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Abstract
Multi-robot inverse reinforcement learning (mIRL)
is broadly useful for learning, from observations,
the behaviors of multiple robots executing fixed tra-
jectories and interacting with each other. In this pa-
per, we relax a crucial assumption in IRL to make
it better suited for wider robotic applications: we
allow the transition functions of other robots to
be stochastic and do not assume that the transi-
tion error probabilities are known to the learner.
Challenged by occlusion where large portions of
others’ state spaces are fully hidden, we present
a new approach that maps stochastic transitions
to distributions over features. Then, the undercon-
strained problem is solved using nonlinear opti-
mization that maximizes entropy to learn the tran-
sition function of each robot from occluded obser-
vations. Our methods represent significant and first
steps toward making mIRL pragmatic.

1 Introduction
We seek to learn the individual and joint behaviors of mul-
tiple robots executing fixed trajectories in a common space
from observations. This is useful in various applications in-
cluding a robot penetrating simple perimeter patrols; joining
an ad hoc robot team [MacAlpine et al., 2014]; and regulating
traffic [Natarajan et al., 2010]. Two characteristics make the
learning challenging: the multiple observed robots situated in
a common space may interact and their trajectories could be
partially occluded from the learner. We study this problem
in the context of an application setting involving two mobile
robots executing simple cyclic trajectories for perimeter pa-
trolling. Both robots’ patrolling motions are disturbed when
they approach each other in narrow corridors leading to an in-
teraction. A subject robot observes them from a hidden van-
tage point that affords partial observability of their trajecto-
ries only. It’s task is to penetrate the patrols and reach a goal
location without being spotted. Thus, its eventual actions do
not impact the other robots.

Inverse reinforcement learning (IRL) [Russell, 1998; Ng
and Russell, 2000] is well suited as a starting point here
because the task is to learn the preferences of passively-
observed experts from their state-action trajectories. Previ-

ously, Bogert and Doshi [2014] models each observed robot
in the setting as guided by a policy from a Markov deci-
sion process (MDP) and utilizes IRL generalized for occlu-
sion. However, the interactions between the patrollers must
be modeled as well. As these are sparse and scattered, the
robots are modeled as playing a game at each point of inter-
action. Consequently, this method labeled mIRL∗+Int gen-
eralizes IRL – so far limited to single-expert contexts – to
multiple experts exhibiting sparse interactions and whose tra-
jectories are partially occluded from the learner.

Key model assumptions of popular IRL methods are
that the expert’s stochastic transition function is completely
known to the learner as in apprenticeship learning [Abbeel
and Ng, 2004] and in Bayesian IRL [Ramachandran, 2007].
Alternately, the transition function is effectively deterministic
and thus is easily approximated from the observed trajectories
as in entropy maximization [Ziebart and Maas, 2008] with the
assumption that transition randomness has a limited effect on
the final behavior. The prior knowledge requirement is often
difficult to satisfy in practice, for example, in scenarios that
are not cooperative such as the patrolling application. Alter-
nately, the supposed impotency of transition errors is a strong
assumption in the context of robots.

Motivated by these substantive limitations of existing IRL
methods, this paper makes the following contributions. We
partially relax IRL’s prior knowledge requirements and tread
a middle path: we limit to those settings where a mobile
robot’s stochastic transition function may be viewed as com-
posed of a deterministic core perturbed by transition error
probabilities that make it stochastic. Given a state-action pair,
the learner knows the intended next state of each expert.
However, the transition error probabilities are unknown. Of
course, the learner may learn the complete transition func-
tions using supervised learning if it observes the experts fully
and long enough. But, partial occlusion and a finite observa-
tion time motivate prudence and sophisticated methods.

Challenged by occlusion, we present mIRL∗/T+Int a novel
method that is based on the key insight that different transi-
tions share underlying component features, and features that
are associated with observed state-action pairs may transfer
information to transitions in occluded portions. Subsequently,
mIRL∗/T+Int maps each state-action pair to a subset of fea-
tures, which themselves are not perfectly predictable. In
robots, these features could represent the physical compo-
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nents involved in the action, e.g., wheel rotations. Thus, the
probability of success of an action in a state resulting in the
intended next state is the joint probability of success of all
features involved in that action. Our task reduces to finding
the probability of success of each feature from observations
that, importantly, do not inform each feature but instead per-
tain to feature aggregates.

