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Abstract
Many hard computational social choice problems
are known to become tractable when voters’ pref-
erences belong to a restricted domain, such as
those of single-peaked or single-crossing prefer-
ences. However, to date, all algorithmic results of
this type have been obtained for the setting where
each voter’s preference list is a total order of candi-
dates. The goal of this paper is to extend this line
of research to the setting where voters’ preferences
are dichotomous, i.e., each voter approves a subset
of candidates and disapproves the remaining candi-
dates. We propose several analogues of the notions
of single-peaked and single-crossing preferences
for dichotomous profiles and investigate the rela-
tionships among them. We then demonstrate that
for some of these notions the respective restricted
domains admit efficient algorithms for computa-
tionally hard approval-based multi-winner rules.

1 Introduction
Preference aggregation is a fundamental problem in social
choice, which has recently received a considerable amount
of attention from the AI community. In particular, an impor-
tant research question in computational social choice is the
complexity of computing the output of various preference ag-
gregation procedures. While for most common single-winner
rules winner determination is easy, many attractive rules that
output a committee (a fixed-size set of winners) or a ranking
of the candidates are known to be computationally hard.

There are several ways to circumvent these hardness re-
sults, such as using approximate and parameterized algo-
rithms. These standard algorithmic approaches are com-
plemented by an active stream of research that analyzes
the computational complexity of voting rules on restricted
preference domains, such as the classic domains of single-
peaked [Black, 1958] or single-crossing [Mirrlees, 1971]
preferences. This research direction was popularized by
Walsh [2007] and Faliszewski et al. [2011], and has lead
to a number of efficient algorithms for winner determina-
tion under prominent voting rules as well as for manipula-
tion and control, which can be used when voters’ prefer-
ences belong to one of these restricted domains [Walsh, 2007;

Faliszewski et al., 2011; Brandt et al., 2010; Faliszewski
et al., 2014; Betzler et al., 2013; Skowron et al., 2015b;
Magiera and Faliszewski, 2014].

To the best of our knowledge, this line of work only con-
siders settings where voters’ preferences are given by to-
tal orders over the set of candidates; indeed, this is per-
haps the most widely studied setting in the area of compu-
tational social choice. However, computationally complex
preference aggregation problems may also arise when vot-
ers’ preferences are dichotomous, i.e., each voter approves a
subset of the candidates and disapproves the remaining candi-
dates. Committee selection rules for voters with dichotomous
preferences, or approval-based rules, have recently attracted
some attention from the computational social choice commu-
nity, and for two prominent such rules (specifically, Propor-
tional Approval Voting (PAV) [Kilgour and Marshall, 2012]
and Maximin Approval Voting (MAV) [Brams et al., 2007])
computing the winning committee is known to be NP-hard
[Aziz et al., 2014; LeGrand et al., 2007]. It is therefore natu-
ral to ask if one could identify a suitable analogue of single-
peaked/single-crossing preferences for the the dichotomous
setting, and design efficient algorithms for approval-based
rules over such restricted dichotomous preference domains.

To address this challenge, in this paper we propose and ex-
plore a number of domain restrictions for dichotomous pref-
erences that build on the same intuition as the concepts of
single-peakedness and single-crossingness. Some of our re-
stricted domains are defined by embedding voters or candi-
dates into the real line, and requiring that the voters’ prefer-
ences over the candidates “respect” this embedding; others
are obtained by viewing dichotomous preferences as weak
orders and requiring them to admit a refinement that has a
desirable structural property. Surprisingly, these approaches
lead to a large number of concepts that are pairwise non-
equivalent and capture different aspects of our intuition about
what it means for preferences to be “one-dimensional”. We
analyze the relationships among these restricted preference
domains, (see Figure 3), and discuss the complexity of de-
tecting whether a given dichotomous profile belongs to one
of these domains. We then show that these domains are use-
ful from the perspective of algorithm design, by providing
polynomial-time and FPT algorithms for PAV and MAV un-
der some of these domain restrictions. The full version of this
paper is available on arXiv [Elkind and Lackner, 2015].
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2 Basic Definitions
Let C = {c1, . . . , cm} be a finite set of candidates. A partial
order � over C is a reflexive, antisymmetric and transitive
binary relation on C; a partial order � is said to be total if
for each c, d ∈ C we have c � d or d � c. We say that a
partial order � over C is a dichotomous weak order if C can
be partitioned into two disjoint setsC+ andC− (one of which
may be empty) so that c � d for each c ∈ C+, d ∈ C− and
the candidates within C+ and C− are incomparable under�.

