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Abstract

Learning from crowds, where the labels of data in-
stances are collected using a crowdsourcing way,
has attracted much attention during the past few
years. In contrast to a typical crowdsourcing setting
where all data instances are assigned to annotators
for labeling, active learning from crowds actively
selects a subset of data instances and assigns them
to the annotators, thereby reducing the cost of la-
beling. This paper goes a step further. Rather than
assume all annotators must provide labels, we allow
the annotators to express that they are unsure about
the assigned data instances. By adding the “unsure”
option, the workloads for the annotators are some-
what reduced, because saying “unsure” will be eas-
ier than trying to provide a crisp label for some dif-
ficult data instances. Moreover, it is safer to use
“unsure” feedback than to use labels from reluctant
annotators because the latter has more chance to be
misleading. Furthermore, different annotators may
experience difficulty in different data instances, and
thus the unsure option provides a valuable ingredi-
ent for modeling crowds’ expertise. We propose the
ALCU-SVM algorithm for this new learning prob-
lem. Experimental studies on simulated and real
crowdsourcing data show that, by exploiting the un-
sure option, ALCU-SVM achieves very promising
performance.

1 Introduction
It is often very costly (e.g., time consuming) to label an in-
stance in a real-world application. By carefully choosing a
subset of instances to label, active learning is expected to re-
sult in a good learner with less labeling cost than traditional
learning techniques. Specifically, such a subset is chosen iter-
atively with query heuristics, which may query instances that
are informative [Settles et al., 2008], representative [Nguyen
and Smeulders, 2004], or both [Huang et al., 2010].

Existing active learning approaches can be categorized as
using a single annotator [Roy and McCallum, 2001] or using
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multiple annotators [Dekel et al., 2012]. The former is re-
garded as traditional active learning and the latter, which is
essentially a kind of ensemble method [Zhou, 2012], is of-
ten referred to as Active Learning from Crowds (ALC) and
is attracting increasing research interests thanks to the devel-
opment of crowdsourcing techniques, e.g., the Amazon Me-
chanical Turk platform.

Since multiple annotators are involved, an ALC algorithm
needs to identify not only the instances to query, but also the
appropriate annotators for the chosen instances. Yet choosing
annotators is a non-trivial task, as it is unknown in advance
what instances an annotator will label correctly. Hence, esti-
mating the expertise of candidate annotators plays a key role
in ALC algorithms. So far, much effort has been made toward
this purpose [Long et al., 2013] [Yan et al., 2011]. However,
all the existing methods try to address this challenging task in
a passive way, assuming all annotators must provide labels.
This paper goes a step further, the annotators are allowed to
express that they are unsure about the assigned instances. The
“unsure” feedback is safer than the labels from reluctant an-
notators because the latter has more chance to be misleading.
Moreover, different annotators may feel difficulty in differ-
ent instances, and thus the unsure option provides a valuable
ingredient for modeling crowds’ expertise.

Motivated by this consideration, a variant of ALC, namely
Active Learning from Crowds with Unsure option (ALCU), is
formulated and investigated in this work. In ALCU, an anno-
tator not only may provide either labels to queried instances
(just like in standard ALC), but also may express that he/she
is unsure about the instances’ labels. Specifically, the contri-
butions of this work include:

1). The ALCU problem is formulated.
2). A Support Vector Machine (SVM) approach, namely

ALCU-SVM, is proposed to tackle the ALCU problem.
3). Empirical studies on both simulated and real crowd-

sourcing data are conducted, which demonstrate that
ALCU-SVM can significantly enhance the effectiveness
of ALC. Thus, the importance of providing the unsure
option in ALC is justified.

The rest of the paper is organized as follows. The related
work of ALCU is reviewed in Section 2. In Section 3, the
problem description of ALC and ALCU are presented. The
analysis of ALCU and the proposed approach ALCU-SVM
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are introduced in Section 4. Section 5 presents experimental
studies. Finally, the paper concludes with some discussions
in Section 6.