2 Background: Multi-Robot IRL
IRL [Russell, 1998] seeks to find the most likely policy, πI ,
that an expert, I , is executing. Current IRL methods typically
apply in the presence of a single expert where the expert has
solved a Markov decision process (MDP). Furthermore, they
assume that this MDP excluding the reward function is known
to the learner. This assumption is strong and is seldom met in
noncooperative and other contexts.

As the space of possible reward functions is very large, the
function is commonly expressed as a linear combination of
K > 0 feature functions,RI(s, a) =

∑
K θk ·φk(s, a), where

θk are the weights, and φ: S×AI →{0, 1}, is a feature func-
tion. It maps a state from the set of states, S, and an action
from the set of I’s actions, AI , to 0 or 1. IRL algorithms use
feature expectations to evaluate the quality of the learned pol-
icy. The kth feature expectation for a learned policy, πI , is,∑
s µπI (s)·φk(s, πI(s)). Here, µπI (s) is the visitation fre-

quency: the number of times state, s, is visited on using pol-
icy, πI . The expectations are compared with those of the ex-
pert’s from its observed trajectory, φ̂k=

∑
s,a∈traj φk(s, a).

Let ΠI be the space of expert’s policies of size |AI ||S|. IRL
seeks to learn a policy, π∗I ∈ ΠI that minimizes the difference
between the two expectations.

Maximum entropy method Multiple policies may match
the observed feature expectations equally well. In order to re-
solve this ill-posed problem, the principle of maximum en-
tropy is useful [Gzyl, 1995]. It maintains a distribution over
the policies constrained to match the observed feature expec-
tations while being noncommittal to any policy. Mathemati-
cally, we define the problem as a nonlinear optimization:

max
∆

(
−
∑
π∈ΠI

Pr(πI) logPr(πI)
)

subject to
∑
πI∈ΠI

Pr(πI) = 1∑
πI∈ΠI

Pr(πI)
∑
s∈S µπI (s)φk(s, πI(s)) = φ̂k ∀k

(1)

Here, ∆ is the space of all distributions, Pr(ΠI). We may
apply Lagrangian relaxation bringing both the constraints into
the objective function and solving the dual approximately.

Previous applications of IRL such as learning from demon-
strations [Argall et al., 2009] and apprenticeship learn-
ing [Abbeel and Ng, 2004] focus on a single expert agent
and assume the entire state and action spaces are observable.
Bogert and Doshi [2014] generalizes it to contexts shared by
multiple interacting robots and whose trajectories are par-
tially occluded, and label the method as mIRL∗+Int.

Let Obs(S) ⊆ S be the subset of all states of the robot
I that are observable. Policy πI is then obtained by limiting
the optimization in Eq. 1 to over the observable state space
only because we are unable to compute the observed feature

expectations, φ̂k, for the occluded states. While feature ex-
pectations from the observed states could be statistically pro-
jected to the occluded states, this approach may not account
for any disturbances in the trajectory.

In the context of N ≥ 2 observed robots, mIRL∗+Int as-
cribes a smaller, individual MDP to each robot. Focusing on
contexts where interactions are sparse or scattered, actions
at the interacting states are modeled separately and override
those prescribed by the individual MDPs at the interacting
states. Subsequently, a nonlinear program that combines the
one in Eq.1 for each mobile robot and accounting for the oc-
clusion is used for learning the policies of the robots. In par-
ticular, the second constraint of Eq. 1 is limited to observed
states only, Obs(S). As the Lagrangian gradient is undefined
for the unobservable states, a numerical method that does
not use the gradient function such as Nelder-Mead’s sim-
plex [1965] is more suitable when some states are occluded.

mIRL∗+Int models the robots as playing a game at interact-
ing states. Bogert and Doshi [2014] shows an example inter-
action game that models the coordination needed when two
patrollers approach each other in a narrow corridor. Robots
perform the joint action corresponding to a Nash equilibrium
of the game. Computing the state-visitation frequency, µπn ,
in Eq. 1 bifurcates into using the equilibrium profile if the
state involves an interaction, otherwise the attributed policy
is utilized. The challenges are that the interacting state may
be occluded and multiple equilibria may exist. mIRL∗+Int
addresses these by empirically computing the state-visitation
frequency by projecting the current policies, and allowing for
candidate equilibria with the maximum likelihood.

