Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Limited Lookahead in Imperfect-Information Games

Christian Kroer and Tuomas Sandholm
Computer Science Department
Carnegie Mellon University
ckroer@cs.cmu.edu, sandholm@cs.cmu.edu

Abstract

Limited lookahead has been studied for decades
in perfect-information games. This paper initiates a
new direction via two simultaneous deviation points:
generalization to imperfect-information games and
a game-theoretic approach. The question of how one
should act when facing an opponent whose looka-
head is limited is studied along multiple axes: looka-
head depth, whether the opponent(s), too, have im-
perfect information, and how they break ties. We
characterize the hardness of finding a Nash equilib-
rium or an optimal commitment strategy for either
player, showing that in some of these variations the
problem can be solved in polynomial time while in
others it is PPAD-hard or NP-hard. We proceed to
design algorithms for computing optimal commit-
ment strategies for when the opponent breaks ties
1) favorably, 2) according to a fixed rule, or 3) ad-
versarially. The impact of limited lookahead is then
investigated experimentally. The limited-lookahead
player often obtains the value of the game if she
knows the expected values of nodes in the game
tree for some equilibrium, but we prove this is not
sufficient in general. Finally, we study the impact
of noise in those estimates and different lookahead
depths. This uncovers a lookahead pathology.
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Limited lookahead has been a central topic in Al game play-
ing for decades. To date, it has been studied in single-agent
settings and perfect-information games—specifically in well-
known games such as chess, checkers, Go, etc., as well as
in random game tree models [Korf, 1990; Pearl, 1981; 1983;
Nau, 1983; Nau et al., 2010; Bouzy and Cazenave, 2001;
Ramanujan et al., 2010; Ramanujan and Selman, 2011]. In this
paper, we initiate the game-theoretic study of limited looka-
head in imperfect-information games. Such games are more
broadly applicable to practical settings—for example auctions,
negotiations, security, cybersecurity, and medical settings—
than perfect-information games. Mirrokni er al. [2012] con-
ducted a game-theoretic analysis of lookahead, but they con-
sider only perfect-information games, and the results are for
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four specific games rather than broad classes of games. In-
stead, we analyze the questions for imperfect information and
general-sum extensive-form games.

As is typical in the literature on limited lookahead in perfect-
information games, we derive our results for a two-agent
setting. One agent is a rational player (Player r) trying to
optimally exploit a limited-lookahead player (Player [). Our
results extend immediately to one rational player and more
than one limited-lookahead player, as long as the latter all
break ties according to the same scheme (statically, favorably,
or adversarially—as described later in the paper). This is be-
cause such a group of limited-lookahead players can be treated
as one from the perspective of our results.

The type of limited-lookahead player we introduce is anal-
ogous to that in the literature on perfect-information games.
Specifically, we let the limited-lookahead player [ have a node
evaluation function h that places numerical values on all nodes
in the game tree. Given a strategy for the rational player, at
each information set at some depth ¢, Player [ picks an action
that maximizes the expected value of the evaluation function
at depth 7 + k, assuming optimal play between those levels.
Our study is the game-theoretic, imperfect-information gen-
eralization of lookahead questions studied in the literature
and therefore interesting in its own right. The model also has
applications such as biological games, where the goal is to
steer an evolution or adaptation process (which typically acts
myopically with lookahead 1) [Sandholm, 2015] and security
games where opponents are often assumed to be myopic (as
makes sense when the number of adversaries is large [Yin
et al., 2012]). Furthermore, investigating how well a rational
player can exploit a limited-lookahead player lends insight
into the limitations of using limited-lookahead algorithms in
multiagent decision making.

We then design algorithms for finding an optimal strategy
to commit to for the rational player. We focus on this rather
than equilibrium computation because the latter seems nonsen-
sical in this setting: the limited-lookahead player determining
a Nash equilibrium strategy would require her to reason about
the whole game for the rational player’s strategy, which rings
contrary to the limited-lookahead assumption. Computing op-
timal strategies to commit to in standard rational settings has
previously been studied in normal-form games [Conitzer and
Sandholm, 2006] and extensive-form games [Letchford and
Conitzer, 2010], the latter implying some complexity results



for our setting as we will discuss.