An approval vote on C is an arbitrary subset of C. We
say that an approval vote v is trivial if v = ∅ or v = C. A
dichotomous profile P = (v1, . . . , vn) is a list of n approval
votes; we will refer to vi as the vote of voter i. We write vi =
C\vi. We associate an approval vote vi with the dichotomous
weak order �vi that satisfies c �vi d if and only if c ∈ vi,
d ∈ vi. Note that vi = ∅ and vi = C correspond to the same
dichotomous weak order, namely the empty one.

A partial order �′ over C is a refinement of a partial order
� over C if for every c, d ∈ C it holds that c � d implies
c �′ d. A profile P ′ = (�1, . . . ,�n) of total orders is a
refinement of a dichotomous profile P = (v1, . . . , vn) if �i

is a refinement of �vi for each i = 1, . . . , n.
Let C be a total order over C. A total order � over C is

said to be single-peaked with respect to C if for any triple of
candidates a, b, c ∈ C with aC bC c or cC bC a it holds that
a � b implies b � c. A profile P of total orders over C is
said to be single-peaked if there exists a total order C over C
such that all orders in P are single-peaked with respect to C.

A profile P = (�1, . . . ,�n) of total orders over C is said
to be single-crossing with respect to the given order of votes
if for every pair of candidates a, b ∈ C such that a �1 b all
votes where a is preferred to b precede all votes where b is
preferred to a; P is single-crossing if the votes in P can be
permuted so that it becomes single-crossing with respect to
the resulting order of votes.

A profile P = (�1, . . . ,�n) of total orders over C is
said to be 1-Euclidean if there is a mapping ρ of voters and
candidates into the real line such that c �i d if and only if
|ρ(i) − ρ(c)| < |ρ(i) − ρ(d)|. A 1-Euclidean profile is both
single-peaked and single-crossing.

3 Preference Restrictions
We will now define a number of constraints that a dichoto-
mous profile may satisfy. Most of these constraints can be di-
vided into two basic groups: those that are based on ordering
voters and/or candidates on the line and requiring the votes
to respect this order (this includes VEI, VI, CEI, CI, DE, and
DUE), and those that are based on viewing votes as weak or-
ders and asking if there is a single-peaked/single-crossing/1-
Euclidean profile of total orders that refines the given profile
(this includes PSP, PSC, and PE); we remark that the study of
the latter type of constraints was initiated by Lackner [2014].
We will also consider constraints that are based on partition-
ing voters/candidates (2PART and PART), as well as two con-
straints (WSC and SSC) that have been introduced in a recent
paper of Elkind et al. [2015] in order to understand the best
way of extending the single-crossing property to weak orders.

Fix a profile P = (v1, . . . , vn) over C.

1. 2-partition (2PART): We say that P satisfies 2PART if
P contains only two distinct votes v, v′, and v ∩ v′ = ∅,
v ∪ v′ = C.

2. Partition (PART): We say that P satisfies PART if C can
be partitioned into pairwise disjoint subsets C1, . . . , C`

such that {v1, . . . , vn} = {C1, . . . , C`} (i.e., each voter
in P approves one of the sets C1, . . . , C`).

3. Voter Extremal Interval (VEI): We say that P satisfies
VEI if the voters in P can be reordered so that for every
candidate c the voters that approve c form a prefix or
a suffix of the ordering. Equivalently, both the voters
who approve c and the voters who disapprove c form an
interval of that ordering. See Figure 1 for an example.

4. Voter Interval (VI): We say that P satisfies VI if the vot-
ers in P can be reordered so that for every candidate c
the voters that approve c form an interval of that order-
ing. See Figure 2 for an example.

5. Candidate Extremal Interval (CEI): We say that P sat-
isfies CEI if candidates in C can be ordered so that each
of the sets vi forms a prefix or a suffix of that ordering.
Equivalently, both vi and vi form an interval of that or-
dering.

