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Abstract

In natural language processing and information re-
trieval, the bag of words representation is used to
implicitly represent the meaning of the text. Im-
plicit semantics, however, are insufficient in sup-
porting text or natural language based interfaces,
which are adopted by an increasing number of ap-
plications. Indeed, in applications ranging from
automatic ontology construction to question answer-
ing, explicit representation of semantics is starting
to play a more prominent role. In this paper, we in-
troduce the task of conceptual labeling (CL), which
aims at generating a minimum set of conceptual
labels that best summarize a bag of words. We
draw the labels from a data driven semantic network
that contains millions of highly connected concepts.
The semantic network provides meaning to the con-
cepts, and in turn, it provides meaning to the bag
of words through the conceptual labels we generate.
To achieve our goal, we use an information theoretic
approach to trade-off the semantic coverage of a bag
of words against the minimality of the output labels.
Specifically, we use Minimum Description Length
(MDL) as the criteria in selecting the best concepts.
Our extensive experimental results demonstrate the
effectiveness of our approach in representing the
explicit semantics of a bag of words.

1

Many natural language processing and information retrieval
tasks adopt the bag of words model as a representation of
text. For an increasing number of advanced applications, this
simplified representation is insufficient because words and
phrases are regarded as atomic symbols. In this paper, we
focus on the problem of conceptual labeling. Specifically,
given a set of words or phrases, our goal is to generate a small
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set of labels that best summarize the set of words or phrases.
Here are a few examples:

1.

2. dinner, lunch, food, child, girl — meal, child

china, japan, india, korea — asian country

3. bride, groom, dress, celebration — wedding

For human beings, the labels on the right hand side are
the concepts that come to our mind when we see the words
and phrases on the left hand side. We know that, in the first
example, asian country is a better label than country, because
asian country is more specific while having the same coverage
as country for the input words. In the second example, we
know that the two concepts meal and child better summarize
the input than a single concept object. The last example is
different from the first two because there is no isA relation
between any input word and wedding, yet wedding is the
concept that comes to our mind when we see those words.

The goal of this paper is to generate high quality labels
to summarize a bag of words. The quality of the labels are
measured by their minimality and coverage. Furthermore,
the labels themselves are not atomic symbols. Rather, they
are nodes in a fine-grained, highly connected, usage-based
semantic network. As a result, machines, not just humans,
will be able to understand the meaning of the labels. A bag of
words, after being summarized, become objects that machines
understand and are able to operate on.

1.1 Applications

Conceptual labeling enables machines to comprehend a set of
words. We envision many applications for conceptual labeling,
including the following:

e Topic modeling. Topic modeling [Blei, 2012] is widely
used for discovering latent topics in a collection of doc-
uments. However, a topic is a bag of words that do not
have explicit semantics. Not only is it hard for humans
to interpret the topics, machines also have a very limited
capability in using them to interact with other data, as
a topic is nothing more than a distribution of meaning-
less symbols. Conceptual labeling turns each topic into
a small set of meaningful concepts grounded in a large
semantic network, thus enabling intelligent use of the
topics in downstream applications.



e Language understanding. Much manual work has been
devoted to labeling natural language sentences to under-
stand the usage of language. FrameNet [Baker er al.,
1998], for example, describes semantic frames, which
are mainly about the roles of verbs and their arguments.
But even with the labeled sentences, semantic role la-
beling [Palmer et al., 2010] is hard because there is no
mechanism to generalize from a set of words to concepts,
and then from concepts to other related words. In other
words, it is difficult to assign roles to words that have
never appeared in the labeled data. With conceptual la-
beling, we may for example, summarize verb eat’s direct
objects apple, breakfast, pork, beef,bullet I
... into a small set of concepts, such as fruit, meal, meat,
bullet, which in turn connects to all things “edible” in the
underlying semantic network.

1.2 Concepts

We convert a set of words and phrases to a small number of
labels, each of which is a concept that machines understand.
A very important question is, what is the difference between a
word and a concept, and why are concepts important?

