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Abstract

In this paper, we propose a weakly supervised Re-
stricted Boltzmann Machines (WRBM) approach
to deal with the task of semantic segmentation with
only image-level labels available. In WRBM, its
hidden nodes are divided into multiple blocks, and
each block corresponds to a specific label. Accord-
ingly, semantic segmentation can be directly mod-
eled by learning the mapping from visible layer to
the hidden layer of WRBM. Specifically, based on
the standard RBM, we import another two terms to
make full use of image-level labels and alleviate the
effect of noisy labels. First, we expect the hidden
response of each superpixel is suppressed on the la-
bels outside its parent image-level label set, and a
non-image-level label suppression term is formu-
lated to implicitly import the image-level labels as
weak supervision. Second, semantic graph propa-
gation is employed to exploit the cooccurrence be-
tween visually similar regions and labels. Besides,
we deal with the problems of label imbalance and
diverse backgrounds by adapting the block size to
the label frequency and appending hidden response
blocks corresponding to backgrounds respectively.
Extensive experiments on two real-world datasets
demonstrate the good performance of our approach
compared with some state-of-the-art methods.

1 Introduction

Semantic image segmentation is a fundamentally challeng-
ing problem, aiming at assigning semantic labels to image re-
gions [Xie e al., 2014]. Compared with traditional image
segmentation, it provides higher-level understanding about
image contents. While compared with typical image classifi-
cation, it provides more fine-grained semantic understanding
of images. Therefore, image semantic segmentation provides
a virtual solution to bridge the semantic gap, and becomes
one of the core problems in computer vision [Shotton et al.,
2009][Zhang et al., 2012].

In the past years, semantic image segmentation has at-
tracted a lot of attention, and significant progress has been
achieved [Shotton et al., 2006; 2008; Liu et al., 2009a;
Vezhnevets et al., 2012; Farabet et al., 2013].  Although
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these methods have shown promising results, they rely on a
training set of images with pixel-level labels. However, the
high cost on the ground truth acquisition restricts the wide
usage of such work. Fortunately, with the rapid spread of
online photo sharing websites (e.g., Flicker), large numbers
of images with image-level labels become available. These
image-level labels can be further exploited to make seman-
tic segmentation [Liu et al., 2009b; Vezhnevets et al., 2011;
Xie et al., 2014]. In contrast to fully supervised setting with
pixel-level labels, it is more challenging to make weakly su-
pervised semantic segmentation with image-level labels.

Recently, a few methods have been proposed to address the
weakly supervised segmentation problem [Liu er al., 2009b;
2013; Zhang et al., 2013; Xie et al., 2014]. In general, the
core task of weakly supervised semantic segmentation is to
learn the mapping between image label and low-level feature
of local regions. [Liu et al., 2009b] attempted to capture the
cooccurrence by a bi-layer sparse coding model. [Zhang et
al., 2013] developed a way to learn the mapping by evaluat-
ing the classifier, in which a good classifier will have good re-
construction basis for positive samples and large reconstruc-
tion error for the negative samples. Meanwhile, Graph propa-
gation based methods are proposed to restrict visually sim-
ilar regions to have similar labels [Liu et al., 2012; 2013;
Xie et al., 2014]. Generally, the existing methods initialize
the label of superpixels with image-level labels explicitly and
refine the model consequently to get the final label for each
superpixel. Such an explicit importation of image-level labels
as supervision may be crude a little, since the limited discrim-
inative ability of superpixels tends to make the performance
of label refinement unsatisfied to some extent. Thus, how to
import the image-level labels as weak supervision is a chal-
lenging but valuable problem for semantic segmentation.

In this paper, we propose a Weakly supervised Restricted
Boltzmann Machines (WRBM) to deal with the problem of
semantic segmentation by exploring the image-level labels
as shown in Figure 1. The images are first over segmented
into superpixels, and the extracted feature of each superpixel
is set as the input to the visible nodes of WRBM. The hid-
den nodes of WRBM are divided into several blocks, where
each block corresponds to a specific label. Under such set-
ting, the superpixel label can be decided by the hidden-node
block with the maximum response. The proposed WRBM is
an extended version of the standard RBM by introducing two
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Figure 1: The overview of our approach. (Best viewed in color). (I) Oversegment each image into superpixels and extract
features for each superpixel; (II) Learn the mapping associations between image labels and local regions by exploiting their
cooccurrence among the training set via non-image-level label suppression. The hidden layer of WRBM is divided into multiple
blocks and each block corresponds to a specific label; (IIT) Infer the label for local region with the learnt mapping associations.

