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Abstract

Visual tracking is an important research topic in
computer vision community. Although there are
numerous tracking algorithms in the literature, no
one performs better than the others under all cir-
cumstances, and the best algorithm for a particu-
lar dataset may not be known a priori. This mo-
tivates a fundamental problem-the necessity of an
ensemble learning of different tracking algorithms
to overcome their drawbacks and to increase the
generalization ability. This paper proposes a multi-
modality ranking aggregation framework for fusion
of multiple tracking algorithms. In our work, each
tracker is viewed as a ‘ranker’ which outputs a rank
list of the candidate image patches based on its own
appearance model in a particular modality. Then
the proposed algorithm aggregates the rankings of
different rankers to produce a joint ranking. More-
over, the level of expertise for each ‘ranker’ based
on the historical ranking results is also effectively
used in our model. The proposed model not only
provides a general framework for fusing multiple
tracking algorithms on multiple modalities, but also
provides a natural way to combine the advantages
of the generative model based trackers and the the
discriminative model based trackers. It does not
need to directly compare the output results obtained
by different trackers, and such a comparison is usu-
ally heuristic. Extensive experiments demonstrate
the effectiveness of our work.

1 Introduction

Visual tracking is a key component in numerous video anal-
ysis applications, such as visual surveillance, vision-based
control, human-computer interfaces, intelligent transporta-
tion, and augmented reality. It strives to infer the motion
states of a target, e.g., location, scale, and velocity, from the
observations in the each frame with the assumption that the
appearance of the target is temporally consistent. This as-
sumption may be occasionally violated due to the large ap-
pearance variations of a target induced by changing illumina-
tion, viewpoint, pose, occlusion, and cluttered background,

which leaves visual tracking a quite challenging task after
decades of intensive study.

In terms of how to construct the appearance models, the
tracking algorithms can be roughly categorized into genera-
tive model or discriminative model based methods. The gen-
erative model based methods usually build a model to de-
scribe the visual appearance of a target, e.g., by a distribu-
tion or subspace of intensities or features. Then the tracking
problem may reduce to search for the optimal motion state
of a target that yields the most similar object appearance in
a maximum likelihood formulation. An image patch model
[Hager and Belhumeur, 1998], which takes the set of pixels
in the target region as the model representation, is a direct
way to model the target, but it loses the discriminative infor-
mation that is contained in the pixel values. The color his-
togram [Comaniciu er al., 2003] provides global statistical
information about the target region which is robust to noise,
but it is sensitive to illumination changes and distracters with
similar colors. [Stauffer and Grimson, 1999] first employ
a Gaussian mixture model (GMM) to represent and recover
the appearance changes in consecutive frames. Later, a num-
ber of more elaborate Gaussian mixture models are proposed
for visual tracking [Jepson et al., 2003; Zhou et al., 2004;
Wang et al., 2007]. In [Porikli et al., 2006], the object to be
tracked is represented by a covariance descriptor which en-
ables efficient fusion of different types of features and modal-
ities. Another category of appearance models is based on sub-
space learning. In [Black and Jepson, 1998], a view-based
eigenbasis representation of the object is learned off-line, and
applied for matching successive views of the object. How-
ever, it is very difficult to collect training samples that cover
all possible viewing conditions. To deal this problem, sub-
space learning based tracking algorithms [Lim et al., 2004,
Zhang et al., 2010; 2014] are proposed to effectively learn
the variations of both appearance and illumination in an incre-
mental way. Generative models generally seek a compact ob-
ject description and do not take advantage of the background
information. Therefore, the generative model based trackers
are apt to be distracted by background regions with similar
appearances during tracking.

To address the background distraction problem, discrimi-
native models are adopted and trained online during tracking,
which concentrate on maximizing the difference between a
target and the background. Hence, visual tracking is viewed
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as a binary classification problem that finds the optimal deci-
sion boundary to distinguish a target from the background.
[Collins et al., 2005] firstly note the importance of back-
ground information for object tracking, and formulate track-
ing as a binary classification problem between the tracked ob-
ject and its surrounding background. In [Lin et al., 2004], a
two-class FDA (Fisher Discriminant Analysis) based model
is proposed to learn a discriminative subspace to separate the
object from the background. In [Avidan, 2007], an ensemble
of online weak classifiers are combined into a strong classi-
fier. [Grabner er al., 2006] adopt online boosting to select
discriminative local tracking features. [Saffari et al., 2009]
introduce a novel on-line random forest algorithm for feature
selection that allows for on-line building of decision trees.
[Babenko et al., 2011] use multiple instance learning instead
of traditional supervised learning to learn the weak classifiers.
This strategy is more robust to the drifting problem. Appar-
ently the classification performance of discriminative mod-
els largely depends on the correctly labeled training samples.
The common choice is to regard the current tracked object as
the positive sample and sample its neighborhood locations to
select negative samples. The self-training nature , that is, the
classification results are directly utilized to update the classi-
fier, will lead to overfitting.