2 Related Work

As mentioned above, one of the most important issues of
learning from crowds is to model the expertise of annotators.
According to different assumptions they offer regarding an-
notators’ expertise, existing works on ALC can be catego-
rized into 3 groups:

First, in their pioneering work, Sheng and Provost [Sheng
et al., 2008] assume that an annotator gives correct labels with
a certain probability, and the probability is assumed to be the
same for all annotators in all instances. Albeit overly sim-
plified, this assumption facilitates understanding some of the
most fundamental issues of ALC.

The second type of ALC methods [Long et al., 2013] [Don-
mez et al., 2009] [Zhao et al., 2014] does not assume all an-
notators will behave exactly the same. Instead, the probability
that an annotator provides the correct label of an instance is
characterized as a function of two factors, namely the relia-
bility of the annotator and the difficulty of the instance. The
reliability of an annotator is assumed to be the same over all
instances, but reliability of one annotator may differ from that
of another. In [Donmez et al., 2009] and [Long et al., 2013],
all instances are assumed to be of the same difficulty, and
different methods are proposed to estimate the reliability of
annotators. Zhao et al. [Zhao et al., 2014] go one step further
by introducing different difficulties of instances and develop-
ing an approach to estimate both reliability of annotators and
difficulties of instances.

If the reliability of an annotator is assumed to be the same
over all instances, annotators with higher reliability will be
more likely to be chosen for all the instances. This may lead
to choosing inappropriate annotators. Alternatively, the reli-
ability of annotators could also be formulated as joint proba-
bilistic models of instances and annotators [Yan et al., 2011]
[Yan et al., 2012]. In each iteration, the joint probabilistic
models are first estimated, and then the instance to query
as well as the optimal annotator are chosen simultaneously
based on the models. This type of methods directly estimates
the probability that each annotator provides the correct label
for each instance and thus does not suffer from the drawbacks
induced by the assumptions made in the previous two cat-
egories. On the other hand, it involves a more challenging
intermediate task, i.e., estimating the accuracy of each anno-
tator in each instance, which is non-trivial to solve.

In addition to the research on ALC, it is also noteworthy
that the term “unsure option” has also been considered in
research on abstaining classifiers [Kwok, 1999] [Pietraszek,
2005] [Friedel et al., 2006]. However, these works concern
learning a classifier that can output an “unsure” label. In
ALCU, the learned classifier is not allowed to output such
a label. Instead, it is the input of a learning algorithm (i.e.,
training data) that may consist of “unsure” labels. Thus, albeit
relevant to each other, ALCU and training abstaining classi-
fiers actually consider different learning problems.

3 Problem Description and Analyses
Let {x1,x2, . . .xN} denote N instances and T denote the
number of annotators. Without loss of generality, a binary
classification problem is considered in this work. The cor-
rect label of the j-th instance is denoted by zj , i.e., zj =
{+1,−1}. Let ytj denote the label of annotator t on the j-
th instance. By providing annotators the unsure option, ytj
can be +1, -1 or 0 in ALCU, where 0 indicates that the an-
notator is unsure in that instance. It should be noted that in
a real-world ALCU scenario, a zero ytj is substantially dif-
ferent from the case that the value of ytj is missing, because
the reason for the latter case might be multi-folds rather than
that the annotator is unsure about the label. Since ALCU is
a variant of ALC with a new option for annotators’ feedback,
a unified view that we take on ALC is first described below.
The proposed algorithm for tackling ALCU will be detailed
in the next section.

We denote the target classifier to be achieved by active
learning as f(x) and the classifier obtained after i rounds of
queries as fi(x). An active learning algorithm relies on the
query heuristic to identify the instance x to query in each it-
eration. For many commonly-used active learning algorithms
(e.g., [Lewis and Catlett, 1994] [Dagan and Engelson, 1995]),
the query heuristics can be viewed as maximizing some re-
ward functions that take the form H(x|Li, fi, θi)(H > 0),
i.e., the queried instances is picked in the (i + 1)-th iteration
according to Eq. (1):

xi+1 = arg max
x∈Ui

H(x|Li, fi, θi) (1)

where Ui is the current set of unlabeled instances, Li is the
current labeled data, and θi is the parameter of H .