As in the literature on lookahead in perfect-information
games, a potential weakness of our approach is that we re-
quire knowing the evaluation function A (but make no other
assumptions about what information A encodes). In practice,
this function may not be known. As in the perfect-information
setting, this can lead to the rational exploiter being exploited.

2 Extensive-form games

We start by defining the class of games that the players will
play, without reference to limited lookahead. An extensive-
form game T is atuple (N, A, S, Z, H, 0p,u,T). N is the set
of players. A is the set of all actions in the game. S is a set of
nodes corresponding to sequences of actions. They describe
a tree with root node s” € S. At each node s, it is the turn of
some Player i to move. Player i chooses among actions A,
and each branch at s denotes a different choice in A,. Let ¢
be the node transitioned to by taking action ¢ € A, at node
s. The set of all nodes where Player i is active is called S;.
Z C S is the set of leaf nodes. The utility function of Player
tisu; : Z — R, where u;(2) is the utility to Player ¢ when
reaching node z. We assume, without loss of generality, that
all utilities are non-negative. Z, is the subset of leaf nodes
reachable from a node s. H; C H is the set of heights in
the game tree where Player ¢ acts. Certain nodes correspond
to stochastic outcomes with a fixed probability distribution.
Rather than treat those specially, we let Nature be a static
player acting at those nodes. Hj is the set of heights where
Nature acts. o specifies the probability distribution for Nature,
with o¢(s,a) denoting the probability of Nature choosing
outcome a at node s. Imperfect information is represented
in the game model using information sets. Z; C 7 is the set
of information sets where Player ¢ acts. Z; partitions .S;. For
nodes s1,s2 € I, 1 € Z;, Player ¢ cannot distinguish among
them, and so A;, = A, = Ar.

We denote by o; : S; — [0,1] a behavioral strategy for
Player ¢. For each information set I € Z,, it assigns a proba-
bility distribution over Aj, the actions at the information set.
0;(1,a) is the probability of playing action a at information
set I. A strategy profile 0 = (0y,...,0,) consists of a be-
havioral strategy for each player. We will often use o (1, a)
to mean o; (I, a), since the information set specifies which
Player ¢ is active. As described above, randomness external to
the players is captured by the Nature outcomes oy.

Let the probability of going from node s to node § under
strategy profile o be 77(s,5) = I(5a)ex, ,0(5,a) where
X 5 is the set of node-action pairs on the path from s to 5. We
let the probability of reaching node s be 77 (s) = 7°(s", s),
the probability of going from the root node to s. Let 77 (I) =
> _sc1 T (s) be the probability of reaching any node in /. Due
to perfect recall, we have 77 (I) = 77 (s) for all s € I. For
probabilities over Nature, 7§ = wg for all 0,5, so we can
ignore the strategy profile superscript and write 7. Finally,
for all behavioral strategies, the subscript —: refers to the same
definition, excluding Player i. For example, 77 ,(s) denotes
the probability of reaching s over the actions of the players
other than 1, that is, if ¢ played to reach s with probability 1.
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3 Model of limited lookahead

We now describe our model of limited lookahead. We use the
term optimal hypothetical play to refer to the way the limited-
lookahead agent thinks she will play when looking ahead from
a given information set. In actual play part way down that plan,
she may change her mind because she will then be able to see
to a deeper level of the game tree.

Let k be the lookahead of Player /, and S fa the nodes at
lookahead depth k below information set I that are reach-
able (through some path) by action a. As in prior work in
the perfect-information game setting, Player [ has a node-
evaluation function i : S — R that assigns a heuristic numeri-
cal value to each node in the game tree.

Given a strategy o, for the other player and fixed action
probabilities for Nature, Player [ chooses, at any given infor-
mation set I € 7Z; at depth ¢, a (possibly mixed) strategy whose
support is contained in the set of actions that maximize the
expected value of the heuristic function at depth ¢ 4 k, assum-
ing optimal hypothetical play by her (max,, in the formula
below). We will denote this set by A3

T (s)
a7 ()

S w7t ()},

SIES?,O,

{a : a € arg max max
a€A; oy

where 0 = {0y, 0, } is the strategy profile for the two players.
Here moves by Nature are also counted toward the depth of the
lookahead. The model is flexible as to how the rational player
chooses ¢, and how the limited-lookahead player chooses a
(possibly mixed) strategy with supports within the sets A7.
For one, we can have these choices be made for both players
simultaneously according to the Nash equilibrium solution
concept. As another example, we can ask how the players
should make those choices if one of the players gets to make,
and commit to, all her choices before the other.

