a value v;. For example,
r = x1 Va2 V-xg — 7 assigns a value of 7 to all coali-
tions containing players 1 and 2, but not player 3. Given a
list of rules, the value of a coalition is the sum of all values of
rules that apply to it. PAC learning MC-nets can be reduced
to PAC learning of DNF formulas, which is believed to be
intractable [Klivans and Servedio, 2001].

5 Discussion

Our work is limited to finding outcomes that are likely to be
stable for an unknown function. However, learning approx-
imately stable outcomes is a promising research avenue as
well. Such results naturally relate approximately stable out-
comes — such as the ¢ and least core [Peleg and Sudhdlter,
20071, or the cost of stability [Bachrach et al., 2009] — with
PMAC learning algorithms [Balcan and Harvey, 2011], which
seek to approximate a target function (M stands for “mostly”)
with high accuracy and confidence.

This work has focused on the core solution concept; how-
ever, learning other solution concepts is a natural extension.
While some solution concepts, such as the nucleolus or the
approximate core variants mentioned above, can be naturally
extended to cases where only a subset of the coalitions is ob-
served, it is less obvious how to extend solution concepts such
as the Shapley value or Banzhaf power index. These concepts
depend on the marginal contribution of player ¢ to coalition
S, ie., v(SU{i}) —v(S). Under the Shapely value, we are
interested in the expected marginal contribution when a per-
mutation of the players is drawn uniformly at random, and
¢ joins previous players in the permutation. According to
Banzhaf, S is drawn uniformly at random from all subsets
that do not include ¢. Both solution concepts are easy to ap-
proximate if we are allowed to draw coalition values from the
appropriate distribution [Bachrach er al., 2010] — this is a
good way to circumvent computational complexity when the



game is known. It would be interesting to understand what
guarantees we obtain for arbitrary distributions.
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