In the context of ALC, a query would be beneficial only if a
correct label is obtained. We further introduce gt(x), a func-
tion over x, to denote the true reliability of annotator t. Also,
a function of gt(x), denoted by Ω(x), is used to represent the
reliability of the crowds (i.e., the set of all annotators). Fol-
lowing this viewpoint, Eq. (1) can be re-written as Eq. (2) for
ALC.

xi+1 = argmax
x∈Ui

(H(x|Li, fi, θi) · Ω(x)) (2)

The advantage of viewing ALC as Eq. (2) is that the selec-
tion of annotator is not involved at this stage. That is, the se-
lection of queried instance and annotator can be tackled sep-
arately. On the other hand, the challenge is that Ω(x) needs
to be specified such that it can be calculated with gt(x). One
way to address this issue is to take a binary view on Ω(x) and
gt(x). Concretely, Ω(x) = 1 if x can be correctly labeled by
at least one annotator in the crowds and Ω(x) = 0 otherwise.
Similarly, let gt(x) > 0 if annotator t can label x correctly
and otherwise gt(x) ≤ 0. Finally, Eq. (3) can be obtained.

Ω(x) = ∨t∈Tδ(gt(x)) (3)

where ∨ is the disjunction function, for any x1, x2 ∈
{0, 1}, x1 ∨ x2 = 0 if and only if x1 = 0 and x2 = 0,
x1 ∨ x2 = 1 otherwise. δ(x) is the sign function, δ(x) = 1 if
x > 0 and δ(x) = 0 otherwise. T = {1, 2, . . . , T}.
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Eq. (3) requires gt(x) to be known. In practice, however,
it is unlikely that gt(x) is known in advance. Alternatively,
it can be iteratively learned from the responses of annotators.
When learning gt(x), an instance is treated as negative if the
t-th annotator chooses the unsure option, and positive other-
wise. When a response is received from annotator t, gt(x) is
updated and then Ω(x) is recalculated with the updated gt(x).

For an instance x selected using Eq. (2), an annotator with
gt(x) > 0 can be queried. If multiple such annotators exist,
the one with the largest gt(x) is chosen, i.e., with Eq. (4)

ti+1 = argmax
t∈T

gt(xi+1) (4)

The above idea builds up a general framework for tackling
ALCU. Albeit simple, it might not be the optimal one. Other
potential approaches are discussed in Section 6.

4 ALCU-SVM
The basic idea of ALCU-SVM is modeling gt(x) as a binary
classifier. We assume in ALCU-SVM that the target classifier
and reliability model of annotators take the following forms:

f(x) =
∑
k

αkK(xk,x) + b (5)

gt(x) =
∑
k

βt,kKt(xk,x) + ct (6)

where K(·, ·) and Kt(·, ·) are the kernel functions of target
classifier and annotator t’s reliability model respectively.

Further, ALCU-SVM employs uncertainty sampling [Set-
tles, 2010] as the query strategy. The reward function used in
this paper can be defined as follows:

H(x|Li, fi, θi) = P (z = 1|x, fi)(1− P (z = 1|x, fi)) (7)

where P (z = 1|x, fi) is estimated using Eq. (8):

P (z = 1|x, fi) = (1 + exp(−fi(x)))−1 (8)

Since maximizing (7) is equivalent to minimizing |fi(x)|
[Yan et al., 2011], Eqs. (2) and (4) can be rewritten as Eqs.
(9)-(10), respectively.

xi+1 = argmin
x∈Ui

(
∑
k

αkK(xk,x) + b)2 + C(1 − Ω(x)) (9)

ti+1 = argmax
t∈T

gt(xi+1) (10)

where C is a sufficiently large constant that all the instances
x , which is subject to Ω(x) 6= 1, would not be selected.