3 Learning Others’ Occluded Transitions
Contributing toward making IRL robust for real-world appli-
cations, we take the significant step of partially relaxing the
assumption in mIRL∗+Int that the stochastic transition func-
tion of each observed robot’s MDP is fully known.

3.1 Transitions and Error Model
Let ψ: S × A → S map an observed robot’s transition from
state, s, given action a to a particular next state, s′. The func-
tion, ψ, gives the intended outcome of each action from each
state. We may view this as a deterministic transition function.

Of course, actions may not always generate their intended
outcomes leading to small errors in the corresponding transi-
tions. Furthermore, parts of the robot’s trajectory may be oc-
cluded from the subject robot and the robot may be guided by
a policy. Both these factors make it unlikely that the learn-
ing robot will observe every action in every state enough
times to reliably compute the full transition function. There-
fore, we focus on learning the probability of transitioning to
the intended state given a state-action pair for an observed
robot I , TI(s, a, ψ(s, a)). The remaining probability mass,
1 − TI(s, a, ψ(s, a)), could be distributed uniformly among
the states that are the intended outcomes of other actions
given the state, or wholly assigned to a default error state.

This approach requires thatψ is available to the learner (but
not the probability with which ψ(s, a) results). Alternately,
the learner is able to construct an accurate ψ. Yet, this is a sig-
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nificant relaxation of the requirement by existing IRL meth-
ods that the full stochastic transition function including all
probabilities is known. In domains involving mobile robots
where actions are movement, intended next states may be de-
termined accurately. Indeed, we follow this approach in our
experimentation. Nevertheless, we are investigating ways of
ascertaining ψ from observations given related effort [Ziebart
and Maas, 2008] but which are cognizant of motion errors.

3.2 Mapping from Transition to Feature Subset
In order to learn robustly under occlusion, our approach is
based on the following key observation:
Observation If transition probabilities are a function of un-
derlying component outcome probabilities, then the observed
trajectory may inform associated component probabilities.
Subsequently, if some of these components are shared with
transitions in occluded states, then information is transferred
that facilitates obtaining occluded transition probabilities.

Motivated by this, we begin by mapping each state-action
to a subset of lower-level transition features. Let ξs,aI =
{τ1, . . . , τk} be the subset of independent features mapped
to a state-action pair, 〈s, a〉, where each feature, τ ∈ TI , is
a binary random variable whose states are τ and τ̄ . Here, TI
the set of all transition feature variables for robot I , is known
– these are obtained from observing the type of robot I – and⋃

(s,a) ξ
s,a
I = TI . Figure 1 illustrates the above observation.

Figure 1: Venn diagrams showing intersections between sets
ξs1,a1

I , ξs1,a2

I , ξs2,a1

I and ξs1,a2

I , and for a mobile robot. Ob-
servations informing transition features that are shared with
other transitions facilitate a transfer of information to possi-
bly occluded transitions.

Subsequently, define for a transition, 〈s, a, ψ(s, a)〉,

TI(s, a, ψ(s, a)) ≈
∏

τ∈ξs,aI
Pr(τ) (2)

The relationship between the feature random variables is ide-
ally represented using a Bayesian network. As computing the
joint of a Bayesian network takes exponential time in gen-
eral and there are many transitions, mutually independent fea-
tures offer tractability; this provides guidance on how to se-
lect features. Equation 2 is loosely analogous to using feature
functions in the reward function with the difference that TI is
probabilistic due to the features being random variables.