6. Candidate Interval (CI): We say that P satisfies CI if
candidates in C can be ordered so that each of the sets
vi forms an interval of that ordering.

7. Dichotomous Uniformly Euclidean (DUE): We say that
P satisfies DUE if there is a mapping ρ of voters and
candidates into the real line and a radius r such that for
every voter i it holds that vi = {c : |ρ(i)− ρ(c)| ≤ r}.

8. Dichotomous Euclidean (DE): We say that P satisfies
DE if there is a mapping ρ of voters and candidates into
the real line such that for every voter i there exists a
radius ri with vi = {c : |ρ(i)− ρ(c)| ≤ ri}.

9. Possibly single-peaked (PSP): We say that P satisfies
PSP if there is a single-peaked profile of total orders P ′
that is a refinement of P .

10. Possibly single-crossing (PSC): We say that P satisfies
PSC if there is a single-crossing profile of total orders
P ′ that is a refinement of P .

11. Possibly Euclidean (PE): We say that P satisfies PE if
there is a 1-Euclidean profile of total orders P ′ that is a
refinement of P .

12. Seemingly single-crossing (SSC): We say that P satisfies
SSC if the voters in P can be reordered so that for each
pair of candidates a, b ∈ C it holds that either all votes
vi with a ∈ vi, b 6∈ vi precede all votes vj with a 6∈ vj ,
b ∈ vj or vice versa.

13. Weakly single-crossing (WSC): We say that P satisfies
WSC if the voters in P can be reordered so that for each
pair of candidates a, b ∈ C it holds that each of the vote
sets V1 = {vi : a ∈ vi, b 6∈ vi}, V2 = {vi : a 6∈ vi, b ∈
vi}, V3 = {v ∈ P : v 6∈ V1 ∪ V2} forms an interval of
this ordering, with V3 appearing between V1 and V2.
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Figure 1: Voter Extremal Interval
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Figure 2: Voter Interval

3.1 Relations
The relationships among the properties defined above are de-
picted in Figure 3, where arrows indicate containment, i.e.,
more restrictive notions are at the top. All these containments
are strict. We will now sketch proofs of some of the rela-
tionships indicated in this diagram; see [Elkind and Lackner,
2015] for the omitted proofs.

The four arrows at the top level of the diagram are imme-
diate: any profile with at most two distinct votes where each
candidate is approved in at least one of these votes satisfies
VEI, CEI and WSC, and by definition 2PART is a special
case of PART.

To understand the arrows in the next level, we first char-
acterize the dichotomous profiles that are weakly single-
crossing.

Lemma 1. A dichotomous profile P satisfies WSC if and only
if there exist three votes u, v, w such that

(1) for every vi ∈ P it holds that �vi
∈ {�u,�v,�w}, and

2PART

PART

PSC=SSC

VEI CEIWSC

DUE

CI=DE=PSP=PEVI

Figure 3: Relations between notions of structure. Dashed
lines indicate that the respective containment holds only sub-
ject to additional conditions.

(2) �v is equal to either �u∩w or �u∪w.

Proof sketch. It is easy to check that every profile satisfy-
ing (1)–(2) satisfies WSC. For the converse direction, as-
sume without loss of generality that the ordering of the votes
v1 @ v2 @ · · · @ vn witnesses that P satisfies WSC. Let
u = v1, w = vn, and set C1 = u ∩ w, C2 = u ∩ w,
C3 = u ∩ w, C4 = u ∩ w. The WSC property implies that
for every ` = 1, 2, 3, 4, every a, b ∈ C`, and every vi ∈ P we
have a ∈ vi if and only if b ∈ vi, i.e., candidates in each C`

occur as a block in all votes. Note that v1 = u = C1 ∪ C2,
vn = w = C1 ∪ C3.

Suppose that C1, C4 6= ∅. Then C1 ⊆ vi, C4 ⊆ vi for all
vi ∈ P . Thus, if P contains a vote vi 6= u,w, it has to be the
case that vi = C1 = u ∩ w or vi = C1 ∪ C2 ∪ C3 = u ∪ w;
moreover, if both of these votes occur simultaneously and are
distinct from each other and u,w (i.e., C2, C3 6= ∅), the WSC
property is violated. When C1 or C4 is empty, the analysis is
similar; note, however, that trivial votes (vi = C and vi = ∅)
may alternate arbitrarily without violating the WSC property
(this is why the lemma is stated in terms of weak orders rather
than approval votes).