4 Complexity

In this section we analyze the complexity of finding strategies
according to these solution concepts.

Nash equilibrium. Finding a Nash equilibrium when Player
[ either has information sets containing more than one node,
or has lookahead at least 2, is PPAD-hard [Papadimitriou,
1994]. This is because finding a Nash equilibrium in a 2-
player general-sum normal-form game is PPAD-hard [Chen ef
al., 2009], and any such game can be converted to a depth 2
extensive-form game, where the general-sum payoffs are the
evaluation function values.

If the limited-lookahead player only has singleton informa-
tion sets and lookahead 1, an optimal strategy can be trivially
computed in polynomial time in the size of the game tree
for the limited-lookahead player (without even knowing the
other player’s strategy o,.): for each of her information sets,
we simply pick an action that has highest immediate heuristic
value. To get a Nash equilibrium, what remains to be done is
to compute a best response for the rational player, which can
also be easily done in polynomial time [Johanson erf al., 2011].

Commitment strategies. Next we study the complexity of
finding commitment strategies (that is, finding a strategy for



the rational player to commit to, where the limited lookahead
player then responds to that strategy.). The complexity depends
on whether the game has imperfect information (information
sets that include more than one node) for the limited-lookahead
player, how far that player can look ahead, and how she breaks
ties in her action selection.

When ties are broken adversarially, the choice of response
depends on the choice of strategy for the rational player. If
Player [ has lookahead one and no information sets, it is easy
to find the optimal commitment strategy: the set of optimal
actions A’ for any node s € S; can be precomputed, since
Player r does not affect which actions are optimal. Player [
will then choose actions from these sets to minimize the utility
of Player r. We can view the restriction to a subset of actions
as a new game, where Player [ is a rational player in a zero-
sum game. An optimal strategy for Player r to commit to is
then a Nash equilibrium in this smaller game. This is solvable
in polynomial time by an LP that is linear in the size of the
game. The problem is hard without either of these assumptions.
This is shown in an extended online version.

S Algorithms

In this section we will develop an algorithm for solving the
hard commitment-strategy case. Naturally its worst-case run-
time is exponential. As mentioned in the introduction, we
focus on commitment strategies rather than Nash equilibria
because Player [ playing a Nash equilibrium strategy would
require that player to reason about the whole game for the op-
ponent’s strategy. Further, optimal strategies to commit to are
desirable for applications such as biological games [Sandholm,
2015] (because evolution is responding to what we are doing)
and security games [Yin er al., 2012] (where the defender
typically commits to a strategy).

Since the limited-lookahead player breaks ties adversarially,
we wish to compute a strategy that maximizes the worst-case
best response by the limited-lookahead player. For argument’s
sake, say that we were given .4, which is a fixed set of pairs,
one for each information set I of the limited-lookahead player,
consisting of a set of optimal actions A} and one strategy for
hypothetical play o/ at I. Formally, A = J, 1, (A}, 0]). To
make these actions optimal for Player [, Player » must choose a
strategy such that all actions in A are best responses according
to the evaluation function of Player /. Formally, for all action
triples a,a* € A,a’ ¢ A (letting 7(s) denote probabilities
induced by all for the hypothetical play between I, a and s):

Z 7w(s) - h(s) > Z m(s) - h(s) (1)
s€sy , sesy

S owls) h(s)= Y w(s)-h(s) 2)
seSk SESY

Player r chooses a worst-case utility-maximizing strategy that
satisfies (1) and (2), and Player [ has to compute a (possibly
mixed) strategy from A such that the utility of Player r is
minimized. This can be solved by a linear program:

Theorem 1. For some fixed choice of actions A, Nash equilib-
ria of the induced game can be computed in polynomial time
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by a linear program that has size O(|S|) + O(3_ ez, |A1l -

max,es | As|").

To prove this theorem, we first design a series of linear
programs for computing best responses for the two players.
We will then use duality to prove the theorem statement.