To illustrate, consider the move forward action of a
robot on a smooth surface in a grid, which is enabled by its
components such as all its wheels rotating with the same
velocity. A differential drive robot with 2 wheels could
have the move forward action from a state involving a
smooth surface mapped to two features: left wheel rotating
with some velocity on a smooth surface and right wheel

rotating with the same velocity on the surface. Then,
TI(s,move forward, ψ(s,move forward))=Pr(left wheel
rotating on smooth surface) × Pr(right wheel rotating on
smooth surface). A damaged wheel decreases this probability.

3.3 Observed Probabilities
Equation 2 casts the problem of inversely learning the tran-
sition function as the problem of learning the distributions
of the state-action features. However, the challenge is that
we may not be able to pinpoint the performance of the
various features in the observed trajectory; rather we ob-
tain aggregated empirical distributions. An observed tra-
jectory of length T is a sequence of state-action pairs,
{〈s, a〉0, 〈s, a〉1, . . . , 〈s, ø〉T }, where ø is the null action.
From this, we obtain the probabilities of transitioning to the
intended state given the previous state and action, denoted by
qψ(s,a), as simply the proportion of times the intended state
is observed as the next state in the trajectory:

q
ψ(s,a)
I =

∑T−1
t=0:〈st,at〉=〈s,a〉 δ(s

t+1, ψ(st, at))∑T−1
t=0:〈st,at〉=〈s,a〉 1

where δ(·, ·) is the indicator function that is equal to 1 when
its two arguments are equal, otherwise 0.

Consider a simple trajectory, {〈s1,move forward〉,
〈s2, turn around〉, 〈s2,move forward〉, 〈s1, turn around〉,
〈s1,move forward〉, 〈s3, ø〉}, if s2 is the intended state
from s1 on performing action, move forward, then
q
ψ(s1,move forward)
I = 1/2. Of course, a trajectory observed

over a longer time leads to more accurate probabilities.
Notice that the probability, qψ(s,a)

I , obtained from an ob-
served trajectory is equivalent to TI(s, a, ψ(s, a)). Conse-
quently, Eq. 2 relates the observed probability as obtained
above to the transition features,∏

τ∈ξs,aI
Pr(τ) = q

ψ(s,a)
I (3)

While ξs,aI tells us which features are assigned to each
state-action and Eq. 3 constrains the feature distributions, we
arrive at an ill-posed problem where there could be many pos-
sible feature distributions satisfying the observed transition
probabilities that serve as aggregates.

3.4 Underconstrained Optimization
One way to make progress in an underconstrained problem is
to again utilize the principle of maximum entropy optimiza-
tion [Gzyl, 1995] because it makes the least assumptions be-
yond the problem formulation. In this context, mIRL∗/T+Int
maximizes the sum total entropy of all feature distributions.
Constraints for this nonlinear optimization problem are given
by Eq. 3 for each state-action pair present in the observed tra-
jectory. The novel nonlinear optimization problem for finding
the transition feature distributions of N robots is:

max
∆1,...,∆N

(
−
∑N
n=1

∑
τ∈Tn Pr(τ)log Pr(τ) + Pr(τ̄)log Pr(τ̄)

)
subject to∑

τ∈ξs,an
log Pr(τ) = log qψ(s,a)

n ∀〈s, a〉 ∈ Obs(S)×Obs(A)

n = 1 . . . N
Pr(τ) + Pr(τ̄) = 1 ∀τ ∈ Tn, n = 1 . . . N

(4)
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The Lagrangian relaxation of the above optimiza-
tion problem introduces vectors of Lagrangian multi-
pliers, v and λ, and the relaxed objective function is:
L(T1, . . . , TN ,v,λ) =

(
−
∑N
n=1

∑
τ∈Tn Pr(τ)log Pr(τ)+

Pr(τ̄)log Pr(τ̄)) +
∑N
n=1

∑|Obs(S)||Obs(A)|
j=1 vn,j((∑

τ∈ξs,an log Pr(τ)
)
− log qψ(s,a)

n

)
+
∑N
n=1

∑
τ∈Tn λn,i

((Pr(τ) + Pr(τ̄))− 1)
Vector v has as many elements as the number of state-action
pairs and observed robots. In practice, multiple state-action
pairs for a robot may map to the same set of feature variables.
In other words, ξs,an for these state-action pairs is the same.
Thus, we need not distinguish between these state-action
pairs above, and we may obtain a single observed probability
for the feature subset by summing qψ(s,a)

n for the individual
〈s, a〉 pairs.