We can now show that under mild additional conditions (no
trivial voters/candidates) WSC implies VEI and CEI.

Proposition 2. Let P be a dichotomous profile that either
contains only two distinct votes or contains no vote vi with
vi = ∅. If P satisfies WSC, then it satisfies VEI.

Proof. Assume without loss of generality that P satisfies
WSC with respect to an ordering of voters v1 v · · · v vn,
and let u = v1, w = vn. We will show that P satisfies
VEI with respect to @. If P only contains two distinct votes,
this claim is immediate, so assume that ∅ 6∈ P . Consider a
vote v ∈ P that is distinct from u and w. Since ∅ 6∈ P , by
Lemma 1 there exist i, j with 1 < i < j < n such that vk = u
for k < i, vk = v for k = i, . . . , j, vk = w for k > j, and
v ∈ {u ∪ w, u ∩ w}. Suppose first that v = u ∩ w. Then
candidates in u ∩ w are approved by all voters, candidates in
u \ w are approved by the first i − 1 voters, candidates in
w \u are approved by the last n− j voters, and the remaining
candidates are not approved by anyone. On the other hand, if
v = u∪w, then candidates in u∩w are approved by all voters,
candidates in u \ w are approved by the first j voters, candi-
dates in w \ u are approved by the last n − i + 1 voters, and
the remaining candidates are not approved by anyone.

The condition that the profile must not contain ∅ is necessary:
the profile ({a, b}, ∅, {b, c}) satisfies WSC, but not VEI.

Proposition 3. Let P be a dichotomous profile that either
contains only two distinct votes or in which every candidate
is approved in at least one vote and disapproved in at least
one vote. If P satisfies WSC, then it satisfies CEI.

Proof. Suppose that P is WSC with respect to an ordering
of voters @; let u and w be, respectively, the first and the last
vote in this ordering. If P contains a trivial vote, it contains at
most two non-trivial votes, in which case the claim is obvious.
Thus, assume that it contains no trivial votes. Then we have
u ∩ w = ∅ (any candidate in u ∩ w would be approved by
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all voters) and u ∩ w = ∅ (any candidate in u ∩ w would be
disapproved by all voters). It is now easy to see that ordering
the candidates so that all candidates approved by u precede
all candidates approved by w witnesses that P is CEI.

To see that conditions of Proposition 3 are necessary, con-
sider the profile ({a, b}, {b, c}) over {a, b, c, d} and the pro-
file ({a, b}, {b}, {b, c}) over {a, b, c}: both of these profiles
satisfy WSC, but not CEI.

Next, we will relate CEI and VEI to DUE.

Proposition 4. If a dichotomous profile P satisfies CEI or
VEI, then it satisfies DUE.

Proof. Suppose first that P satisfies CEI with respect to the
ordering c1C · · ·Ccm of candidates. Map the candidates into
the real line by setting ρ(ci) = i, and let r = m. We can now
place each voter i to the left or to the right of all candidates
at an appropriate distance so that the set of candidates within
distance r from him coincides with vi. For VEI the argument
is similar: if P satisfies VEI with respect to the ordering v1 v
· · · v vn of voters, we place voters on the real line according
to ρ(i) = i, let r = n, and place each candidate to the left or
to the right of all voters at an appropriate distance.

The proof that WSC implies DUE is also based on our
characterization of WSC preferences.

Proposition 5. If a dichotomous profileP satisfies WSC, then
it satisfies DUE.

Proof. Clearly empty votes can be ignored when checking
whether a profile satisfies DUE, so assume P contains to
empty votes. Then it contains at most three distinct votes
u, v, w with v = u ∩ w or v = u ∪ w. Set ρ(c) = 1 for
c ∈ u \ w, ρ(c) = 2 for c ∈ u ∩ w, ρ(c) = 3 for c ∈ w \ u,
ρ(c) = 10 for c 6∈ u ∪ w. We set r = 1 if v = u ∩ w and
r = 2 if v = u ∪ w, and position the voters accordingly.