additional terms in its objective function. The first term is
a non-image-level label suppression one to implicitly import
the image-level labels as weak supervision. Such implicit im-
portation works on the intuition that the label of a superpixel
is impossible to be the ones outside its parent image-level la-
bels. Thus, we employ the term to suppress the response of
blocks corresponding to those impossible labels. The second
term is a semantic graph propagation one to make sure that vi-
sually similar superpixels sharing common image-level label
have similar hidden response. Besides, we modify the model
to deal with the problems of diverse backgrounds and label
imbalance in the training dataset. For the former, we add mul-
tiple background blocks to the hidden layer, and assume each
image corresponds to one background block. To deal with the
label imbalance, we design the size of the block correspond-
ing to each label to be an inversely correlated number with the
label frequency. That is, we expect to amplify the response
of an infrequent label by designing a larger block size. Fi-
nally, extensive experiments on two real-world datasets, i.e.,
PASCAL [Everingham et al., 2010] and LabelMe [Russell
et al., 2008], demonstrate the effectiveness of our approach
compared with some state-of-the-art methods. Generally, the
main contributions are summarized as follows.

e We propose a RBM-based learning framework for the
task of semantic segmentation. The correspondence be-
tween labels and hidden responses of WRBM gives a
direct solution to the prediction of superpixel label.

e The non-image-level label suppression and the semantic
graph propagation are employed together to make full
use of the image-level labels and alleviate the effect of
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the noisy labels.

e The changeable block size and block number of the hid-
den layer are designed to handle the problems of label
imbalance and diverse backgrounds of training data.

2 Related Work

Semantic segmentation has attracted wide interests due to
its importance in bridging high-level concepts to low-level
features of local regions. Most semantic segmentation ap-
proaches suppose that a training dataset with pixel-level la-
bels is given [Vezhnevets et al., 2012] [Shotton et al., 2006]
[Farabet et al., 2013] [Liu et al., 2009a] [Farabet et al., 2013].
A typical way to model the problem with pixel-level label is
based on Conditional Random Field (CRF) [Shotton et al.,
2006], The basic formulation is defined on pixel values with
various potential functions, including shape, texture, color,
location and edge cues. Lots of extensions are proposed to
modify the CRF with high-order potentials [Ladicky er al.,
2009], hierarchical features [Farabet et al., 2013], label cooc-
currence [Ladicky er al., 2010]. Another direction is to de-
velop non-parametric methods to transfer labels from train-
ing images to the query image [Liu ef al., 2009a] [Liu ef al.,
2011]. [Myeong and Lee, 2013] further explores high-order
semantic relation with label transfer. All of these approaches
require pixel-level labels for training, which are expensive to
obtain in practise.

Weakly-supervised methods have emerged and attracted
more attention due to the weak requirement of supervision
[Vezhnevets et al., 2011; 2012; Vezhnevets and Buhmann,
2010; Liu et al, 2013; 2012; Zhang et al., 2013; 2014;



Xie et al., 2014]. [Vezhnevets and Buhmann, 2010] cast the
semantic segmentation task as a multiple instance learning
problem. They adopted semantic texton forest as the basic
framework and extended it for the MIL setting. [Vezhnevets
et al., 2011] extended [Vezhnevets and Buhmann, 2010] with
a multi-image model, in which smoothness between adja-
cent and similar superpixels is encouraged. [Vezhnevets et
al., 2012] exploited multiple visual cues in this weakly su-
pervised setting with a parametric family of structured mod-
els. Meanwhile, [Liu er al., 2009b] proposed a bi-layer
sparse coding method, in which an image region is sparsely
constructed with the regions of the same image-level label.
What is more, [Liu et al., 2012; 2013] developed a weakly
supervised graph propagation model by considering super-
pixel consistency and weak supervision information simulta-
neously. [Xie er al., 2014] further verified the importance of
semantic graph construction in the graph propagation model.