To properly handle saddle points in the Lagrangian func-
tion we take the sum of squares of the partial derivatives
of L to arrive at the final objective function, L′. Next, we
minimize L′ by using the penalty approach with Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [Byrd et al., 1995] uncon-
strained gradient descent technique.
Occlusion Previously unseen actions could have been per-
formed in the occluded portions of other robot’s trajectory.
Nevertheless, these actions map to feature variables in TI . As
some of the features in TI are factors in observed actions, we
may obtain (partially) informed transition distributions for
the unseen actions as well under the maximum entropy prin-
ciple. This observation highlights the advantage of consider-
ing feature variables. This projection into the unobservable
portion of the state and action space is justified by the max-
imum entropy method: over all possible distributions taking
into account all available information the one with the maxi-
mum entropy is expected to be the least wrong.

3.5 Estimating Full Transition Function
mIRL∗/T+Int solves the nonlinear optimization to obtain fea-
ture distributions that maximize the total entropy. Equation 2
then allows us to compute TI(s, a, ψ(s, a)) for each state-
action pair. In order to estimate the complete transition func-
tion, we need the probability of reaching unintended states
due to action errors as well. The mass 1 − TI(s, a, ψ(s, a))
could be uniformly distributed among the intended states that
would result due to performing actions other than a from s.
Subsequently, the full transition function of other robot, I , is
obtained as:

TI(s
t, at, st+1) = δ(st+1, ψ(st, at))

∏
τ∈ξs

t,at

I

Pr(τ)+∑
a′∈AI :a′ 6=at δ(s

t+1, ψ(st, a′))
1−
∏
τ∈ξs

t,at

I

Pr(τ)

|AI |−1

(5)
where δ(·, ·) is an indicator function. In Eq 5, if state st+1 is
the intended next state due to action at from state st, then the
probability is TI(st, at, ψ(st, at)), otherwise the probability
is due to erroneously reaching st+1 by performing one or
more other actions, which is 1−TI(st,at,ψ(st,at))

|AI |−1 . Alternately,
we may allocate the entire mass, 1 − TI(s, a, ψ(s, a)), to a

default (error) state. The latter may well be the state that re-
sults from stopping because a mobile robot often stops and
relocalizes itself after errant motion, for example.

3.6 Iterative Optimization
Given the estimated transition functions of others,
mIRL∗/T+Int next inversely learns their reward functions as
briefly described in Section 2. mIRL∗/T+Int thus collapses to
mIRL∗+Int, learning reward weights θ and obtaining policies
of the observed robots. Correctly identifying and labeling the
state-action pairs in robot I’s observed trajectory is crucial
to the performance of IRL in general, and particularly under
occlusion. mIRL∗/T+Int iteratively improves on the initial
identification, which is often inaccurate due to perception
errors, by utilizing the learned policies of the observed
robots. Specifically, in the next iteration, for each observed
state of a robot I , we replace the perceived action by that
prescribed by the policy or the equilibrium behavior in case
of an interaction at the state. mIRL∗/T+Int then utilizes these
relabeled trajectories to learn new transition probabilities for
the observed robots. This procedure iterates until the labels
for the observed state-action pairs fixate.

4 Performance Evaluation
We evaluate mIRL∗/T+Int in an application domain intro-
duced by Bogert and Doshi [2014] involving mobile robots,
I and J , patrolling hallways using cyclical trajectories as
shown in Fig. 2. Learning robot, L, starts at a hidden van-
tage point with a limited field of view and must autonomously
reach a goal state located in the hallways undetected by the
patrollers. Thus, L’s eventual actions do not impact I and J .