It is note-worthy that Eq. (9) explicitly biases toward the
instances in which at least one annotator is deemed to be suf-
ficiently reliable, i.e., Ω(x) = 1. However, the reliability
models of annotators might not be accurate enough, espe-
cially in the early stages of learning. Hence, it is possible that
the most informative instance with respect to Eq. (1), would
not be chosen to be queried even if there exist some annota-
tors who can label it correctly. To overcome this problem, the
most informative instance x′ is chosen using Eq. (11)(maxi-
mizing (1) is equivalent to minimizing (11) for ALCU-SVM),
and if x′ is different from the instance chosen using Eq. (9),

Algorithm 1: ALCU-SVM
Data: Max number of queries Num, initial data X0 ,

initial observed label Y0, unlabeled data Xu

Result: classifier f , reliability models of annotators {gt}
begin

1 Initialize f and {gt} with X0 and Y0

2 i = −1
3 while i < Num− 1 do
4 i = i+ 1
5 Using Eq. (11) to get the x′

6 Using Eq. (9) and (10) to get xi+1 and ti+1

7 Query the label of xi+1 from ti+1

8 Remove xi+1 from unlabeled set
9 Update f , wti+1

and gti+1

10 if xi+1 6= x′&i < Num− 1 then
11 i = i+ 1
12 xi+1 = x′

13 Using Eq. (10) to get annotator ti+1 to label
xi+1

14 Query the label of xi+1 from ti+1

15 Remove xi+1 from unlabeled set
16 Update f , wti+1

and gti+1

it is also queried with the most reliable annotator identified
with Eq. (10).

xi+1 = argmin
x∈Ui

(
∑
k

αkK(xk,x) + b)2 (11)

Building the reliability model for an annotator may be
a class-imbalanced problem since the positive/negative data
collected for a highly unskilled/skilled annotator will be rare.
Quite a few existing techniques [Batuwita and Palade, 2010]
[He and Garcia, 2009] can be adopted to address this prob-
lem. For the sake of simplicity, training instances are as-
signed with weights proportional to the sizes of class in the
whole training data, i.e.:

wp,t : wn,t = Nn,t : Np,t (12)

where wp,t and wn,t are the weights assigned to positive data
(labeled data) and negative data (unsure data) when training
gt(x). Np,t and Nn,t are the sizes of positive and negative
data, respectively, collected for annotator t.

Algorithm 1 outlines the steps of ALCU-SVM, where wt

denotes [wp,t, wn,t]. In line 10 of Algorithm 1, xi+1 6= x′

indicates that the current reliability models cannot suggest a
sufficiently reliable annotator to label the most informative
instance x′. However, there may be some annotators who can
label it correctly while the current reliability models are not
accurate enough in this instance. As the classifier can greatly
benefit from obtaining the correct label of x′, it is necessary
to obtain this label by all means. This is what lines 12-16 do.

5 Experiments
Empirical studies on three UCI data sets (including Pima,
Heart and Ionosphere) and a real crowdsourcing data set have
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Figure 1: The comparison of different methods on Pima datasets

been conducted. Overall, through these experiments, the fol-
lowing questions will be investigated:

(a). The benefit of providing the annotators an unsure option.

(b). The advantages of ALCU-SVM over other ALC meth-
ods for ALCU problems.

(c). The influence of reliability model selection.

Section 5.1 investigates question (a) on UCI data sets. Ques-
tion (b) is investigated in Section 5.1 and 5.2 on UCI and
real-world data sets, respectively. Question (c) is studied in
Section 5.3. In the experiments, three state-of-the-art ALC
algorithms, namely PMActive [Wu et al., 2013], IEThresh
[Donmez et al., 2009] and ALC [Yan et al., 2011], were eval-
uated as compared methods. In every experiment, each al-
gorithm was repeated 20 times. If not specified explicitly, the
linear kernel was employed in the classifier (K(x,y) = x ·y)
and the RBF kernel was in reliability models (Kt(x,y) =
exp(−||x− y||2)).

5.1 Experiments on Simulated Data
To answer question (a), the three existing algorithms were ap-
plied in two scenarios, ALC scenario and ALCU scenario. In
this experiment, each annotator is assigned with an area of ex-
pertise. For the instances belonging to its expertise, annotator
t will give the correct labels with probability Pt and wrong
labels with probability 1-Pt in both the ALC and ALCU sce-
narios. For the other instances, annotator t will give correct
labels with probability pt and wrong labels with 1-pt in the
ALC scenario while give unsure feedbacks in the ALCU sce-
nario. The three compared methods mentioned above were
developed for the ALC scenario. At the same time, they
can be directly applied to the ALCU scenario by treating the
unsure feedbacks as missing values (i.e., no responses). Al-
though exactly the same algorithms were used in the two sce-
narios, we denote the algorithms used in the latter as PMAc-
tive+R, IETresh+R and ALC+R to differentiate the two sce-
narios. It is noteworthy that none of the three methods was
modified to exploit the information contained in an unsure re-
sponse, i.e., they just discarded the unsure responses. Hence,
comparing the results of the three methods in the ALCU sce-
nario against their results in the ALC scenario would allow us

to assess whether it would be beneficial to provide annotators
the unsure option.