Generally, the existing weakly supervised methods lever-
age the image-level labels explicitly, they initialize the label
of superpixel with image-level labels and refine the model
consequently to get the final label for each superpixel. Such
methods are easily affected by the noise labels, which usu-
ally exist in real applications. Furthermore, different label
concepts occur quite differently in the real case. Treating dif-
ferent labels equally without considering label imbalance will
limit the performance of segmentation methods. Leveraging
the weak image-level labels properly and addressing the prob-
lems above become the focus of this paper.

3 The Proposed Approach

We propose a weakly supervised RBM based method for se-
mantic segmentation via non-image-level label suppression.
RBM is an undirected graphical model, which consists of a
visible layer and a hidden layer. It can model the data in a
transformed subspace with the unsupervised setting. To ad-
dress the semantic segmentation problem, units of the hid-
den layer are divided into multiple blocks, where each block
corresponds to a specific label concept. Mapping associa-
tions between low-level features and hidden label blocks can
be achieved via non-image-level label suppression and graph
propagation.

Before the detailed discussion of each component, we first
summarize some notations. Given a set of images 7, each
image ¢ is oversegmented into N; superpixels [Achanta et
al., 2012]. Feature is extracted on each superpixel with the
bag-of-words model using SIFT [Lowe, 2004] descriptor and
color feature. x;; denotes the feature of the j-th superpixel
in image 7. In addition, the image-level label set for the i-th
image is denoted as .S;.

3.1 Non-image-level Label Suppression

Generally, the semantic segmentation problem is to learn the
mapping from low-level features of local regions to high-level
concepts. Unlike the fully supervised setting [Shotton et al.,
2006] [Farabet et al., 20131, the problem under weakly su-
pervised setting becomes very challenging because of the ab-
sence of pixel-level labels. For a specific image ¢, any label
among the image-level label set S; may be the truth for the su-
perpixels. We can not learn a direct mapping from low-level
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features to high-level labels under the weakly supervised set-
ting. However, the image-level label provides the important
cue that there will be no mapping from the superpixels to the
none-image-level image labels ( labels not in S; ). To incor-
porate such idea into the standard RBM framework, we im-
port a regularization term to suppress blocks corresponding
to the none-image-level labels.

Standard RBM has a single layer of hidden units that are
not connected to each other and have undirected, symmetrical
connections to a layer of visible units [Hinton and Salakhutdi-
nov, 2006; Bengio, 2009]. A joint configuration of the visible
units v and hidden units h has an energy function as follows,

E.(v,h) = —h"Wv —bTv - c’h (1)

where W is the weight matrix between visible units and hid-
den units, b and c¢ are the offsets of visible units v and hidden
units h. The joint probability distribution of all the units is
defined as follows,
1
Zeop(~Ey(v. ) @
where Z is the partition function.

Given visible units v, the probability for the binary hidden
unit h,,, to be 1 can be obtained as follows,

1
1+ exp(en + Win.v)

where Wy, . is the m-th row of the matrix . Similarly, given
hidden units h, the probability for the binary visible unit v,,
to be 1 is as follows,

P(v,h) =

P(hy, = 1[v) 3)

1

P(v, =1h) =
Vo = 1) = b, + W7, )

“4)

where W. ,, is the n-th column of the matrix W.

To import semantic information, the hidden layer units of
RBM are divided into multiple blocks, and block Bj, corre-
sponds to the k-th label concept Lj. The response function
for the units in block By, is defined as follows,

Ep, = Y hl,

meBy,

(&)

where m is the index for the hidden unit in block By. For a
specific image ¢ with image-level label set .S;, response of the
blocks corresponding to the non-image-level labels should be
small. We capture this property by importing non-image-level
suppression term as follows,

By = Z Z EB"’¢S7‘,'

1€ET jJEN;

(6)

As aresult, mapping to the image-level labels will be encour-
aged for each superpixel with the suppression term.

Adaptive Block Size

The hidden units of RBM are divided into multiple blocks
according to the label concept. A natural division method
for the blocks is of the equal size. However, frequencies of
different labels are usually highly imbalanced as shown in
Figure 2. The background label ’sky’ occurs in 85% images
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Figure 2: Label frequency on the LabelMe LMO dataset.

of the dataset, while the specific object 'moon’ occurs in no
more than 1% images. If the block is of the same size, im-
ages of high frequency labels will dominate the non-image-
level suppression term of Equation (6). To deal with the label
imbalance and emphasize the effect of low frequency labels,
we increase the block size of the labels with low frequency
directly. Empirically, the block size () g, is modeled with re-
spect to the label frequency as follows,

@B, = M x exp(—%

where M is a hyper-parameter to control the scale of the block
size, C' is a smooth constant, § is a free parameter to control
the decay rate. fj is the label frequency calculated from the

training dataset as follows, f;, = = %1 - and ny, is the num-
k k

)+C )

ber of images containing label k.