The last arrow on this level is from PART to DUE: here, the
containment is straightforward, as the candidates approved
by each voter can be placed as a block on the axis, with the
respective voter(s) placed in the center of this block. Also,
it is immediate that DUE implies VI and CI. Perhaps more
surprisingly, the classes CI, DE, PSP and PE coincide.

Proposition 6. Let P be a dichotomous profile. Then the
following conditions are equivalent: (a) P satisfies PE (b) P
satisfies PSP (c) P satisfies CI (d) P satisfies DE.

Proof sketch. Suppose P satisfies PE, and let P ′ be a refine-
ment of P that, together with a mapping ρ, witnesses this.
Then P ′ is single-peaked and therefore P satisfies PSP. If P
satisfies PSP, as witnessed by a refinement P ′ and an axis C,
then P satisfies CI with respect to C. If P satisfies CI with
respect to an order C of candidates, we can map the candi-
dates into the real axis in the order suggested by C so that the
distance between every two adjacent candidates is 1. We can
then choose an appropriate approval radius and position for
each voter. Finally, if P satisfies DE, as witnessed by a map-
ping ρ, we can use this mapping to construct a refinement of
P; by construction, this refinement is 1-Euclidean (we may
have to modify ρ slightly to avoid ties).

constraint complexity
2PART poly (trivial)
PART poly (trivial)
VEI poly (CONSECUTIVE 1S)
CEI poly (CONSECUTIVE 1S)

WSC poly [Elkind et al., 2015]
DUE open

VI poly (CONSECUTIVE 1S)
CI=DE=PSP=PE poly (CONSECUTIVE 1S)

PSC=SSC open

Table 1: The complexity of detecting structure in dichoto-
mous profiles

An argument similar to the one used in the proof of Propo-
sition 6 shows that every PE profile is PSC. Interestingly, the
converse is not true.
Example 1. Consider the profile P = ({a, b}, {a, c}, {b, c})
over C = {a, b, c}. It satisfies PSC, as witnessed by the
single-crossing refinement (a � b � c, c � a � b, c � b �
a). However, in every refinement of P the first voter ranks
c last, the second voter ranks b last, and the third voter ranks
a last. Thus, no such refinement can be single-peaked, and,
consequently, no such refinement can be 1-Euclidean.

The equivalence between PSC and SSC is not entirely ob-
vious: while it is clear that a profile that violates SSC also
violates PSC, to prove the converse one needs to use an ar-
gument similar to the proof of Theorem 4 in [Elkind et al.,
2015]. We omit the proof of this result, as well as the proof
of the following proposition, due to space constraints.
Proposition 7. If a dichotomous profile P satisfies VI, it also
satisfies SSC.

For all other pairs of constraints, we have examples (omit-
ted) showing that one does not imply the other.

3.2 Detection
To exploit the constraints defined in Section 3, we have de-
veloped algorithms that can decide whether a given profile
belongs to one of the restricted domains defined by these con-
straints. Our results are summarized in Table 1.

Clearly, verifying whether a given profile satisfies 2PART
or PART is straightforward. For most of the remaining prob-
lems, we can proceed by a reduction to the classic CONSEC-
UTIVE 1S problem [Booth and Lueker, 1976]. This problem
asks if the columns of a given 0-1 matrix can be permuted in
such a way that in each row of the resulting matrix the 1s are
consecutive, i.e., the 1s form an interval in each row; it admits
a linear-time algorithm [Booth and Lueker, 1976].
Theorem 8. Detecting whether a dichotomous profile satis-
fies CEI, CI, VI or VEI is possible in O(m · n) time.

Proof. Let C = {c1, c2, . . . , cm} and P = (v1, v2, . . . , vn).
We construct an instance of CONSECUTIVE 1S in slightly dif-
ferent ways, depending on the property we want to detect. In
all cases, we obtain a “yes”-instance if and only if the given
profile has the desired property.