(a) Scenario for simulation
(b) For physical runs

Figure 2: Hallways of a building patrolled by I (in blue) and
J (in red) with the start location of L inside a room looking
out of an open door. The goal locations are marked with an
‘X’. Area visible to L in the physical runs is shown in gray.
This corresponds to just 14% of the state space with the rest
occluded.

The learner, L, models both the patrollers as being guided
by policies output from their respective MDPs, whose states
are the cell decompositions of the space, 〈x, y〉, the dis-
cretized orientation of the robot, ϕ, and a time step dimen-
sion, t. The actions of the patrollers and the subject robot
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allow each to move forward one cell, stop, turn right or
left while moving. As the actions all involve motion, the in-
tended next states, ψ, of each patroller are readily determined.
mIRL∗/T+Int allows for nondeterministic transition functions
that model the noise in physical robot motion. Furthermore, a
wheel of one of the patrollers is artificially damaged in our ex-
periments. A robust test of the performance of mIRL∗/T+Int is
whether L can identify the patroller and which of its wheels is
damaged. The learner’s transition function models the prob-
ability of any of its own action failing at 2.5%. Each pa-
troller’s reward function is modeled as a linear combination
of weighted feature functions, as we mentioned previously.
L’s reward function is positive for the goal state regardless of
the time step. Penalties for detections by a patroller get spec-
ified at run time after the patrollers have been observed and
their policies learned. We may then project their trajectories
forward in time and space thereby predicting its location at
each time step. States at which the location of L is within vis-
ible distance of the patroller with both at the same time step
are given a negative reward.
L utilizes the following independent binary feature random

variables as part of TI and TJ :
1. Rotate left wheel at specified speed, used at all states and

for all actions except stop;
2. Rotate right wheel at specified speed, used at all states and

for all actions except stop;
3. Navigation ability that models the robot’s localization and

plan following capabilities in the absence of motion errors,
used at all states and for all actions except stop.

4. Floor slip, used for all states and actions
R(s, a) consists of the following binary feature functions as
I and J’s trajectories are simple cycles: has moved, in upper
hallway, in lower hallway, and turn around at state, s. The
true vector of weights, θ, in the patrollers’ reward functions
then rewards features that result in cyclic patrols.

4.1 Algorithm and Baselines
The learner utilizes the following algorithm to determine
when it should start moving toward the goal: It observes the
patrollers for a predetermined amount of time and uses the
observed trajectories to first learn their transition functions,
followed by using them in performing mIRL∗+Int for learn-
ing their reward functions under occlusion. The MDPs of the
patrollers are then solved and the policies are obtained, which
are projected forward in time and space. In the value function
of L’s MDP, future time steps (in the state) exhibiting a posi-
tive value at the starting location of L are indicative of finding
a path that leads to the goal state without being detected by a
patroller. If found, L executes the resulting optimal policy to
move toward the goal. Of course, none of the states may ob-
tain a positive value. If so, L continues to observe and project
the future positions of the patrollers until a solution is found
or the waiting time elapses resulting in failure.

A dynamic Bayesian network (DBN) [Charniak, 1991]
provides a graphical way for modeling a robot’s transition
function. While several approaches exist for learning the net-
work parameters from data, a popular method for learning
from data with missing values – due to the occlusion – is

expectation-maximization (EM) [Dempster et al., 1977]. In
this method, labeled as DBNEM , robots I and J are each
modeled using a two-step state-action-state DBN whose pa-
rameters are learned from the observed portions of the trajec-
tories as data using EM.

Other baselines allow for a comprehensive analyses. The
first knows the reward functions of patrollers including how
they interact, with L acting accordingly. This approach either
learns the transition function, labeled as Known R/T and acts
as an upper bound, or sets the transition function, Known R.
Next comparator is Random, in which L ignores all observa-
tions, waits for a pre-specified observation duration, and then
chooses a random time to start moving to the goal.