Although there are numerous tracking algorithms in the lit-
erature, no mater generative based or discriminative based, no
one algorithm performs better than the others under all cir-
cumstances, and the best algorithm for a particular dataset
may not be known a priori. This motivates a fundamen-
tal problem-the necessity of an ensemble learning of differ-
ent tracking algorithm to overcome their drawbacks and to
increase the generalization ability. Besides, a natural step
forward to cope with the self-training problem suffered by
the discriminative appearance models is to introduce genera-
tive appearance models to supervise the sample selection and
training of the discriminative model in a co-training man-
ner [Yu et al., 2008], since the generative and discrimina-
tive models have the complimentary advantages in modeling
the appearance of the object. However, the major challenge
of combining different tracking algorithms is how to mea-
sure the performance of different trackers in the absence of
groundtruth? When trackers employ different features from
multiple modalities, it is hard to directly evaluate their per-
formance [Wu et al., 2013].

To address the above issues, we propose a multi-modality
ranking aggregation framework for fusion of multiple track-
ing algorithms. In our work, each tracker is viewed as a
‘ranker’ which outputs a rank list of the candidate image
patches based on its own appearance model in a particular
modality. Then, the proposed algorithm aggregates the rank-
ings of different rankers to produce a joint ranking. More-
over, the level of expertise for each ‘ranker’ based on the his-
torical ranking results (tracking results before current video
frame) is also effectively used in our model. The main fea-
tures of our work are two-fold: (1) Our work provides a gen-
eral framework for fusing multiple tracking algorithms em-
ploying different features from multiple modalities. It does
not need to directly compare the output results obtained by
different trackers, and such a comparison is usually heuristic
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and is only feasible in some specific conditions. (2) Our work
provides a natural way to combine the advantages of the gen-
erative model based trackers and the the discriminative model
based trackers. To our best knowledge, such a framework for
fusion of multiple tracking algorithms has not been addressed
in the literature.

The rest of the paper is organized as follows. In section
2, the multi-modality ranking aggregation framework is in-
troduced. In section 3, the proposed tracking algorithm is
detailed. The experimental results to validate our method are
presented in section 4. Some concluding remarks are made in
section 5.

2 Multi-Modality Ranking Aggregation
Framework

2.1 Ranking Aggregation Model

In this part, we will briefly introduce the theory of ranking
aggregation. Let O = {01, 03, ..,0x } be a set of object can-
didates to be ranked by different rankers, and let r; € Sy
be the ranking list of ranker ¢ for these candidates where Sy
is a pool of all the possible rankings. Assuming that a set
of ranking R = {rq,r2,...,rx} from K individual rankers
is available, the probability of assigning a true ranking & to
the candidates O can be defined using the extended Mallows
model [Lebanon and Lafferty, 2002]:

1 K
p(le, R) = Z(&a)p(ﬁ) eXp(;aid(fﬂ“z‘)) ()
where p(§) is a prior of ¢ and Z({, o) =

Teesap(€) exp(Zfil a;d(&,r;)) is a normalizing con-
stant. d(.,.) is the distance measure between two ranking
lists, and @« = {1, as,...,ax} is the expertise of all the
rankers which fulfils that «; < 0. The closer of «; to zero,
the less influence of the i-th ranker on the assignment of
the probability. When «; trends to negative infinity, the
corresponding ranker trends to be the true rank. So the Eq.(1)
calculates the probability that the true ranking is £, given the
rankings from different rankers R and the degrees of their
expertise . In the learning process, only the rankings from
different rankers R are available, based on which we need to
infer £ and a.

In the above model, the distance d(., .) between two rank-
ings need to be right-invariant, which means the value of
d(.,.) does not depend on how the objects are indexed. More
specially, if we re-index the object using 7, the distance
between two rankings over the objects does not changes:
d(&,r) = d(&r,rT), where 7 is defined by £7(4) = &(7(7)).
That means, the value of d(.,.) does not change if we re-
index the objects such that one ranking becomes 67! =
e = (1,2,...,n) and the other 7 1. Kendall’s tau distance
[Lebanon and Lafferty, 2002] is an example of common right-
invariant distance function. The distance between ranking &
and r is defined as the minimum number of pairwise adjacent
transpositions needed to turn one ranking into the other:

N—-1
A r) =YY I&r () — &)

i=1 j>i
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Figure 1: Generative process

[Klementiev et al., 2008] proved that if the distance is
right-invariant, the following generative process can be de-
rived based on Eq. (2):

K
p(& Rla) = p(&) [ [ p(rilai, &) 3)
i=1

This generative process can be described in Fig.1. From the
generative model, we can find the observation is ranking r;,
& and « are the hidden parameters of the model. Based on
the generative model, a set of samples can be sampled. These
samples are used to approximate the distribution of the rank-
ings.