In the following, it will be convenient to change to matrix-
vector notation, analogous to that of von Stengel [1996], with
some extensions. Let A = —B be matrices describing the
utility function for Player r and the adversarial tie-breaking of
Player [ over A, respectively. Rows are indexed by Player
sequences, and columns by Player [ sequences. For sequence
form vectors x,y, the objectives to be maximized for the
players are then x Ay, x By, respectively. Matrices F, F' are
used to describe the sequence form constraints for Player r
and [, respectively. Rows correspond to information sets, and
columns correspond to sequences. Letting e, f be standard
unit vectors of length |Z,.|, |Z;|, respectively, the constraints
Ex = e, Fy = f describe the sequence form constraint for
the respective players. Given a strategy x for Player r satis-
fying (1) and (2) for some .A, the optimization problem for
Player | becomes choosing a vector of ' representing prob-
abilities for all sequences in A that minimize the utility of
Player r. Letting a prime superscript denote the restriction
of each matrix and vector to sequences in A, this gives the
following primal (3) and dual (4) LPs:

max (z! B')y’ min ¢Tf
Yy’ a’
Fly = f' 3) ¢TF > 2TB 4)
y=>0

where ¢’ is a vector with |A| + 1 dual variables. Given
some strategy y’ for Player [, Player » maximizes utility
among strategies that induce A. This gives the following best-
response LP for Player r:

max z” (Ay')

T

TET _ .,

x
x>0
eTH 4 —aTHy < —e

2TG g = 2TG 4

(&)

where the last two constraints encode (1) and (2), respectively.
The dual problem uses the unconstrained vectors p, v and
constrained vector u and looks as follows

min eTp —€ U
p,u,v
ETp—I—(H_,A—HA)U-i-(G_A* —GA)’U > A/y/ ©)
u>0

We can now merge the dual (4) with the constraints from the
primal (5) to compute a minimax strategy: Player r chooses x,



which she will choose to minimize the objective of (4),

min ¢'Tf'
z,q’
q/TF/ 7$TB/ > 0
_TpT _ _ T
x>0
xTHA —:,CTHﬂA > €
"Gy —2"Ga =0
Taking the dual of this gives
max —eTp +e-u
y'.p
—ETP+(HA—HﬁA)u-f—(GA—G_A*)’USB/y/ (8)
F/ /: f/
y,u =0

We are now ready to prove Theorem 1.

Proof. The LPs in Theorem 1 are (7) and (8). We will use
duality to show that they provide optimal solutions to each of
the best response LPs. Since A = — B, the first constraint in
(8) can be multiplied by —1 to obtain the first constraint in (6)
and the objective function can be transformed to that of (6) by
making it a minimization. By the weak duality theorem, we
get the following inequalities

¢Tf > 2T B'y; by LPs (3) and (4)
el'p—e-u>aTA'y'; by LPs (5) and (6)
We can multiply the last inequality by —1 to get:

q’Tf/ZxTB’/z—a:TA’y’Z—eTp—ke-u (9)
By the strong duality theorem, for optimal solutions to LPs (7)
and (8) we have equality in the objective functions ¢'* f’
—e'p + eu which yields equality in (9), and thereby equality
for the objective functions in LPs (3), (4) and for (5), (6). By
strong duality, this implies that any primal solution x, ¢’ and
dual solution ', p to LPs (7) and (8) yields optimal solutions
to the LPs (3) and (5). Both players are thus best responding
to the strategy of the other agent, yielding a Nash equilibrium.
Conversely, any Nash equilibrium gives optimal solutions z, y’
for LPs (3) and (5). With corresponding dual solutions p, ¢/,
equality is achieved in (9), meaning that LPs (7) and (8) are
solved optimally.

It remains to show the size bound for LP (7). Using sparse
representation, the number of non-zero entries in the matrices
A, B, E, F is linear in the size of the game tree. The constraint
set T H 4 — 2T H_ 4 > €, when naively implemented, is not.
The value of a sequence a ¢ A% is dependent on the choice
among the cartesian product of choices at each information
set I’ encountered in hypothetical play below it. In practice
we can avoid this by having a real-valued variable v¢(I") rep-
resenting the value of I’ in lookahead from I, and constraints
vi(I") > v¥(I',a) for each a € I', where v¢(I', a) is a vari-
able representing the value of taking a at I’. If there are more
information sets below I’ where Player [ plays, before the
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lookahead depth is reached, we recursively constrain v

to be:
vi(I'a) = Y vf(d)
IeD
where D is the set of information sets at the next level where
Player [ plays. If there are no more information sets where
Player [ acts, then we constrain v§(I’, a):

v(I',a) > Z 77 ,h(s)