Diverse Backgrounds

To deal with the diverse backgrounds, a intuitive idea is to add
a block in the hidden layer corresponding to the class ’back-
ground”. However, the added block will have maximum re-
sponse to the most commonly occurred visually similar super-
pixels among the dataset instead of the background regions
for each image. Therefore, multiple blocks are preferred to
deal with the diverse backgrounds. The background for a spe-
cific image belongs to one possible background block. A ran-
dom background label is added to each image. With n,,, mul-
tiple background blocks, the probability of n; different im-
ages to have the same background label is (nim)"i_l, which
is usually very small.

3.2 Semantic Graph Propagation

Label propagation plays an important role for weakly super-
vised semantic segmentation [Liu et al., 2012; Zhang et al.,
2014; Xie et al., 2014]. Semantic graph propagation term is
proposed to make sure that similar superpixels sharing com-
mon image-level label have similar hidden response. If two
similar local regions from different images share common la-
bel, then it is natural to tag these regions with the common
label. [Xie er al., 2014] validates the importance of affinity
graph with kinds of construction methods. Some labels usu-
ally occur together, like “grass” and sheep”. It is difficult
to label superpixels in such images. In order to embed more
discriminative information into the affinity graph, we propose

1891

Figure 3: Illustration of semantic graph construction. For
a specific superpixel in the image with labels “person” and
“horse”, the K nearest neighbors are found in the images
with labels ”person” and “horse” separately. Meanwhile the
nearest images with the label “person” should not contain the
label “horse”, and the nearest images with the label horse”
should not contain the label “person”. Finally, the KNN su-
perpixels is selected with Equation 8.

a affinity graph construction method with semantic exclusion
property. For a specific image ¢ with label set S;, a label L;
in .S; is denoted as L; € S;, and its complementary set is de-
noted as L{° with respect to S;. For the superpixels in image
1, we seek to find the K nearest neighbors for each label L;
separately. The K{-NN superpixels are selected in the images,
which contain label L;, but do not contain the labels in L§°.
Figure 3 illustrates such process intuitively. Finally, the K-
NN superpixels for a superpixel j in image ¢ is decided with
maximum semantic similarity,

®)

where AzLJ’ , = exp(— ) is the similarity measure for
the superpixel pair with label L;, and ¢ is a free parameter to
control the decay rate. The advantage of such semantic graph
provides more discriminative information about the true label
for each superpixel.

With the semantic affinity graph, the graph propagation
term can be formulated as follows,

By=>Y" > Ajullh(zij) —hia)|?

€T JEN; I€K (i)

9)

where x;; is the extracted feature of the j-th superpixel in
image 4, and K (ij) denotes the index set of the K nearest
neighbors. h(x) is the hidden response vector corresponding
to the visible input x.

3.3 Objective Function of WRBM

By incorporating the non-image-level label suppression term
and semantic graph propagation term into the basic RBM
framework, we can get the final energy function as follows,

E = E, + aE, + 8E, (10)



where « and [ are the tradeoff parameters of the proposed
two terms.

3.4 Semantic Segmentation with WRBM

Given that the proposed model WRBM is well learnt, the se-
mantic segmentation process can be performed by finding the
block with maximum response. Specifically, for any given
image 4 with label set S;, The pixel-level label T;; of the
superpixel x;; can be assigned by maximizing the block re-
sponse as follows,

T = E 11
max b, (1)

where E'p, is the response of block k given input feature x;;,
which is defined in Equation (5).

4 Optimization

For the basic problem of RBM, parameters can be estimated
by minimizing the negative log-likelihood — ", log P(v,h)
via Contrastive Divergence [Hinton, 2002]. Contrastive Di-
vergence is an approximation of the log-likelihood gradient
that has been found to be a successful update rule for train-
ing RBM [Bengio, 2009]. Optimization algorithm of the pro-
posed WRBM can be achieved by modifying Contrastive Di-
vergence directly, since the non-image-level suppression term
and graph propagation term are both convex and differen-
tiable. The Contrastive Divergence algorithm with Weak Su-
pervision (CDWS) is shown in Algorithm 1, where ® denotes
element-wise product of two vectors.