The parameters o and & can be estimated using the EM
algorithm [Klementiev er al., 2008] given a set of rankings
R ={ry,rq,...,mx }. Inthe E-step, the true ranking ¢ is taken
as the missing data. The expected value of the complete data
log-likelihood with respect to missing data £, observed data
R, and current expertise estimate o is defined as follows:

Q(a; ') = Ellog p(R, &, )[R, o] O]
The calculation of the expected value in above equation
results in:
Qo a) = Z L()U () 5)
€SN
where L(«) is
N ) K N K
=log) p(¢’) ~Nlogy  Z(as)+ > aud(&
=1 1=1 j=11i=1
(6)

where rf is the ranking generated by the ¢-th ranker for the
object candidate j, and U (/) is

N
Z (&]a, )

where 77 is the ranking generated by all rankers for the object
candidate j.

In the M-step, Eq.(5) is maximized by «; with the follow-
ing derivation:

Eo (d(,m) = S (

£eSN

)

N .
nga, r))p(&led,r7)  (®)
j:l

For the Kendall’s tau distance, E,,(d(&,r;)) is the expec-
tation of Eq.(2) and can be expressed in the following form
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[Fligner and Verducci, 1986]:

Ne"” jeid

1 — el

EOéi (d(f, ri)) -

N
i D e
At each iteration, a sampling method is introduced to obtain
the approximate value of the RHS (right-hand side) of Eq.
(8). Since E,,(d(&,r;)) is monotone decreasing, «; can be
easily obtained by a binary search approach.

2.2 Top-k Ranking Aggregation Model

As we can see, direct application of the above learning pro-
cedure is expensive, when the number of the candidates N
is large. In tracking applications, it is reasonable that the
groundtruth will be contained in the top-k candidates. To re-
duce to computational complexity, we do not need to do the
rank aggregation on the whole list of the candidates.

Top-k lists are partial rankings indicating preferences over
different (possibly, overlapping) subsets of k objects, where
the elements not in the list are implicitly ranked below all of
the list elements. Top-k ranking aggregation model means
that the ranking aggregation is conducted on the top-k lists of
all rankers. We find the above model can be easily extended to
the top-k rank aggregation, the only difference is the E,, (.),
which can be calculated as follows.

Definition 1: Let F¢ and F;., be the top-k elements of £ and
r; respectively, with |F¢| = |F,.,| = k. Z = F¢ N F,, with

|Z| = 2. P=F:\Z,and S = F,,, \ Z, with |P| = |S| =
k—z=1.
Therefore,
ke jexi (l +1)
Eal(d(€11) = 1 - Z L
j=l+1
e®i(z+1)
—l(z+ 1)71 — o D) (10)

3 Multi-Modality Ranking Aggregation based
Tracking Algorithm

Inspired by the above discussion, we propose a multi-
modality ranking aggregation based tracking algorithm. In
our work, we use three generative model based trackers and
a discriminative model based tracker. The three generative
model based trackers are: (1) the covariance matrix based
tracker [Porikli er al., 2006]; (2) the incremental subspace
learning based tracker [Lim et al., 2004]; (3) the spatial-color
mixture of Gaussians based tracker [Wang et al., 2007]. The
discriminative model based tracker is the MIL (multiple in-
stance learning) based tracker [Babenko et al., 2011].

3.1 Algorithm Description

A flowchart of our algorithm is presented in Fig.2. The par-
ticle filtering tracking framework is adopted for all the track-
ers. In the prediction process, we first use the state transition
to generate a set of candidate image patches corresponding to
the object states {s;}Y ;. In the tracking process, all the four
trackers evaluate these candidate image patches according to
their own appearance model, and output a set of ranking lists
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Figure 2: A flowchart of our proposed algorithm

based on their evaluation value. Then the top-k rankings are
aggregated using the above model, and obtain the final rank-
ing of the candidate image patches. The top-1 candidate im-
age patch in the aggregated ranking is considered as the track-
ing result. All the four trackers are updated according to the
aggregated ranking results respectively. In this way, the MIL
tracker is supervised by the generative model based trackers
and does not trained the classifiers using its own tracking re-
sult, therefore the self-training problem is avoided. Also in
the instance selection process, even if the MIL tracker itself
fails to locate the true object location during some frames, the
other generative model based trackers may still help it select
the correct positive bag.