We use an example to illustrate the difference. In the bag-of-
words representation, fruit is an atomic symbol, and it is in-
dependent from other symbols. If we represent a bag of words
by a vector, then fruit corresponds to a column, which
is independent from other columns, including vegetable
and meat. The concept fruit, however, is different. It has
subconcepts such as tropical fruit, instances such as apple,
superconcepts such as food, attributes such as acidity. Fur-
thermore, it is often a direct object of verbs such as eat, it is
often modified by concepts such as fresh, and it often modifies
concepts such as health benefit, and so on. In the mind of a
human being, a concept triggers a network of other concepts,
and such a network forms the foundation of cognition.

But in order for machines to understand concepts, they must
also have access to a concept network like the one in a human
mind. How is this possible? In recent years, much effort
has been devoted to building knowledge bases and semantic
networks. Some of them, such as WordNet [Miller, 1995],
Cyc [Lenat, 1995], DBpedia [Auer et al., 2007], and Free-
base [Bollacker et al., 2008], are created by human experts or
community efforts. Others, such as KnowItAll [Etzioni et al.,
2004], NELL [Carlson et al., 2010], and Probase [Wu et al.,
2012], are created by data driven approaches. Because infor-
mation in data driven knowledge bases and semantic networks
is usage based, it is particularly useful for natural language un-
derstanding. More specifically, data driven semantic networks
are special in the following aspects:

1. It has a large, fine-grained concept space. For example,
Probase contains millions of concepts. This makes it
possible to approximate the concepts in a human mind.
To see why we need fine-grained concepts, consider two
inputs {china, india, germany, usa} and {china,
india, japan, singapore}. The best concept for
the former is country, and the best concept for the latter
is asian country. Without fine granularity concepts such

'as in “eat a bullet”
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as asian country, machines will not be able to summarize
the second case as well as humans do.

It contains knowledge that is not black or white, but
usage based. Knowledge therein is associated with vari-
ous weights and probabilities, which enable inferencing.
For instance, although robin and penguin are both
birds, they are not the same, in the sense that a robin
is a more typical bird than a penguin, and this intuition
is captured by the semantic network in the following
form: P(robinl|bird) > P(penguin|bird). Clearly,
such probabilities are important to a wide range of infer-
encing tasks.

In this paper, we use Probase? to provide us fine-grained
concepts and their statistics. Probase is acquired from 1.68 bil-
lion web pages. It extracts isA relations from sentences match-
ing Hearst patterns [Hearst, 1992]. For example, from the
sentence . .. presidents such as Obama ...,it
extracts evidence for the claim that Obama is an instance of
the concept president. The core version of Probase contains
3,024,814 unique concepts, 6,768,623 unique instances, and
29,625,920 isA relations.

1.3 Challenge

Our main challenge is to measure the “goodness” of the labels
we assign to a bag of words. Generally, a good set of labels
should satisfy the following criteria. The two criteria are
actually conflicting to each other. How to find the best trade-
off between them lies at the core of conceptual labeling.

e Coverage. The conceptual labels should cover as many
words and phrases in the input as possible, otherwise
information in the input is lost. For example, assume
a photo is labeled by a bag of words {vehicle, car,
bicycle, road, pedestrian}. If we simply sum-
marize the input as vehicle, then we incur information
loss as the picture was probably taken on a road with
pedestrians nearby.

Minimality. Psychology research shows that an input trig-
gers concepts in a human mind in the most economical
way. Conceptual labeling aims at the same effect. That is,
we want to find the minimal number of conceptual labels
to label the words. For example, for {putty, kitten,
small dog}, a single conceptual label pet is sufficient
to characterize the input. Although labels such as {dog,
cat} can also cover the meaning of the input, they are
less efficient or economical.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 gives
an overview of our approach. Section 3 presents in detail our
framework for conceptual labeling. We present experimental
analysis in Section 4, and conclude in Section 5.

2  Overview

In this section, we describe the minimum description length
(MDL) principle and give a brief overview of our approach.

“Probase data is available at http://probase.msra.cn/dataset.aspx



Minimum Description Length. MDL [Rissanen, 1978] pro-
vides an efficient scheme for encoding and compressing data.
In general, the more regularities in the data, the less bits we
need to code it. The ultimate goal of data compression is to
find such regularities. Thus, data compression has a natural
connection to model selection: Better models tend to better
fit the inherent structure of the data, and as a result, the data
could be compressed more.