The ALCU-SVM was also applied in the ALCU sce-
nario and was compared against PMActive+R, IETresh+R
and ALC+R. As ALCU-SVM explicitly makes use of the un-
sure responses to model the reliability of annotators, such a
comparison would provide some evidence on whether it is
worth developing a specially tailored approach, e.g., ALCU-
SVM, for ALCU rather than utilizing some existing ALC di-
rectly.

When simulating multiple annotators with different exper-
tise, we followed the settings in [Yan et al., 2011] and [Wu
et al., 2013]: Each data set was first clustered into five sub-
sets using k-means [Jain et al., 1999]. This procedure was
repeated twice and ten clusters were obtained. Then, 10 anno-
tators were assumed such that annotator t (t = 1, 2, . . . , 10)
was capable of giving the correct labels for instances in clus-
ter t with probability Pt, i.e., s/he would give the wrong label
with probability 1 − Pt. For the instances not belonging to
cluster t, annotator t did not have enough knowledge. It was
assumed to reply with unsure feedbacks in the ALCU sce-
nario. In the ALC scenario, it would give the correct labels
with probability pt and make a mistake with 1 − pt. In our
experiment, Pt ∼ U(0.9, 1.0) and pt ∼ U(0.5, 0.6). Be-
sides, each data set was randomly divided into three parts:
initial set, active learning set and testing set. To be specific,
the three data sets were divided as: Pima (20,548,200); Heart
(20,150,100) and Ionosphere (20,180,151), where the three
elements in the parenthesis are the numbers of instances in
initial set, active learning set, and testing set respectively. As
the same conclusion can be drawn for all the three data sets,
only the results obtained on Pima data set are presented and
analyzed below. The results on the other two data sets are
available online1.

It is deemed that wrong labels are harmful to active learn-
ing. The average numbers of wrong labels received by the 3
existing algorithms in ALC and ALCU scenarios are depicted
in Fig. 1(a). It can be seen that all the methods in the ALCU
scenario indeed have far fewer wrong labels, which demon-
strates the benefit to provide annotators the unsure option.

1http://staff.ustc.edu.cn/ ketang/codes/IJCAI15ALCU.html

1064



Fig. 1(b) plots the average accuracies of all the competing
methods. It can be observed that ALCU-SVM outperformed
the other methods in terms of the accuracy of the obtained
classifier. This implies that the active learning procedure can
be enhanced if the unsure feedback is exploited properly. In
addition, querying labels of instances usually induces some
sort of cost. Thus, an unsure feedback is in general unfavor-
able. In Fig. 1(c), the average cumulative numbers of unsure
feedbacks received by ALCU-SVM and the other 3 methods
in ALCU scenario are plotted. It can be observed that, by
properly exploiting the unsure feedbacks, ALCU-SVM also
managed to induce much fewer unsure feedbacks than the
compared algorithms.

Suppose ALCU-SVM is run m iterations and there are N
unlabeled instances in the beginning. In i-th iteration, the
simplest way to optimize Eq. (9) is to calculate the value for
all N − i + 1 unlabeled instances at first and then choose
the instance which minimizes Eq. (9). Moreover, getting the
value of Ω(x) involves T logical operations (see Eq. (3)).
Hence, the complexity of ALCU-SVM is

∑m
i=1(N -i+1)T ,

i.e. O(mNT ). Fig. 2 plots the average running time of all
the seven competing methods on the three data sets. It can
be seen that ALCU-SVM is one of the least time-consuming
methods. Comparing all the methods in ALC scenario with
the corresponding methods in the ALCU scenario, the meth-
ods in the latter situation are in general less costly. For exam-
ple, ALC+R needs much less time than ALC. One possible
reason may be that the number of noise labels which slow
down the convergence of algorithm is largely decreased by
the unsure option.