3.2 Learning of the Ranker Expertise

The above ranking aggregation model obtains the expertise
o; of each ranker r; using the EM algorithm in an iterative
way. Then the true ranking £ is deduced. It is an unsuper-
vised ranking aggregation, and the expertise of each ranker is
independent for different frames. However, it is not reason-
able in tracking applications. In fact, the expertise of each
ranker should meet the following two requirements: (1) the
expertise of each ranker will vary little between two consecu-
tive frames, and this consistency constraint should be consid-
ered; (2) the expertise of each ranker should reflect whether a
ranker is a good tracker which needs to be adaptively evalu-
ated in the tracking process.

After obtaining the aggregated ranking &, we can evaluate
whether the ranker 7; is a good tracker by calculating the dis-
tance value d(r;, £). However, direct using this distance value
for evaluation is not appropriate, for example, if r; changes
the top-2 candidates of & or the bottom-2 candidates of &, the
distance value between them is the same. The former case
means 7; do not give the same tracking results as &, while for
the latter case, we think r; give a very good tracking perfor-
mance. To simplify this problem, we only focus on the top-1
candidate of the rankings. If the top-1 candidate of r; and £ is
the same, we multiply the expertise a; by a factor m (m > 1)
which means 7; is reliable. While if the top-1 candidate of r;
and £ is not the same, we multiply the expertise «; by a factor
m (m < 1). To take the historical ranking results and con-
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sistency constraint into consideration, the expertise parameter
can be adaptively initialized in each frame as follow.

xm+ (1 —w)al™! (11

K2

t_ o t—1
o = woy

where w = 1 — e~1/7 acts as a forgotten factor and o is a
predefined constant. This warm start learning of the expertise
«; can accelerate the EM convergence process and make the
results more accurate.

3.3 Implementation Detail

In this paper, the object is localized using a rectangular win-
dow and its state is s, = (¢, t,, w, h) where (¢, t,) denotes
the center location of the bounding box and (w, h) are re-
spective the width and height of the bounding box. Some
important parameters are set as follows: N = 600, k = 90,
a? =—1,m=110r0.9,0 = 2.

4 Experiment

In this section, we test the proposed multi-modality rank-
ing aggregation based tracking algorithm (MRAT) on sev-
eral challenging sequences. The difficulties of these se-
quences lie in that the background is noisy, the object un-
dergoes large appearance changes, occlusion and the object
is similar to the background. We compare our algorithm
with five state-of-art algorithms. The first four algorithms are
respectively multiple instance learning based tracker (MIL)
[Babenko et al., 2011], the L;-regularized sparse template
based tracker (LRST) [Mei and Ling, 2011], the visual de-
composition tracker (VDT) [Kwon and Lee, 2010], and the
online adaboost tracker (OBT) [Grabner et al., 2006]. We also
choose co-training multiple instance learning tracker (CMIL)
[Lu et al., 2011] as comparison'. In CMIL, it improves the
MIL through combining HOG-classifier and RGB-classifier
in a co-training way. While we improve the MIL tracker

'The source codes of these trackers are available from:
http://vision.ucsd.edu/ bbabenko/project-miltrack.shtml
http://www.ist.temple.edu/ hbling/code/
http://cv.snu.ac.kr/research/ vtd/
http://www.vision.ee.ethz.ch/boostingTrackers/
http://ice.dlut.edu.cn/lu/Paper/FG2011/code/COMILcode.rar
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through ranking aggregation instance selection, so it is in-
teresting to compare these two algorithms. In the tracking
results, MRAT is located using a white bounding box, MIL
is located using a red bounding box, LRST is located using a
green bounding box , VDT is located using a yellow bounding
box, OBT is located using a green bounding box and CMIL is
located using a light blue bounding box.

4.1 Qualitative Analysis

Car, Boat and SmallTarget

The Car, Boat and Smalltarget sequences are selected to test
the performance of our algorithm against noisy and cluttered
backgrounds. In the Car sequence, a car moves in a very
noisy environment. The nearby background is so noisy that
the car can not easily be located even by eyes. Some repre-
sentative frames of the tracking results are shown in Fig.3(a).
MRAT outperforms other trackers and successfully tracks all
the frames. The other trackers fail to locate the object as the
background becomes noisy.