More formally, let X denote the data to be encoded and let
L(z) denote the code length of data item z € X. It is well
known that for every probabilistic distribution P(x) where
x € X, there exists a code for X such that for every z € X,
L(z) = —log P(x). To encode an arbitrary data item x, we
usually have two options:

1. Encode the data directly. The code length is L(z) =
—log P(x) bits.

2. Assume a model M captures the regularity in the data.
We encode the data with the help of M in L(M) +
L(z|M) bits, where L(M) is the number of bits for en-
coding the model, and L(z|M) = —log P(xz|M) for
encoding the data given the model.

If the model M fits the data nicely, the second option may
result in a code length that is significantly shorter when we
encode a large set of data items X = {z1, 22, ...,z }.
Overview of Our Approach. Given a bag of words or phrases
X, an external semantic network G(Vg, E¢), where each
node v € Vi is a concept, and each edge e € Eg is a re-
lationship between two concepts, we want to find the best
concepts C' C X U Vi that summarize X . The key problem is
to measure the quality of the concepts, and as we mentioned,
the measure should consider both coverage and minimality.

In our work, we use MDL to measure the quality of the
concepts. Our goal is to minimize the overall code length
for encoding the bag of words. The rationale of using MDL
is the following. First, MDL achieves the best trade-off be-
tween coverage and minimality. We encode all the words so
the coverage is good. A concept that covers more words is
more likely to be selected since it may significantly decrease
the code length. With more concepts, the cost of encoding
individual instances decreases, but the cost of encoding more
concepts increases. Second, MDL avoids the problem of decid-
ing the number of concepts in advance. Traditional approaches
(topic modeling and conceptualization) may produce a set of
relevant labels but do not provide a measure of how many of
them are sufficient. Third, the results produced by MDL are in-
terpretable. Because each word is encoded independently, and
we know which words belong to which concept. Fourth, as we
will show, the trade-off between coverage and minimality is
adjustable.

3 Conceptual Labeling

In this section, we introduce our conceptual labeling mecha-
nism. We first introduce a basic method that infers a single
concept from a bag of words. Then we extend the method to
infer multiple concepts.
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3.1 Using Knowledge

The labels we assign to a bag of words are grounded in Probase,
a data driven semantic network. Probase contains many rela-
tionship among concepts, and we mainly use two relationships,
namely, the isA relationship and the isPropertyOf (attribute)
relationship.

The IsA Relationship. It is obvious that we need isA rela-
tionships in summarization. For instance, we may summarize
words such as kitten and puppy to the concept of pet. To-
gether with the isA relationship, the semantic network also
provides the typicality score, which plays an important role in
enabling us to select the right concepts. Typicality is defined
as follows:

n(c, e) n(c,e)

Zei n(c, 61') 21’1 n(cive)

where n(c,e) is the frequency of ¢ and e occurring in a
syntactic pattern for isA relationship. Intuitively, typical-
ity measures how likely we think of an instance (or a con-
cept) when we are given a concept (or an instance). For ex-
ample, given concept pet, people are more likely to think
of a kitten than a monkey, and this is embodied by
P(kittenl|pet) > P(monkey|per) in Probase. Besides typ-
icality, we also need the prior probability of a concept or an
instance. We approximate them as follows:

Ze n(C, e) Zc n(C, e)

Z(c,e) n(c,e) Ple) Z(c,e) n(c, e) @
The isPropertyOf (Attribute) Relationship. We also need
attribute relationships in summarizing a bag of words. For ex-
ample, {population, president, location} trig-
gers the concept count ry, although none of the words has
isA relationship with country. Probase provides typical-
ity scores P(c|a) and P(alc), which indicate how likely an
attribute a triggers a concept c and vice versa:

P(e|e) = P(cle) = (O]

P(e)

n'(c,a) n'(c,a)
Zai TL/(C, ai) Zci nl(civ a)

where n’(c,a) is the frequency of ¢ and a occur in some
syntactic pattern that denotes the isPropertyOf relationship.
We will incorporate attribute typicality in our MDL framework
for inferencing concepts from a bag of words.