Figure 2: The comparison of average running time

5.2 Experiments on Real Data
In addition to preliminary empirical studies on UCI data,
experiments have also been carried out in a real-world
ALCU scenario. In this experiment, the UDI-TwitterCrawl-
Aug2012-Tweets2 [Li et al., 2012], which include 50 mil-
lion tweets posted mainly between 2008 and 2011, were em-
ployed. Concretely, the hashtags of tweets were used as their
“labels”. The tweets with such hashtags as job, music, royal
wedding (Prince William and Kate Middleton) or Osama Bin
Laden being killed were used in our experiment. In total 1000
tweets belonging to these 4 topics were randomly chosen as
the training data, and another 1000 tweets were chosen as the

2https://wiki.cites.illinois.edu/wiki/display/forward/Dataset-
UDI-TwitterCrawl-Aug2012

testing data. The text body of each tweet was pre-processed
and transferred into a TF-IDF vector by the natural language
toolkit (NLTK3), and it ended uabelson-et-al:schemeabelson-
et-al:schemep with a numerical feature matrix with 295 fea-
tures. As binary-class problems are considered in this work,
the tweets belonging to the “job” topic were treated as posi-
tive class, and the tweets under the other 3 topics were treated
as negative class.

Given the above-described training and testing data, 5 real
annotators (i.e., human) from our university were invited to
assist in our experiment. Specifically, all of them were first
asked to label 200 training tweets for initial training. Then,
labels of the other 800 instances were queried from the anno-
tators during the active learning procedure. For each tweet, an
annotator could either label it as one of the 4 topics or reply
“I’m unsure” to the query.

The experiment was conducted in a real situation with
an unsure option, i.e., PMActive+R, IETresh+R, ALC+R
and ALCU-SVM were compared. The average accuracies
achieved by the competing methods are plotted in Fig. 3(a).
It can be seen that ALCU-SVM dominates all of the other
methods. Considering that all the competing methods ran in
the same situation with the unsure option, it verifies that it is
worth investigating a specially tailored approach for ALCU
rather than applying some existing ALC directly. The aver-
age numbers of unsure feedbacks are plotted in Fig. 3(b),
which also shows the advantage of ALCU-SVM in this as-
pect. The advantages of ALCU-SVM observed in Fig. 3(b) is
not as significant as that observed in Fig. 1(b). One possible
reason is that the ratio of unsure feedback in this experiment
is much smaller than that in the experiments on UCI datasets.
For example, it can be seen later in Table 1, annotators 2, 3
and 5 replied with unsure feedbacks in about 200 out of 1000
instances, while about 4/5 of replies were unsure feedbacks
in the experiments on UCI datasets.

Correct labels Wrong labels Unsure feedbacks
A1 580 22 398
A2 732 33 235
A3 660 73 267
A4 425 89 486
A5 741 47 212

Table 1: The labeling result of each annotator

A1 A2 A3 A4 A5

A1 1 0.76 0.724 0.627 0.718
A2 0.76 1 0.796 0.593 0.827
A3 0.724 0.796 1 0.595 0.772
A4 0.627 0.593 0.595 1 0.588
A5 0.718 0.827 0.772 0.588 1

Table 2: The similarities between annotators

To further assess the necessity of ALCU in real-world sce-
narios, the 5 annotators were also requested to provide labels
for all the 1000 training instances. The numbers of instances
that each annotator provided correct/wrong labels and unsure
feedbacks are summarized in Table 1, which shows that all
annotators are unsure about the labels of a substantial number
of instances, indicating that without an unsure option, a large
number of poor quality labels could be introduced. Moreover,

3http://www.nltk.org
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Figure 3: The results on real dataset.

Table 2 presents the pair-wise similarities between annota-
tors’ labeling behaviors. Each element in the table represents
the ratio of instances in which the two corresponding annota-
tors provided the same labels. The observed small similarity
values indicate that the 5 human annotators involved in the
experiment behaved rather differently. This observation jus-
tified that for a real-world problem, it would be important to
model the reliability of each annotator since each may show
diverse labeling behaviors.