.cgk
sESI,,a

(L' a)

(10)

(1)

Setting it to the probability-weighted heuristic value of the
nodes reached below it. Using this, we can now write the
constraint that @ dominates all a’ € I,a’ ¢ A as:

S 77(s)h(s) > o (D)

s€SY ,

There can at most be O(3_ .7, |Ar]) actions to be made dom-
inant. For each action at some information set I, there can

be at most O(max,cg |As \mm{k’k/}) entries over all the con-
straints, where k' is the maximum depth of the subtrees rooted
at I, since each node at the depth the player looks ahead to
has its heuristic value added to at most one expression. For the
constraint set 27 G 4 —27 G 4~ = 0, the choice of hypothetical
plays has already been made for both expressions, and so we
have the constraint

Y 77(s)h(s)

sES?a

Z w7 (s)h(s)
sESf,a,
forall I € Z;,a,a’ € I,{a,c'},{da’, 0"} € A, where

o={o_1,0}, 0 ={o_;,0"}

There can at mostbe > ;7 |As |? such constraints, which is
dominated by the size of the previous constraint set.

Summing up gives the desired bound. O

In reality we are not given A. To find a commitment strat-
egy for Player r, we could loop through all possible structures
A, solve LP (7) for each one, and select the one that gives
the highest value. We now introduce a mixed-integer program
(MIP) that picks the optimal induced game A while avoiding
enumeration. The MIP is given in (12). We introduce Boolean
sequence-form variables that denote making sequences sub-
optimal choices. These variables are then used to deactivate
subsets of constraints, so that the MIP branches on formula-
tions of LP (7), i.e., what goes into the structure .A. The size
of the MIP is of the same order as that of LP (7).

min ¢’ f
z,q,2
¢'F >2"B— =M
Exr=e

,TTH_AZ.ITH_‘A—l—e—(l—Z)M
xTGA::ETG_A* :|:(1—Z)M

Z Za > Za'

ac€Ag
x>0,

12)

z€{0,1}



The variable vector = contains the sequence form variables
for Player 7. The vector q is the set of dual variables for Player
l. z is a vector of Boolean variables, one for each Player [
sequence. Setting z, = 1 denotes making the sequence a an
inoptimal choice. The matrix M is a diagonal matrix with suf-
ficiently large constants (e.g. the smallest value in B) such that
setting z, = 1 deactivates the corresponding constraint. Sim-
ilar to the favorable-lookahead case, we introduce sequence
form constraints ) A, Za 2 Zar Where a’ is the parent se-
quence, to ensure that at least one action is picked when the
parent sequence is active. We must also ensure that the incen-
tivization constraints are only active for actions in .A:

eTHy—a"H g >e—(1—-2)M
2TGA—2TGpe =0+ (1—2)M

13)

for diagonal matrices M with sufficiently large entries. Equal-
ity is implemented with a pair of inequality constraints {<, >},
where 4 denotes adding or subtracting, respectively.

The values of each column constraint in (13) is implemented
by a series of constraints. We add Boolean variables of (I’, a’)
for each information set action pair I’; a’ that is potentially
chosen in hypothetical play at /. Using our regular notation,
for each a, a’ where a is the action to be made dominant, the
constraint is implemented by:

Z vi(s) > vi(I), vi(s) <ol (I',a') - M

sES?a

(14)

where the latter ensures that v*(s) is only non-zero if chosen
in hypothetical play. We further need the constraint v’(s) <
77,(s)h(s) to ensure that v*(s), for a node s at the lookahead
depth, is at most the heuristic value weighted by the probability
of reaching s.