4.2 Experiments
Each robot in our simulations and physical experiments is a
TurtleBot equipped with a Kinect, which provides a camera
and an infrared ranging sensor. The bases include an iRobot
Create or a Kobuki. Each robot also has a laptop running ROS
Hydro on Ubuntu 12.04. A robot identifies another by detect-
ing its unique color signature using CMVision’s blob finder.
ROS’s default actuator and sensor models for the TurtleBot
and the default local motion planner in move base are used
for navigation. Each robot localizes in a predefined map using
the adaptive Monte Carlo localization available in ROS. The
virtual simulations are performed in Stage. L is spotted if it is
roughly within 6 cells of a patroller and the patroller faces it.
We vary the starting locations of the patrollers across runs.

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 50
 100

 150
 200

 250
 300

 350
 400

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

L
e

a
rn

e
d

 B
e

h
a

v
io

r 
A

c
c
u

ra
c
y

Known R\T
mIRL*\T+Int

Observable StatesObservation Time (s)

L
e

a
rn

e
d

 B
e

h
a

v
io

r 
A

c
c
u

ra
c
y

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.75  0.8  0.85  0.9  0.95  1

S
u
c
c
e
s
s
 R

a
te

Learned Behavior Accuracy

Known R /T
mIRL*/T+Int

Figure 3: (top) Learned behavior accuracy of mIRL∗/T+Int
and Known R/T for different occlusion rates and observing
times. (bottom) Improving accuracy of learned behavior
correlates almost linearly with success rate. Vertical bars de-
note one std. dev.

Simulations
We first study the comparative impact of mIRL∗/T+Int on L’s
success rate in simulation. This is the proportion of runs in
which L reaches the goal state unspotted by a patroller. This
metric comprehensively measures the performance of all as-
pects of the approach and has practical implications. It is in-
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Figure 4: (a) Comparative success rates of L for various methods that either learn TI and TJ or fix it arbitrarily. True transition
probabilities of the patrollers are not known. (b) Transition feature probabilities that correctly identify that the left wheel of J
is partially damaged as indicated by its comparatively low success probability. (c) Transition feature probabilities when both
patrollers are operating properly.

dicative of whether the observation in Section 3.2 is valid, the
accuracy of the learned transition function and patroller pol-
icy under occlusion, L’s simulated prediction accuracy, and
the ability of L to traverse a route within an allotted time.
Another key metric is the learned behavior accuracy, which
is the proportion of all states at which the actions prescribed
by the inversely learned policy of the patroller coincide with
their actual actions. This metric permits focus on the learning
in mIRL∗/T+Int.

We begin by evaluating the learned behavior accuracy of
mIRL∗/T+Int as a function of the degree of observability and
observing time, in Fig. 3. The degree is the proportion of all
(x, y) cells in the state space that are visible to L; its comple-
ment gives a measure of the occlusion. Known R/T provides
an artificial upper bound as we show. Each data point is the
average of 200 simulated runs. Expectedly, the accuracy of
mIRL∗/T+Int improves with both observability and time. As
observability improves, the optimization has more informa-
tion and relies less on maximizing the entropy of the distri-
butions. Furthermore, behavior accuracy correlates positively
with success rate that reaches up to 60% for mIRL∗/T+Int.

We now consider the scenario where J’s left wheel is
slightly damaged unknown to L. The partially damaged pa-
troller is slowed down, and L’s overall success rate should
improve. However, the latter depends on whether the dam-
aged patroller is correctly identified by L, and whether the
damaged wheel is “seen” in the feature probabilities. Fig-
ure 4(a) answers this important question: What is the benefit
of learning the transition distributions of the patrollers? Ob-
serve that mIRL∗/T+Int leads to a success rate that is greater
than assuming arbitrary transition error distributions for both
I and J (and then using mIRL∗+Int), and is equal when a
success probability of 0.9 is assumed. This difference is am-
plified on comparing Known R/T with Known R. Further-
more, DBNEM results in a poor success rate that is below
Random. High occlusion to the extent that some actions are
never seen poses a difficult challenge for the EM. The per-
centage of all runs during which the DBNEM could not find
any state with a positive value (and therefore did not even at-
tempt a penetration) is 100% under occlusion, which falls to
about 90% when there is no occlusion. In comparison, this
timed-out failure rate is under 4% for the other techniques re-
gardless of occlusion showing that transition features that are