P(alc) = P(cla) = 3)

3.2 Labeling a BoW by a Single Concept

Assume a bag of words X invokes a single concept. The code
length to encode X with concept c is the following:

CL(X,c) = L(c) + L(X|e) = L(c) + Y L(zile) (&)

where L(c) is the code length to describe ¢ alone, and L(z;|c)
is the code length to describe x; with the prior knowledge of
c. Based on the MDL principle, we have

CL(X,c) = —log P(c) + Z —log P(z;|c) )

zr;e€X

where P(c) is the prior probability defined in Eq 2 and P(z;|c)
is the typicality defined in Eq 1 (For now we assume x; is



an instance of ¢, which will be generalized later.), and our
objective is to find the concept that minimizes the description
length, i.e.,
¢ =argmin CL(X, c) (6)
Next, we show that in this case, the MDL model is equiva-
lent to a Bayesian model [Song er al., 2011]. We have:

c" = arg min(—log P(c) + Z —logP(zilc))
¢ z,€X

= arg min — log(P(c) H P(z;|c))
¢ z;€X (7)
= arg max P(c) H P(x;slc)

x;€X

= argmax P(c)P(X|c) = arg max P(c|X)

The last row is obtained under the independence assumption.

3.3 Labeling a BoW by Multiple Concepts

In many cases, fitting all data items using a single concept
might not lead to an optimal solution. For example, {dinner,
lunch, food, child, girl} contains two obvious con-
cepts (meal and child), and forcing to use a single concept (say
object) to summarize the input is not going to be optimal.

To address this problem, we extend the coding scheme

to multiple models (concepts). Let C be a model class that
contains a finite set of models. We may encode each data item
x using the model that gives the maximal posterior likelihood,
i.e. argmax . P(z|c). This leads to the shortest code length
for x. However, to decode the data, we also need to know
which model is used to encode z. We describe two possible
schemes, namely two-part code and universal code, for this
purpose.
Two-part code. For a word encoded by concept c;, we also
encode the index . Since we have overall |C| concepts, each
index can be encoded with log |C| bits. Applying the princi-
ples of MDL, we have:

CL(X,C) = L(C) + L(X|C) = Y L(ci) + > L*(xi|C)

c;eC r;€X
(®)

where L*(z|C) is the code length for encoding individual
word x given the prior knowledge of C:

L*(z|C) = log|C| +£réigL(x|c) 9

The input may contain outliers that should not be sum-
marized to concepts. For example, {apple, banana,
breakfast, dinner, pork, beef, bullet} are direct
objects of the verb eatr. We may summarize them into concept
{fruit, meal, meat} except for the last word bullet. We need
to make a choice: either encode the outlier independently or
encode it with some concept c. We use the MDL principle
to make the choice. That is, we calculate the code lengths
yielded by the two options and select the one with the shorter
length. This leads to a new definition of L*(z|C'):

L(z),
log |C] + L(zle),

encode directly

10
encode using ¢ € C (10)

L*(z|C) = min {
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Because each word is encoded independently, the combination
of local optimums guarantees the global optimum. Using this
scheme each word (z) will be assigned to the concept ¢ which
has the maximal posterior probability P(x|c).

Universal code. Alternatively, we may generate a universal
model, which mixes all the models into one model. For ex-
ample, we can create a universal model based on occurrence
probability, i.e. P(z|C) = > .. P(x|c)P(c). The regret
measure [Shtar’kov, 1987] is used to evaluate different univer-
sal models. For a given data item x, the regret for a universal
model P(z|C) relative to the original model class C, is defined
as:

R(z, P) = —log P(x|C) — meig{—logP(ﬂc)} (11)

Intuitively, R(z, P) is the additional number of bits to encode
x using distribution P compared to using optimal maximum
likelihood model. The best universal model should minimize
the maximal additional bits over the entire data space, that is

min max R(z, P) (12)

where & is the data space that individual data x resides in.

It was shown [Shtar’kov, 1987] that the normalized maxi-
mum likelihood model achieves the minimum. The normalized
maximum likelihood is defined as:

P(z|C)
ZIEX P(I|C)
where P(z|C) is the maximal posterior likelihood of z using
amodel from C, i.e. P(z|C) = max.cc P(z|c).