In the Boat sequence, the surround background of the boat
shares similar colors with it. Some representative frames of
the tracking results are shown in Fig.3(b). MRAT and MIL are
able to track the object. The VDT drifts away in some frames
and can relocates the object. The other three trackers do not
performs well in this sequence.

In the Smalitarget sequence, the object has a similar ap-
pearance to the background and there exists background dis-
traction when the pedestrian passes by the car. Some repre-
sentative frames of the tracking results are shown in Fig.3(c).
MRAT and the VDT tracker can successfully track all the
frames. The other trackers can not accurately locate the ob-
ject when the background distraction exists.

Surf and Shake
The Surf and Shake are chosen to test the robustness of our
algorithm against large appearance, illumination changes and
cluttered backgrounds. In the Surf sequence, the surfer has a
similar appearance with the wave and endures large appear-
ance changes when he is covered by the wave. Some repre-
sentative frames of the tracking results for this sequence are
shown in Fig.3(d). MRAT achieves the best performance. It
only fails to accurately locate the object as the scale of the
object becomes so large that the bounding box cannot include
the object. The other trackers cannot provide accurate results.
In the Shake sequence, the man changes his appearance
by shaking his head. The background is cluttered and also
undergoes large illumination changes. Some representative
frames of the tracking results are shown in Fig.3(e). The MIL
tracker successfully tracks all the frames. MRAT only fails
to track the object around frame frame 60 and then quickly
recovers to track the object. The other trackers do not perform
well in this challenging sequence.

Football, Woman and Girl

The last three sequences are Football, Woman and Girl. We
apply MRAT on these three sequences to test the robustness
against occlusion and background distractions. In the Foot-
ball sequence, severe occlusion happens and the target object
shares a similar color with the other players. Some repre-
sentative frames of the tracking results for this sequence are
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Alg.

MIL | OBT | LRST | VDT | CMIL | MRAT |

Car 269 | 22.6 16.3 10.7 21.9 3.8
Boat 4.7 26.6 60.1 8.1 75.6 4.2
Surf 284 | 465 44.2 172 | 61.6 10.1
Smalltarget | 6.2 | 196.1 7.8 3.5 32.1 3.1
Shake 103 | 132 522 13.0 | 63.3 11.1
Football 11.7 | 808 100.1 | 10.5 | 41.2 44
‘Woman 122 | 78.7 86.5 4.5 110.1 5.2
Girl 249 | 403 24.6 142 | 54.3 10.8

Table 1: Quantitative results for the sequences in §4.1

shown in Fig.3(f). The MIL and VDT tracker both begin to
lose the object when severe occlusion and background dis-
traction happen. MRAT successfully tracks the object in this
challenging situation.

In the Woman sequence, the woman undergoes occlusion
by the car. In the Girl sequence, the girl undergoes large ap-
pearance changes by turning around her head and is severely
occluded by the man. Some representative frames of the
tracking results for these two sequences are shown in Fig.3(g)
and Fig.3(h). Both MRAT and VDT can successfully track the
object through all the frames. The MIL tracker, it can track
the object for most of frames but without accuracy. While the
other trackers do not perform well in these two sequences.

4.2 Quantitative Analysis

In this part, we present quantitative evaluations to show the
performance of trackers in different video sequences. We cal-
culate the RMSE (root mean square error) of the four points
in the bounding box between the tracking results and the
groundtruth. The groundtruth is marked by hand. The mean
of RMSE of the seven sequences we test on are given in Ta-
ble 1. From the quantitative evaluations, MRAT provide the
lowest RMSE in most of the sequences.

4.3 Discussion

The qualitative and quantitative results show that MRAT out-
performs the other five competing trackers in most of the
sequences. MRAT is robust in the presence of the back-
ground clutter and distraction, large appearance and illumina-
tion changes, and occlusion. It improves on the MIL through
training the tracker under the supervision of the generative
model based trackers in a ranking aggregation manner. In
the sequences where the MIL successfully tracks the object,
the proposed aggregation strategy does not worse the per-
formance of MIL tracker. However, in the sequences that
the MIL fails to track the object, MRAT improves the per-
formance of the MIL tracker and can successfully track the
object. As a result, we conclude that MRAT provides an ef-
fective solution to the problem of self-training.

5 Conclusion

In this paper, we propose a novel multi-modality ranking ag-
gregation tracking algorithm to improve performance of the
MIL under the supervision of the generative model. In our
ranking aggregation framework, the discriminative classifier
based MIL tracker is boosted with the help of the generative



models in ranking aggregation manner. The discriminative
model and generative models are fused together seamlessly
without the need to compare the performance of each other.
The experimental results validate the effectiveness of our al-
gorithm.
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