Algorithm 1 CDWS

Input: Extracted feature x,;, image-level label set S;, parameter
weights « and (3, learning rate £, maximum epoch number E.j,,
similarity matrix A;;,;

: Initialize: W, b, ¢

: While ite < E.j do

. 1 _ _ 1

: sample h' € {0, 1} from P(h|v)

. _ _ 1

P P(xi; = 11h) = oG

: sample x;; € 0, 1 from P(x};|h?)

. 2 __ 2N 1
. P(h - 1|XLJ) - 1+exp(c+Wx$j)

: calculate gradient of Equ. 6 w.r.t h as d

: calculate gradient of Equ. 9 w.r.t h as d,

10: d. = (ad, + Bds) © P(h' = 1]x;;) © (1 — P(h! = 1]x;5))
11: Dy = dex;

12: Update parameters

13: W+ W +e(h'x]; — P(h* = 1]x3;)(x};)" — Dw)

14: b+ b+ e(xi; — x3;)

15: ¢+ c+e(h' — P(h* = 1|x};) —d.)

16: End While

Output: W, b, c

OO0 IO i W —

S Experiments and Results

5.1 Experimental Setup

We evaluate our algorithm on two real world datasets, PAS-
CAL VOC 2007 dataset (PASCAL for short) [Everingham

et al., 2010] and LabelMe dataset [Russell et al., 2008;
Liu ef al., 2009a]. Extensive comparisons are presented with
several related work, including state-of-the-art methods [Xie
etal.,2014], [Zhang et al., 2014], [Zhang er al., 2013], [Liu et
al.,2012], [Liu et al., 2013], [Vezhnevets et al., 2012], [Vezh-
nevets et al., 2011], [Vezhnevets and Buhmann, 20101, [Liu
et al., 2009b], [Verbeek and Triggs, 2007]. For fair compari-
son, we directly cite released results of comparison methods.
Methods are typically compared using the average per-class
accuracy. For a given class, the accuracy is calculated by the
percentage of correctly classified pixels.

To further validate the robustness of the proposed method,
experiments are performed under the setting of different lev-
els of label noise and different numbers of noise images.

5.2 Results on PASCAL Dataset

The PASCAL VOC 2007 dataset was used for the PASCAL
visual object category segmentation contest with 20 object
classes [Everingham et al., 2010]. We conduct experiments
on the segmentation set with the “train-val” split including
422 training-validation images and 210 test images. For the
segmentation dataset, only obvious object labels are provided
for each image. As a result, the image-level labels are in-
complete to describe the image regions, and large numbers
of superpixels are deemed as “background”, which leads to
diverse backgrounds. It is very challenging to make semantic
segmentation on this dataset due to high intra-class variations
and diverse backgrounds.

To deal with large numbers of background regions, object-
ness of each image is calculated to help build semantic graph
of object regions [Alexe et al., 2010]. Grabcut [Rother et al.,
2004] is adopted to refine the boundary of object regions.

The experimental results of our method compared with
other related work are presented in Table 1. The last column
shows the average accuracy, and our approach with adaptive
block size achieves the best performance with 14.3% relative
improvement to state of the art [Xie ef al., 2014]. For indi-
vidual concepts, our approach with adaptive block size and
equal block size outperforms the comparison methods on 5
classes and 6 classes respectively. Compared with state of the
art [Xie et al., 2014], our approach with adaptive block size
is more robust to deal with different kinds of object classes.
Although SGC [Xie et al., 2014] achieves best performance
in a few classes ( e.g., plane, bird and cow), it fails in several
classes (e.g., horse, motorbike and dog).

By comparing results of our approach with equal block size
and adaptive block size, we can find that the model with adap-
tive block size is more robust to class changes and achieves
better performance by taking data distribution into consider-
ation. The model with equal block size tends to prefer labels
with high frequency (e.g. person and chair), while the model
with adaptive block size can handle most classes well at the
cost of some classes with high label frequency.