5.3 Influence of Reliability Model
A few hyper-parameters, i.e., the kernel function and its pa-
rameters, need to be predefined for ALCU-SVM to learn the
reliability models. In previous experiments, only the RBF
kernel was employed. To assess the influence of this issue
on ALCU-SVM, further experiments have been conducted
on the real-world data set using 8 different settings of kernel
functions and hyper-parameters:

1. Linear: x · y

2. RBF1: e−||x−y||2

3. RBF2: e−5||x−y||2

4. RBF3: e−10||x−y||2

5. Polynomial1: (x · y)2

6. Polynomial2: (x · y)10

7. Polynomial3: (2x · y)2

8. Polynomial4: (2x · y)10

Fig. 3(c) plots the results of all these 8 kernels. It can be
observed that both the kernel type and hyper-parameters af-
fect the accuracy of ALCU-SVM. However, the kernel type
appears to have much more significant influence than the
hyper-parameters. Specifically, the polynomial kernel led to
significantly lower performance than the other two kernels,
while the RBF and linear kernel led to comparable accuracy.
Therefore, a rule-of-thumb in practice would be to first em-
ploy both the linear and RBF kernels for a few iterations and
then test the obtained reliability model against newly obtained
responses from annotators. After that, the kernel that better
fit the distribution of the annotators’ expertise can be chosen.

6 Conclusion and Discussion
In this paper, a variant of active learning from crowds, namely
active learning from crowds with unsure option, is put for-
ward and investigated. An algorithm called ALCU-SVM is
proposed for this new problem. Empirical studies on both

simulated data and real-world crowdsourcing data imply that
providing annotators the unsure option would benefit ALC
significantly. Further, although some existing ALC methods
are directly applicable to ALCU, they were clearly outper-
formed by the proposed ALCU-SVM in the empirical studies.
This suggests that exploiting the unsure feedbacks to model
the expertise (e.g., in forms of reliability) of annotators, as
ALCU-SVM does, is crucial for tackling ALCU. Hence, it is
worth investigating specially tailored approaches to this new
learning problem.

There are a few directions for further improving ALCU-
SVM. First, ALCU-SVM solely relies on the feedbacks of
annotators to decide whether an annotator will be trusted in
a given instance. This setting may suffer in case annota-
tors are falsely confident. A possible solution would be to
employ two models to represent annotators’ expertise. That
is, the reliability model used in ALCU-SVM, which reflects
the confidence of annotators, and a probabilistic model that
represents the probability that an annotator can correctly la-
bel an instance. The latter can be used for filtering possibly
wrong labels provided by a falsely confident annotator. On
the other hand, making ALCU-SVM more robust to wrong
labels would be another direction to resolve this problem.
Second, ALCU-SVM takes a binary view of the annotators’
reliability, e.g., Ω is defined as the disjunction over all anno-
tators. Other forms of functions can be employed for Ω so
as to avoid the instance selection being biased to instances in
which at least one annotator is deemed to be sufficiently reli-
able. Potential approaches could be using a soft-max function
for Ω or to seek more advanced techniques, e.g., [Auer et al.,
2002] [Liu et al., 2009], to guarantee that a reliable annota-
tor will be found if any exists. Third, theoretical properties
of ALCU-SVM are also worthy of further investigations to
fully understand the advantages and disadvantages of ALCU-
SVM.

In additional to improving ALCU-SVM, it would also be
interesting (and maybe even more important) to explore alter-
native frameworks to tackle ALCU. A thread for thoughts is
to view the problem from the perspective of optimal annota-
tor selection, and the family of Dynamic Classifier Selection
(DCS) methods [Ho et al., 1994] [Woods et al., 1996], could
be used. Annotator selection may also be explicitly formu-
lated as a bandit problem, where the reward of choosing an
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annotator is high/low if the annotator gives a label/says “un-
sure”. In this sense, some bandit algorithms [Gittins et al.,
2011] might be applicable to ALCU after appropriate modi-
fications. Last but not least, if it is possible to recruit a large
number of human annotators, it will be very interesting to
study the scalability of the ALCU-SVM (and any other new
algorithm proposed for ALCU) with respect to number of an-
notators on a real crowdsourcing platform.
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