Using the normalized maximum likelihood code, we can
reformulate L*(z|C') in Eq 10 as:

L*(z|C) = min(L(z), — log Pnarr(z|C))
og P(z|C)
> P('C)

PNML(x\C): (13)

= min(L(z), — ) (14)

P(z|C) = ax P(z]c)

ce
Similar to two-part code, each word = will be assigned to the
concept ¢ that has the maximal posterior probability P(z|c).

3.4 Integrating Attributes

In our MDL model, we use P(x|c) to characterize the rela-
tionship between a concept ¢ and an input word . Up to
now, we have assumed that the relationship is the isA relation-
ship, and P(x|c) is defined as in Eq 1. However, the input
may contain words that are attributes or properties of a con-
cept, as in {population, president, location},
which triggers the concept country.

To incorporate attributes, we combine the iSA and the is-
PropertyOf relations to a unified probabilistic model. In prac-
tice, it is rare that an input word is both an instance and an
attribute of a concept. As in [Song et al., 2011], we combine
the typicality using a noisy-or model:

P(clz) =1— (1 — P.(c|z))(1 — Pu(c|x)) (15)



where P, (c|z) denotes the isA typicality as defined in Eq 1,
and P, (c|z) denotes the attribute typicality as defined in Eq 3.
Intuitively, P(c|x) is the likelihood that the word x invokes
concept ¢, by being either its instance or attribute. The reversed
typicality P(z|c) is inferred using the Bayes rule: P(z|c) =
P(c|lx)P(z)/P(c).

3.5 Tradeoff between Coverage and Minimality

In practice, it may be more desirable to limit the number of
concepts, or to generate more concepts for better coverage
of meaning. We thus extend our model to add an adjustable
parameter for balancing the importance of concepts and tags.
We reformulate the final MDL measure to:

C* =argmina L(C) + (1 — a) L(X|C)
c

= argmina S L)+ (1 -a) > L'@]C)

c, €C z, €X

16)

where X is the input, C' is set of concepts used to encode the
input, L*(z|C) is the code length of individual word, depend-
ing on whether two-part code or NML code is used, « is a
parameter that can be used to tradeoff coverage and minimality.
By default = 0.5. A larger « value indicates the description
length of concepts are weighted higher than input words, thus
fewer concepts will be generated, vice versa.

3.6 Search Strategy

We have shown how to measure the goodness to use a given set
of concepts for the labeling. However, we still need a method
to find the best concept set. Since Probase has millions of
concepts and relations, exhaustive enumeration over this space
is costly. On the other hand, the MDL based measure does
not have any desired properties (such as, sub-modularity) that
allows an efficient pruning of the search space. Hence, we
resort to a greedy heuristic for the search.

We first find all hypernyms of input words. We discard
concepts which only contain a very small number of instances.
They are unlikely to be good conceptual labels since they only
cover a few instances in Probase. Examples include small
gathering, big picture and emotional activity. The hypernyms
after the filtering constitute the candidate concept set (denote
as S). Let C be the current selected concept set. We first set C'
as empty. Then, we start an iterative procedure. Within each
iteration, we try the following three types of operations.

e Move an unused concept from S \ C' to C
e Remove a concept in C'
e Replace a concept in C' with another one in S\ C

For each type of operation, we exhaustively try each possible
realization. For example, for the removal of a concept from
C, we try the removal of each concept in C. We use the
operation yielding the maximal decrease of the description
length to materialize the update on the current concept set C.
The iteration terminates when the description length can not
be decreased any more. Since the code length is monotonically
decreasing through each iteration, this algorithm is guaranteed
to converge.

For each iteration, the most costly operation is replace-
ment, which has overall |C||S] realizations. In reach real-
ization, we need to compute the MDL measure, which costs
O(|C| + |C]|X]) time for two-part code, where X is the input
word set. Let ¢ be the number of iterations needed for conver-
gence. The overall time complexity is O(t|C|?|S|(1 + | X])).
Since |C| increases at most by one after each iteration, ¢ is
the upper bound of |C|. Thus, we have the complexity as
O(t3|S|(1 + | X)) for two-part code. For NML code, it is
the same except for computing the MDL measure. As in Eq
14, we need to enumerate all entities of concepts in .S to com-
pute the denominator. The time complexity for computing
MDL measure is O(|C|Dg + |C||X]), where Dy is the sum
of degrees of concepts in S. Hence, the overall complexity for
NML code is O(¢3|S|(Dg + | X|)). In our experiments, | X |
is less than 30, and | S| is several hundreds. Our experimental
results show that the algorithm usually converges within 10
iterations, implying ¢ < 10. As Probase is a relatively sparse
knowledge base (the average degree is less than 10), Dg is
also small (about several thousands). Hence, our algorithm is
pretty efficient in practice.