6 Experiments

In this section we experimentally investigate how much utility
can be gained by optimally exploiting a limited-lookahead
player. We conduct experiments on Kuhn poker [Kuhn, 19501,
a canonical testbed for game-theoretic algorithms, and a larger
simplified poker game that we call KJ. Kuhn poker consists
of a three-card deck: king, queen, and jack. Each player antes
1. Each player is then dealt one of the three cards, and the
third is put aside unseen. A single round of betting (p = 1)
then occurs. In KJ, the deck consists of two kings and two
jacks. Each player antes 1. A private card is dealt to each,
followed by a betting round (p = 2), then a public card is
dealt, follower by another betting round (p = 4). If no player
has folded, a showdown occurs. For both games, each round
of betting looks as follows:
e Player 1 can check or bet p.
— If Player 1 checks Player 2 can check or raise p.
* If Player 2 checks the betting round ends.
* If Player 2 raises Player 1 can fold or call.
- If Player 1 folds Player 2 takes the pot.
- If Player 1 calls the betting round ends.
— If Player 1 raises Player 2 can fold or call.
x If Player 2 folds Player 1 takes the pot.
x If Player 2 calls the betting round ends.
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In Kuhn poker, the player with the higher card wins in a
showdown. In KJ, showdowns have two possible outcomes:
one player has a pair, or both players have the same private
card. For the former, the player with the pair wins the pot. For
the latter the pot is split. Kuhn poker has 55 nodes in the game
tree and 13 sequences per player. The KJ game tree has 199
nodes, and 57 sequences per player.

To investigate the value that can be derived from exploiting
a limited-lookahead opponent, a node evaluation heuristic is
needed. In this work we consider heuristics derived from a
Nash equilibrium. For a given node, the heuristic value of
the node is simply the expected value of the node in (some
chosen) equilibrium. This is arguably a conservative class
of heuristics, as a limited-lookahead opponent would not be
expected to know the value of the nodes in equilibrium. Even
with this form of evaluation heuristic it is possible to exploit
the limited-lookahead player, as we will show. We will also
consider Gaussian noise being added to the node evaluation
heuristic, more realistically modeling opponents who have
vague ideas of the values of nodes in the game. Formally, let
o be an equilibrium, and ¢ the limited-lookahead player. The
heuristic value h(s) of a node s is:

h(s) = {ui(s) ifseZ

Y aca, 0(s,a)h(t;) otherwise
We consider two different noise models. The first adds Gaus-
sian noise with mean 0 and standard deviation y independently
to each node evaluation, including leaf nodes. Letting i be
a noise term drawn from AN (0,7): h(s) = h(s) + us. The
second, more realistic, model adds error cumulatively, with no
error on leaf nodes:
w;(8) ifseZ

o) { [ZaeAs o(s,a)h(ts)] + ps  otherwise

Using MIP (12), we computed optimal strategies for the
rational player in Kuhn poker and KJ. The results are given in

Figure 1. The x-axis is the noise parameter y for h and h. The
y-axis is the corresponding utility for the rational player, aver-
aged over at least 1000 runs per tuple (game, choice of rational
player, lookahead, standard deviation). Each figure contains
plots for the limited-lookahead player having lookahead 1 or 2,
and a baseline for the value of the game in equilibrium without
limited lookahead.

Figures 1a and b show the results for using evaluation func-
tion & in Kuhn poker, with the rational player in plot a and b
being Player 1 and 2, respectively. For rational Player 1, we
see that, even with no noise in the heuristic (i.e., the limited-
lookahead player knows the value of each node in equilibrium),
it is possible to exploit the limited-lookahead player if she has
lookahead 1. (With lookahead 2 she achieves the value of
the game.) For both amounts of lookahead, the exploitation
potential steadily increases as noise is added.

Figures 1c and d show the same variants for KJ. Here,
lookahead 2 is worse for the limited-lookahead player than
lookahead 1. To our knowledge, this is the first known
imperfect-information lookahead pathology. Such patholo-
gies are well known in perfect-information games [Beal, 1980;
Pearl, 1981; Nau, 1983], and understanding them remains an

5)

16)
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Figure 1: Winnings in Kuhn poker and KJ for the rational
player as Player 1 and 2, respectively, for varying evaluation
function noise. Error bars show standard deviation.

1,0
0
P1P2*< L
0 P1*<
0«

Figure 2: A subtree that exhibits lookahead pathology.

active area of research [Lustrek et al., 2006; Nau et al., 2010;
Wilson et al., 2012]. This version of the node heuristic does
not have increasing visibility: node evaluations do not get more
accurate toward the end of the game. Our experiments on KJ
with h in Figures 1g and h do not have this pathology, and h
does have increasing visibility.