shared between actions facilitate robust learning.
In Fig. 4(b), we show learned transition feature probabil-

ities for both patrollers, qψ(s,a)
I and q

ψ(s,a)
J , averaged over

all state-action pairs. mIRL∗/T+Int correctly learns patroller
J’s feature probabilities – comprising left and right wheel ro-
tation, navigability and floor state – that are all lower than
those of I . Importantly, the left wheel’s success probability is
significantly lower than that of the right wheel (Student’s 2-
tailed t-test, p � 0.001) – whose probability coincides with
that of a properly working wheel – thereby correctly identify-
ing that left wheel is damaged. This partial failure negatively
impacts other features such as navigability.

Next, we consider the scenario where none of the
patrollers’ wheels are damaged. Figure 4(c) reports the
learned transition feature probabilities for both patrollers
where the error is small and coincide for both patrollers, as
we may expect. These learned probabilities are close to the
upper bound provided by Known R/T . The latter is relevant
as the shown feature probabilities are obtained from a subse-
quent iteration after an initial optimization.

Physical robots
We evaluate mIRL∗/T+Int using physical robots in a smaller
hallway environment (Fig. 2(b)). From its vantage point, L
can observe approximately just 14% of the state space cor-
responding to the lower observability setting in the previ-
ous simulations. The TurtleBots detect each other using color
blob finders which are calibrated to match the detection range
of the simulated robots. A successful run occurs when L
reaches its goal without being detected. Failed runs may be
caused by: I or J detecting L or 25 minutes have passed.

Success rate
Method J’s left wheel damaged No damaged wheels

mIRL∗/T+Int 0.60 0.50
mIRL∗+Int 0.50 0.40

Random 0.40 0.20

Table 1: L’s success rates using various methods over 10
physical runs each. L suffers from very high occlusion of pa-
trollers.

We experiment with mIRL∗/T+Int, mIRL∗+Int fixing a
transition success rate of 0.9, and Random in both scenar-
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ios: when J’s left wheel is artificially damaged thereby slow-
ing it down and creating an uneven trajectory, and when the
patrollers are operating properly. We report the success rates
of the physical runs in Table 1. Each data point is the aver-
age of 10 runs in the real environment. Note the success rate
increase when J’s wheel is damaged due to more opportu-
nities to reach the goal if J’s motion can be correctly pre-
dicted. A demonstration of the physical runs may be viewed
at https://youtu.be/X0HymCtjYh0.

5 Concluding Remarks
Few other approaches investigate relaxing prior knowledge
requirements of IRL. Boularias et al. [2011] propose model-
free IRL with a single expert, learning the reward function
by minimizing the relative entropy between distributions over
trajectories generated by a baseline and target policies. In
contrast, we explicitly first learn the transition function under
occlusion making this a first semi-model based method. We
demonstrated its use by a robot with a limited field of view
tasked with penetrating simple patrols by two other robots –
it showed a success rate of 1 in 2 or more. As future work, we
seek to continue relaxing the prior knowledge requirements
that IRL places on its learners.

We focused on settings where interactions between robots
are sparse and scattered. This allows observed robots to be
individually modeled as tractable MDPs. Consequently, the
transition probabilities of the multiple observed robots are
assumed to be conditionally independent of each other; we
may assume locality. Of course, the problem becomes a joint
decentralized MDP [Goldman and Zilberstein, 2008] when
interactions are pervasive and extended, and whose solution
is usually highly intractable. Locality is relaxed by allowing
joint actions in TI and ξI thereby mapping state and joint ac-
tions to features.

Finally, Bard [1980] used maximum entropy to estimate
state probabilities when event probabilities, which are ag-
gregation of states, are known. This is challenging because
there are fewer event probabilities than the number of un-
known state probabilities. mIRL∗/T+Int builds on Bard’s ap-
proach with several additional challenges. These include our
use of features that are random variables, trajectories that may
contain several events (aggregate features), occlusion, and its
novel extension toward learning transition probabilities.
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