4 Experiments

We conduct experiments on both synthetic data and real data.
We also present case studies to verify the rationality of our
approach. We implemented two versions of MDL based ap-
proach: MDL-2P using the two-part code, and MDL-NML
using the normalized maximum likelihood code. We compare
them to a clustering-then-conceptualization (CC for short) ap-
proach. CC is an extension of a state-of-the-art single concept
conceptualization approach [Song ef al., 2011]. In CC, we
first cluster the input bag of words by K-means with a distance
metric defined on their concept distributions in Probase. Then,
we find the best single concept for each individual cluster us-
ing a naive Bayes model. By comparing to this baseline, we
show that the extension of single concept conceptualization in
general cannot solve our problem effectively.

4.1 Synthetic data

Data generation. We use synthetic data automatically gener-
ated from Probase as the ground truth for evaluation. We use
three parameters to guide the generation process: n., n;, and
n,. For each test case, we randomly pick n. concepts from
Probase. We randomly select n; instances of each concept and
use them as the input bag of words. Real data always contains
noise. To reflect this, we also randomly select n,, instances
other than the instance already selected from the universal
instance space of Probase, and add them into the input. We
generate ¢ = 1000 bags of words for evaluation.
Metric. For each bag of words, we compare the automatically
generated concepts to the pre-known concepts. Suppose for the
test case ¢, our approach generates xz; concepts and y; of them
are the pre-known concepts. We quantify the performance
t
using the following metrics: precision = Zz z, recall =

i Li

Ef Yi and F = Q*pre.ci'sion*recall'
txmne precision+recall

Results. We present the results of precision, recall and F-
score in Figure 1. Since we have three major parameters
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Figure 1: Performance on synthetic data

to generate the synthetic data, we fix two of them and vary
the remaining one parameter to observe the influence of this
parameter on the performance of different solutions. It can be
consistently observed that MDL approaches outperform CC
under almost all the settings. MDL performs especially better
when the concept number (n.) becomes larger; or when more
noisy instances (n,,) are introduced. These results suggest
that MDL is good at conceptualization with multiple concept
and tolerating noises. The results also reveal that MDL-NML
shows minor superiority over MDL-2P.

4.2 Real data

We use two real data sets to evaluate the performance of our
approach in real applications:

e Flickr data is collected from manually labelled tags in
Flickr. Image tags in Flickr are generally redundant and
noisy. Conceptual labels refine the tags and help under-
standing the original tags.

Wikipedia data comes from the results of topic mod-
eling running on the entire Wikipedia corpus. We use
LDAI[BIei et al., 2003] and extract top words of each
topic as the input. Conceptual labeling of the topic words
is critical for machine interpretation of the topics.

For the bags of words in real applications, it is difficult to
give the ground truth for its best conceptual labels. For exam-
ple, given tags {french, usa, germany}, either western
country or developed country is an acceptable conceptual label.
Hence, we resort to human labeling to evaluate real data. We
ask volunteers to manually examine the labeling results and
rank their quality with graded scores. The scoring criteria
are shown in Table 1. In general, the specific labels that can
summarize the meaning of the words own a high score.
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Score | Description Example
3 Perfect painting, art, portrait, poster —
artwork

2 Minor infor- | meal, dinner, ceremony, wed-
mation loss or | ding — meal
redundancy

1 Too vague or | tree, plant, flower, agriculture
specific — renewable resource

0 Misleading or | walkway, swimming pool, vehi-
unrelated cle, roof — improvement

Table 1: Criteria for manual evaluation

Algorithm Flickr data | Wikipedia data
CC 1.04 0.97
MDL-2P 1.9 1.94
MDL-NML | 1.98 2.00

Table 2: Evaluation scores on Flickr and Wikipedia data

Results. We manually evaluate the results of 100 test cases
randomly selected from each of two data sets. The average
score of each approach is shown in Table 2. The MDL based
approaches perform consistently better than the competitor
in both two real data sets. A closer look at the CC approach
reveals that CC suffers severely from the noises in the real
data. Note that Probase is automatically constructed from Web
corpus. It also has missing or wrong isA relations, which in
general will lead to nonsense labels. However, the MDL based
framework tolerates noises much better and achieves better
performance.