Figure 2 shows a simple subtree (that could be attached to
any game tree) where deeper lookahead can make the agent’s
decision arbitrarily bad, even when the node evaluation func-
tion is the exact expected value of a node in equilibrium.

We now go over the example of Figure 2. Assume without
loss of generality that all payoffs are positive in some game.
We can then insert the subtree in Figure 2 as a subgame at any
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Information sets

no yes

Lookahead depth > 1

{PPAD,NP}-hard Solution concept

Equi]iwilmenl

P Tie-breaking rule

Adversarial, slalic/\l-‘avorable

P NP-hard

{PPAD,NP}-hard

Figure 3: Our complexity results. {PPAD,NP}-hard indicates
that finding a Nash equilibrium (optimal strategy to commit
to) is PPAD-hard (NP-hard). P indicates polytime.

node belonging to P1, and it will be played with probability
0 in equilibrium, since it has expected value 0. Due to this,
all strategies where Player 2 chooses up can be part of an
equilibrium. Assuming that P2 is the limited-lookahead player
and minimizing, for large enough «, the node labeled P1* will
be more desirable than any other node in the game, since it
has expected value —« according to the evaluation function.
A rational player P1 can use this to get P2 to go down at P2*,
and then switch to the action that leads to «. This example is
for lookahead 1, but we can generalize the example to work
with any finite lookahead depth: the node P1* can be replaced
by a subtree where every other leaf has payoff 2¢, in which
case P2 would be forced to go to the leaf with payoff o once
down has been chosen at P2*.

Figures le and f show the results for Kuhn poker with

h. These are very similar to the results for h, with almost
identical expected utility for all scenarios. Figures 1g and h,
as previously mentioned, show the results with h on KJ. Here
we see no abstraction pathologies, and for the setting where
Player 2 is the rational player we see the most pronounced
difference in exploitability based on lookahead.

7 Conclusions and future work

This paper initiated the study of limited lookahead in
imperfect-information games. We characterized the complex-
ity of finding a Nash equilibrium and optimal strategy to com-
mit to for either player. Figure 3 summarizes those results,
including the cases of favorable and static tie-breaking, the
discussion of which we deferred to the extended online paper.
We then designed a MIP for computing optimal strategies to
commit to for the rational player. The problem was shown to
reduce to choosing the best among a set of two-player zero-
sum games (the tie-breaking being the opponent), where the
optimal strategy for any such game can be computed with an
LP. We then introduced a MIP that finds the optimal solution
by branching on these games.

We experimentally studied the impact of limited lookahead
in two poker games. We demonstrated that it is possible to
achieve large utility gains by exploiting a limited-lookahead
opponent. As one would expect, the limited-lookahead player
often obtains the value of the game if her heuristic node eval-
uation is exact (i.e., it gives the expected values of nodes in
the game tree for some equilibrium)—but we provided a coun-
terexample that shows that this is not sufficient in general.



Finally, we studied the impact of noise in those estimates, and
different lookahead depths. While lookahead 2 usually outper-
formed lookahead 1, we uncovered an imperfect-information
game lookahead pathology: deeper lookahead can hurt the
limited-lookahead player. We demonstrated how this can oc-
cur with any finite depth of lookahead, even if the limited-
lookahead player’s node evaluation heuristic returns exact
values from an equilibrium.

Our algorithms in the NP-hard adversarial tie-breaking set-
ting scaled to games with hundreds of nodes. For some practi-
cal settings more scalability will be needed. There are at least
two exciting future directions toward achieving this. One is
to design faster algorithms. The other is designing abstraction
techniques for the limited-lookahead setting. In extensive-form
game solving with rational players, abstraction plays an im-
portant role in large-scale game solving [Sandholm, 2010].
Theoretical solution quality guarantees have recently been
achieved [Lanctot et al., 2012; Kroer and Sandholm, 2014a;
2014b]. Limited-lookahead games have much stronger struc-
ture, especially locally around an information set, and it may
be possible to utilize that to develop abstraction techniques
with significantly stronger solution quality bounds. Also, lead-
ing practical game abstraction algorithms (e.g., [Ganzfried
and Sandholm, 2014]), while theoretically unbounded, could
immediately be used to investigate exploitation potential in
larger games. Finally, uncertainty over A is an important future
research direction. This would lead to more robust solution
concepts, thereby alleviating the pitfalls involved with using
an imperfect estimate.
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