5.3 Results on LabelMe LMO Dataset

This dataset is a subset of LabelMe dataset [Russell et al.,
2008] provided by [Liu er al., 2009al. It contains 2638
fully annotated images of 33 object categories, most of
which are outdoor scenes including sky, street, buildings,



Table 1: Semantic segmentation results on PASCAL dataset.
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[Liu et al., 2009b] 24 25 40 25 32 35 27 45 16 49 24 32 13 25 56 28 17 16 33 18 82 32
[Liu et al., 2012] 28 20 52 28 46 41 39 60 25 68 25 35 17 35 56 36 46 17 31 20 65 38
[Zhang et al., 2013] 48 20 26 25 3 7 23 13 38 19 15 39 17 18 25 47 9 41 17 33 - 24
[Zhang et al., 2014] 65 25 39 8 17 38 17 26 25 17 47 41 44 32 59 34 36 23 35 31 33
[Xie et al., 2014] 85 55 87 45 42 31 34 57 21 81 23 16 6 11 42 31 72 24 49 40 41 42
Ours (equal block) 56 16 77 25 62 22 63 66 42 83 15 37 13 5 81 60 50 23 29 72 41 45
Ours ( adaptive block) 33 50 72 66 46 70 73 43 30 78 29 31 16 52 33 61 41 38 47 48 50 48

Table 2: Semantic segmentation results on LabelMe LMO dataset.

Supervision Fully supervised setting
Method [Shotton ef al., 2006] [Liu et al., 2009a] [Tighe and Lazebnik, 2010] | [Myeong and Lee, 2013]
Accuracy 13 24 29 32
Supervision Weakly supervised setting
Method [Vezhnevets et al., 2011] | [Vezhnevets et al., 2012] [Liu et al., 2013] Ours
Accuracy 14 21 26 41

mountain. For the supervised methods [Liu et al., 2009a;
Myeong and Lee, 2013; Tighe and Lazebnik, 2010; Shotton
et al., 2006], there are 2488 randomly selected images for
training and 200 for testing. The occurrence frequency for
different labels is highly imbalanced as shown in Figure 2.
The label ’sky’ occurs in more than 85% images, while the
label *moon’ occurs in less than 1% images. Such a dataset is
very challenging to make semantic segmentation due to high
label imbalance. To deal with the high label imbalance, the
block size is adaptively tuned with Equation (7) according to
the label frequency.

Comparisons with fully supervised methods and weakly
supervised methods are given in Table 2. Our approach
achieves even better performance than the fully supervised
methods [Myeong and Lee, 2013] by taking label imbalance
into consideration. It outperforms [Liu et al., 2013] by 15%
improvement and [Myeong and Lee, 2013] by 9% improve-
ment. It can handle most classes well at the cost of some
classes with high label frequency like ’sky’. Moreover, For
such scene datasets, context information will be helpful to
make prediction for the position-fixed classes like ’sky’ and
’sea’, which will be exploited in future.

Furthermore, to validate the robustness of our model to la-
bel noise, we conduct extensive experiments with different
numbers of noise labels and noise images. Specifically, we
randomly select p € {10,20,---,90, 100} percents of im-
ages and add r € {1,2,3} randomly selected labels. We
repeat each experiment 5 times and report the average accu-
racy. Detailed results can be found in Figure 4. With fixed
number of noise label, we find that the average class accu-
racy decays linearly with the increase of noise images. Our
approach achieves 30% accuracy even when every sample is
with a noise label. Moreover, the label accuracy drops little
with the increase of noise labels (from 1 to 3) when the noise
samples are less than 30 percents, since the non-image-level
suppression term and semantic graph propagation term help
to alleviate the effect of noisy labels. As the number of noise
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Figure 4: Average per-class accuracy with different num-
bers of noise labels and noise images on the LabelMe LMO
dataset.

images increases, many cooccurrence of labels may appear,
which may have a larger effect on the final result.

6 Conclusion

In this paper, we propose a weakly supervised semantic seg-
mentation method via non-image-level suppression. Hidden
units in the WRBM are divided into multiple blocks, and each
block corresponds to a specific label. A non-image-level sup-
pression term is imported to suppress the response of blocks
with impossible labels, while a semantic graph propagation
term is imported to regularize similar features to have similar
hidden response. Extensive experiments on two real world
challenging datasets demonstrate the good performance of
our approach.
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