4.3 Case study

We show the effectiveness of our approach by case studies of
Flickr data. We use MDL-NML to generate labels since pre-
vious evaluation shows that it achieves the best performance.
The labeling results are shown in Table 3. The results reveal
the following advantages of our approach.

e The conceptual labels are able to summarize the meaning

of the tag words.

The number of concept is adaptable to cover input data.
The algorithm can choose an enough number of concepts
to cover the different meanings of the given words.

There is no redundancy between generated concepts.

The noise filtering is very effective. The noisy words will
be automatically selected and excluded.

e The conceptual labels make the tags more interpretable.

Attributes. We also evaluate the effectiveness of incorporat-
ing attribute knowledge by case studies. The results are shown
in Table 4. The first three cases show that when generating
labels for a set of attributes, using isA relations solely often
produces nonsense results. But when the attributes data is
incorporated, the quality of generated concepts is significantly
improved. The last case shows that the addition of attributes
relations works well with existing iSA relations.

Parameter o. In Section 3.5, we introduce an additional
parameter « to adjust the tradeoff between coverage and min-
imality. We study the effect of this parameter by varying its



Words

Concepts

purse, brand, leather, fashion accessory

handbag, diaper bag;, hobo bagy, bagi, shoulder bagi, poppy2, flowers, blacks, khakis, whites, coin

bagi, flowers, neutral colors

dance,, nightcluby, discoq, paintinga, artz, modern artz, musician, dude

entertainment; , artworks

furniture,, chairy, shelf;, coffee table;, woods, boxs, wood stain, brown

furniture;, woods

product, personal protective equipment

glasses, eyeweary, sunglassesi, purplez, browns, violeta, maroons, fashion accessory, vision care,

eyeweary, colors

escarpment;, mountain;, mountain range, ridge:, cliff;, rocky, hilly, outcrop, hill station, trail

terrain feature;

Table 3: Example results of conceptual labeling. Subscripts represent the correspondence between a word and its concept.

Words

a=0.6

a=0.5 a=04

shoulder bag, hobo bag, handbag, bag, pink, leather, red, lady,
tote bag, coin purse

bag, leather bag, leather, color

comics, woman, child, person, people, adolescence, bride, girl,
sibling, family, daughter

family mem-

family member family member, life stage, or-

nament

pool, sports, meal, team, powerlifting, snooker, racquet sport

hot air balloon, hot air ballooning, vehicle, aircraft, balloon, | aircraft aircraft, body area | aircraft, body area, age group,
flight, infant, child, person, hand, abdomen, human body exciting topic, vehicle
people, community, youth, spring, estate, park, lake, swimming | sport sport, water supply | sport, water supply

Table 5: Results in regard to different settings of parameter o

Words Labels w/ attr | Labels w/o attr
bride, groom, dress, cel- | wedding tradition
ebration

president, gdp, popula- | country macroeconomic
tion variable

crew, manufacturer, cap- | ship capacity

tain, weight

child, infant, toddler, | child, meal child, meal
breakfast, lunch

Table 4: Effectiveness of incorporating attributes data

value on the same input. Several typical cases are shown in
Table 5. We can see that the default parameter o = 0.5 already
works well. Besides, we can increase or decrease « to produce
less or more conceptual labels. This gives us the flexibility
to adapt to different real requirements about the number of
conceptual labels.

5 Conclusion

Explicit semantics are starting to play a more prominent role
in text processing. In this paper, we focus on conceptual la-
beling, which aims at generating a minimum set of conceptual
labels that best summarize a bag of words. We use a data
driven semantic network Probase to find the best concepts. We
propose a minimum description length based solution to trade-
off the minimality and coverage constraints on the generated
conceptual labels. Extensive experimental results show that
our solution is effective in representing the semantics of a bag
of words.
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