Let us start with CI. For each vote, we create one row of the
matrix: for each i ∈ [n] and j ∈ [m], the j-th entry of the i-th

2022



row is 1 if cj ∈ vi and 0 otherwise. In this way, we obtain
an m × n matrix. Permuting the columns of this matrix so
that 1s form an interval in each row is equivalent to permut-
ing candidates so that the set of candidates approved by each
voter forms an interval. For CEI, we combine the matrix for
CI with its complement, i.e., we add a second row for each
vote vi, so that the j-the entry of that row is 0 of cj ∈ vi and
1 otherwise. A column permutation of the resulting m × 2n
matrix such that 1s form an interval in each row corresponds
to permuting candidates so that for each voter both the set of
her approved candidates and the set of her disapproved candi-
dates form an interval; this is equivalent to the CEI property.
For VI and VEI the argument is similar.

For WSC, Elkind et al. [2015] provide an algorithm that
works for any weak orders (not just dichotomous ones).
They leave the complexity of detecting PSC and SSC as
an open problem, and we have not been able to resolve it
for dichotomous weak orders. The problem of recognizing
DUE preferences remains open as well, though it is plau-
sible that a linear-programming based algorithms similar to
those of [Doignon and Falmagne, 1994; Knoblauch, 2010;
Elkind and Faliszewski, 2014] exist.

4 Algorithms for Committee Selection
In this section, we consider two classic approval-based com-
mittee selection rules—Proportional Approval Voting (PAV )
and Maximin Approval Voting (MAV )—and argue that we
can design efficient algorithms for these rules when voters’
preferences belong to some of the domains in our list (for
some of the richer domains, we may need to place mild addi-
tional restrictions on voters’ preferences).

We start by providing formal definitions of these rules.

Definition 1. Every non-increasing infinite sequence of non-
negative reals w = (w1, w2, . . . ) that satisfies w1 = 1 de-
fines a committee selection rule w-PAV . This rule takes a
set of candidates C, a dichotomous profile P = (v1, . . . , vn)
and a target committee size k ≤ |C| as its input. For ev-
ery size-k subset W of C, it computes its w-PAV score as∑

vi∈P uw(|W ∩ vi|), where uw(p) =
∑p

j=1 wj , and out-
puts a size-k subset with the highest w-PAV score, breaking
ties arbitrarily. The w-PAV rule with w = (1, 12 ,

1
3 , . . . )

is usually referred to simply as the PAV rule, and we write
u(p) = 1 + · · ·+ 1

p .

In what follows we assume that the entries of w are rational
and wi can be computed in time poly(i).

Definition 2. Given a set of candidates C, a dichotomous
profile P = (v1, . . . , vn) and a target committee size k ≤
|C|, the MAV -score of a size-k subset W of C is computed
as maxvi∈P(|W \ vi| + |vi \ W |). MAV outputs a size-k
subset with the lowest MAV score, breaking ties arbitrarily.

The w-PAV rule is defined by Kilgour and Mar-
shall [2012], see also [Kilgour, 2010]. Intuitively, under this
rule each voter is assumed to derive a utility of 1 from hav-
ing exactly one of his approved candidates in the winning set;
his marginal utility from having more of his approved candi-
dates in the winning set is non-increasing. The goal of the

rule is to maximize the sum of players’ utilities. In contrast,
MAV [Brams et al., 2007] has an egalitarian objective: for
each candidate committee, it computes the dissatisfaction of
the least happy voter, and outputs a committee that minimizes
the quantity.

Computing the winning committee under MAV and PAV
is NP-hard, see, respectively, [LeGrand et al., 2007] and
[Skowron et al., 2015a; Aziz et al., 2014]. The hardness
result for PAV extends to w-PAV as long as w satisfies
w1 > w2; moreover, it holds even if each voter approves
of at most two candidates or if each candidate is approved by
at most three voters.

We will now show that PAV admits an algorithm whose
running time is polynomial in the number of voters and the
number of candidates if the input profile satisfies CI or VI
and, furthermore, each voter approves at most s candidates
or each candidate is approved by at most d voters, where s
and d are given constants. More specifically, we prove that
PAV winner determination for CI and VI preferences is in
FPT with respect to parameter s and in XP with respect to
parameter d. For simplicity, we state our results for PAV ;
however, all of them can be extended to w-PAV .

In what follows, we write [x : y] to denote the set {z ∈ Z :
x ≤ z ≤ y}.
Theorem 9. Given a dichotomous profile P = (v1, . . . , vn)
over a candidate set C = {c1, . . . , cm} and a target com-
mittee size k, if |vi| ≤ s for all vi ∈ P and P satisfies VI,
then we can find a winning committee under PAV in time
O(22s · k · n).

Proof. Assume that P satisfies VI with respect to the order
of voters v1 v · · · v vn. For each triple (i, A, `), where i ∈
[1 : n], A ⊆ vi, and ` ∈ [0 : k], let r(i, A, `) be the maximum
utility that the first i voters can obtain from a committee W
such that W ∩ vi = A, |W | = `, and W ⊆ v1 ∪ . . . ∪ vi.

We have r(1, A, |A|) = u(|A|) for every A ⊆ v1 and
r(1, A, `) = −∞ for every A ⊆ v1, ` ∈ [0 : k] \ {|A|}.
To compute r(i + 1, A, `) for i ∈ [1 : n − 1], A ⊆ vi+1 and
` ∈ [0 : k], we let p = |A \ vi| and set

r(i+1, A, `) = max
D⊆vi\vi+1

r(i,D∪ (A∩ vi), `− p)+u(|A|).

Indeed, every committee W with |W | = `, W ∩ vi+1 =
A, W ⊆ v1 ∪ . . . ∪ vi+1 contains exactly ` − p candidates
from v1 ∪ . . . ∪ vi and its intersection with vi is of the form
D ∪ (A ∩ vi), where candidates in D are approved by vi, but
not vi+1. We output maxA⊆vn r(n,A, k).

This dynamic program has n · 2s · (k + 1) states, and the
value of each state is computed using O(2s) arithmetic oper-
ations. Assuming that basic calculations take constant time,
we obtain a total runtime of O(22s · k · n).

A similar dynamic programming algorithm can be used if
voters’ preferences satisfy CI. We omit its description due to
space constraints.
Theorem 10. Given a dichotomous profile P = (v1, . . . , vn)
over a candidate set C = {c1, . . . , cm} and a target com-
mittee size k, if |vi| ≤ s for all vi ∈ P and P satisfies CI,
then we can find a winning committee under PAV in time
O(2s · n ·m).
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Our next theorem also considers CI and VI preferences,
and deals with the case where no candidate is approved by
too many voters. Just as the algorithms in the proofs of The-
orems 9 and 10, the algorithms for this case are based on dy-
namic programming; we omit them due to space constraints.
Theorem 11. Given a dichotomous profile P = (v1, . . . , vn)
over a candidate set C = {c1, . . . , cm} and a target commit-
tee size k, if |{i | c ∈ vi}| ≤ d for all c ∈ C and P satisfies
CI or VI, then we can find a winning committee under PAV
in time poly(d,m, n, kd).

The reader may wonder if constraints on s and d in The-
orems 9, 10 and 11 are necessary. We conjecture that the
answer is yes, i.e., winner determination under PAV remains
hard under CI and VI preferences.

However, for “truncated” weight vectors w we can find
w-PAV winners in polynomial time. As the (1, 0, . . . )-
PAV rule is essentially the classic Chamberlin–Courant rule
[Chamberlin and Courant, 1983] for dichotomous prefer-
ences, our next result can be seen as an extension of the re-
sults of [Betzler et al., 2013] and [Skowron et al., 2015b] for
the Chamberlin–Courant rule and single-peaked and single-
crossing preferences: while we work on a less expressive do-
main (dichotomous preferences vs. total orders), we can han-
dle a larger class of rules (all weight vectors with a constant
number of non-zero entries rather than just (1, 0, . . . , )).
Theorem 12. Consider a weight vector w where wi = 0 for
i > i0 for some constant i0. Then given a dichotomous profile
P = (v1, . . . , vn) over a candidate set C = {c1, . . . , cm}
and a target committee size k, if P satisfies VI or CI, we can
find a winning committee under w-PAV in polynomial time.

Moreover, for the more restricted domains, such as VEI,
CEI, WSC and PART we can design polynomial-time algo-
rithms for both MAV and PAV , under no additional con-
straints on preferences (again, our results extend to w-PAV ).
Theorem 13. Given a dichotomous profile P = (v1, . . . , vn)
over a candidate set C = {c1, . . . , cm} and a target commit-
tee size k, if P satisfies VEI, CEI, WSC or PART, we can find
a winning committee under MAV and PAV in polynomial
time.

Proof sketch. Consider first VEI. Assume without loss of
generality that P satisfies VEI for voter order v1 @ · · · @ vn.
Each candidate in C belongs to one of the following four
groups: C1 = v1 ∩ vn, C2 = v1 \ vn, C3 = vn \ v1, and
C4 = v1 ∩ vn; candidates in C1 are approved by all voters
and candidates in C4 are not approved by any of the voters.

Suppose first that |C1∪C2∪C3| < k. Then there exists an
optimal committee for both PAV and MAV that contains all
candidates in C1 ∪ C2 ∪ C3 and exactly k − |C1 ∪ C2 ∪ C3|
candidates from C4. Hence, we can now assume that this
is not the case. Then there exist an optimal committee that
contains no candidates from C4.

Now, if |C1| ≥ k, an optimal committee for both PAV
and MAV consists of k candidates from C1, and if |C1| < k,
there exists an optimal committee that contains all candidates
in C1. It remains to decide how to allocate the remaining
places among candidates in C2 and C3. To do so, we observe
that there is a natural ordering over each of these sets: given

a pair of candidates (c, c′) in C2 × C2 or C3 × C3, we write
c ≤ c′ if {i : c ∈ vi} ⊆ {i : c′ ∈ vi}. Note that every two
candidates in C2 are comparable with respect to≤, and so are
every two candidates in C3. It is now easy to see that there
exists an optimal committee (for PAV or MAV ) that consists
of candidates in C1, top p candidates in C2 with respect to ≤
and top r candidates in C3 with respect to ≤ for some non-
negative values of p, r with p + r + |C1| = k. Thus, by
considering at most k2 possibilities for p and r, we can find
an optimal committee.

The argument for CEI is similar to the one for VEI: we have
to decide how many candidates to select from each end of the
candidate ordering witnessing that P satisfies CEI. For WSC,
we can use the characterization in Lemma 1; the problem then
boils down to deciding how many candidates to select from
each of the sets u\w, u∩w andw\u. For PART and PAV , we
can show that an optimal committee can be found by a natural
greedy algorithm that at each point selects the candidate with
the largest “marginal contribution” to the total utility. For
PART and MAV , we check, for each t = 0, . . . , n, whether
there exists a committee whose MAV -score is at most t. This
is the case if for each voter v ∈ P we can select at least
(|v| + k − t)/2 candidates from v. Thus, if v1, . . . , v` are
the distinct votes in P , we need to check that

∑`
i=1 |vi| ≤

`t− (`− 2)k.

5 Conclusions and Open Problems

We have initiated research on analogues of the notions of
single-peakedness and single-crossingness for dichotomous
preference domains. We have proposed many constraints that
capture some aspects of what it means for dichotomous pref-
erences to be single-dimensional, explored the relationship
among them, and showed that these constraints can be use-
ful for identifying efficiently solvable special cases of hard
voting problems on dichotomous domains. The algorithmic
results in Section 4 can be seen as a proof that our approach
has merit; however, there is certainly room for improvement
there, both in terms of removing restrictions on the sizes of
approval sets and number of voters that approve each candi-
date (for PAV ) and in terms of considering larger domains,
such as PSC for PAV and CI/VI for MAV .

For many of our constraints, we have provided efficient
algorithms for checking whether a given dichotomous pro-
file satisfies that constraint; two notable open cases are DUE
and PSC/SSC. In particular, it would be interesting to under-
stand if every profile that satisfies both VI and CI also satis-
fies DUE; this can be seen as an analogue of the question of
whether every single-peaked single-crossing profile of total
orders is 1-Euclidean (see discussion in [Doignon and Fal-
magne, 1994; Elkind et al., 2014]). We can also ask if it is
possible to detect if a given dichotomous profile is close to
satisfying a structural constraint, and whether such “almost-
structured” profiles have useful algorithmic properties; sim-
ilar issues for profiles of total orders have recently received
a lot of attention in the literature [Cornaz et al., 2012; 2013;
Bredereck et al., 2013; Erdélyi et al., 2013; Elkind and Lack-
ner, 2014; Faliszewski et al., 2014].
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