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Abstract

This paper presents a cross-modal data refinement
algorithm for social image parsing, or segment-
ing all the objects within a social image and then
identifying their categories. Different from the tra-
ditional fully supervised image parsing that takes
pixel-level labels as strong supervisory informa-
tion, our social image parsing is initially provided
with the noisy tags of images (i.e. image-level la-
bels), which are shared by social users. By over-
segmenting each image into multiple regions, we
formulate social image parsing as a cross-modal
data refinement problem over a large set of regions,
where the initial labels of each region are inferred
from image-level labels. Furthermore, we develop
an efficient algorithm to solve such cross-modal
data refinement problem. The experimental results
on several benchmark datasets show the effective-
ness of our algorithm. More notably, our algorithm
can be considered to provide an alternative and nat-
ural way to address the challenging problem of im-
age parsing, since image-level labels are much eas-
ier to access than pixel-level labels.

1 Introduction

As a fundamental problem in computer vision, image pars-
ing aims to segment all the objects within an image and then
identify their categories. In the past years, image parsing has
drawn much attention [Shotton et al., 2006; Yang e al., 2007;
Shotton et al., 2008; Kohli et al., 2009; Ladicky et al., 2009;
2010; Csurka and Perronnin, 2011; Lucchi et al., 2012;
Tighe and Lazebnik, 2013; Chang et al., 2014; Yang et al.,
2014]. Although these methods have been reported to achieve
promising results, most of them take pixel-level labels as the
inputs of image parsing. In real-world applications, pixel-
level labels are very expensive to access, and these fully su-
pervised methods cannot be widely applied in practice.
Many recent efforts have been made to exploit image-
level labels for image parsing [Verbeek and Triggs, 2007;
Vezhnevets and Buhmann, 2010; Vezhnevets et al., 2011,
2012; Liu et al., 2013; Zhang et al., 2013; Liu et al., 2014;
Xu et al., 2014], considering that image-level labels are much
easier to access than pixel-level labels. The main challenge
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Figure 1: The flowchart of our cross-modal data refine-
ment (CMDR) for social image parsing, where the initial la-
bels of regions are inferred from image-level labels and then
smoothed using some prior knowledge.

thus lies in inferring pixel-level labels from this weak su-
pervisory information. As compared to the traditional fully
supervised image parsing that takes pixel-level labels as su-
pervisory information, such weakly supervised image pars-
ing is more flexible in real-world applications. However, it
is still expensive to collect image-level labels for image pars-
ing. Hence, we hope that such supervisory information can
be provided in an automatic and natural way.

Due to the burgeoning growth of social images over photo-
sharing websites (e.g. Flcikr), this automatic and natural set-
ting becomes feasible for image parsing. That is, the tags
of social images can be used as image-level labels for im-
age parsing. It is worth noting that the tags of social im-
ages may be noisy (or incomplete) in practice [Tang et al.,
2009], although they are very easy to access. Hence, the main
challenge lies in effectively exploiting the noisy tags for im-
age parsing. However, such social image parsing has been
rarely considered in recent work [Vezhnevets er al., 2012;
Liu et al., 2013; Zhang et al., 2013].

In this paper, we focus on developing a cross-modal data
refinement approach to solve the challenging problem of so-
cial image parsing. The basic idea is to first oversegment all
the images into regions and then infer the labels of regions
from the initial image-level labels. Since the initial labels of
regions cannot be accurately estimated even from clean ini-
tial image-level labels, our main motivation is to continuously



suppress the noise in the labels of regions through an iterative
procedure. By considering the initial labels and visual fea-
tures as two modalities of regions, we formulate such iterative
procedure as a cross-modal data refinement problem over all
the regions. In contrast to [Liu et al., 2013] which is limited to
clean and complete image-level labels for image parsing, we
do not impose any extra requirement on the initial image-level
labels. Based on L;-optimization [Elad and Aharon, 2006;
Chen et al., 2011] and label propagation [Zhu et al., 2003;
Zhou et al., 2004], we develop an efficient algorithm to solve
such cross-modal data refinement problem.

The flowchart of our cross-modal data refinement (CMDR)
for social image parsing is illustrated in Figure 1. Here, we
adopt the Blobworld method [Carson et al., 2002] for over-
segmentation, since it can automatically detect the number of
regions within an image. Meanwhile, we utilize image-level
labels to infer the initial labels of regions, which are further
smoothed by using some prior knowledge about regions and
object categories. In this paper, to study whether our CMDR
algorithm can deal with noisily tagged images, we first con-
duct experiments on the MSRC [Shotton et al., 2006] and La-
belMe [Liu et al., 2011] benchmark datasets by adding ran-
dom noise to the initial image-level labels. These two datasets
are originally used in recent work on image parsing [Csurka
and Perronnin, 2011; Lucchi et al., 2012; Liu et al., 2013;
Zhang et al., 2013] without adding random noise. To ob-
tain more convincing parsing results, we further conduct ex-
periments by collecting a Flickr dataset with realistic noise,
where the noisy image-level labels are directly downloaded
from the Flickr website. As shown in later experiments, our
investigation with random and realistic noise has provided an
alternative and natural way to address the challenging prob-
lem of image parsing, given that the noisy image-level labels
can be easily obtained from social image collections. In fact,
our social image parsing is somewhat similar to verbal guided
image parsing [Cheng et al., 2014] that aims to perform auto-
matic image parsing using the verbal guidance.

To emphasize our main contributions, we summarize the
following distinct advantages of the present work:

e This is the first attempt to formulate social image pars-
ing as cross-modal data refinement, to the best of our
knowledge. In fact, the problem of social image parsing
has been rarely considered in the literature.

e We have successfully developed an efficient algorithm
for social image parsing, unlike many previous image
parsing approaches that incur too large time cost.

e The proposed algorithm can be considered to provide an
alternative and natural way for image parsing, since the
noisy image-level labels are easy to access.

2 Cross-Modal Data Refinement

2.1 Problem Formulation

The problem of social image parsing is described as follows.
Given a set of social images, we adopt the Blobworld method
[Carson er al., 2002] to oversegment each image and then ex-
tract a feature vector (including color and texture features)
from each region. All the features vectors are collected into
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Figure 2: The initial estimation of Y by a simple inference
from image-level labels. Here, the labels of regions wrongly
estimated are marked by red boxes.

X € RN*4 with each row X; being a region, where N is
the total number of regions and d is the dimension of feature
vectors. Moreover, as illustrated in Figure 2, the initial la-
bels of all the regions Y = {y;; } nxc are inferred from the
image-level labels provided for image parsing as: y;; = 1
if the region X; belongs to an image which is labeled with
category j and y;; = O otherwise, where C'is the number of
object categories. Here, the initial labels of regions cannot be
accurately estimated by such simple inference, even if clean
image-level labels are provided initially. The noise issue be-
comes more severe when noisy image-level labels are used as
supervisory information. Hence, we need to pay attention to
noise reduction over Y. In the following, we will formulate it
as a cross-modal data refinement problem.

We first model the whole set of regions as a graph G =
{V, A} with its vertex set }V being the set of regions and affin-
ity matrix A = {a;;} nxn, Where a;; denotes the affinity be-
tween region X; and region X;. The affinity matrix A is
usually defined by a Gaussian kernel in the literature. The
normalized Laplacian matrix L of G is given by

L=I-D2AD 2, (1)
where [ is an N x N identity matrix, and D is an N x N
diagonal matrix with its ¢-th diagonal element being equal to
the sum of the i-th row of A (i.e. Zj ;).

Based on these notations, we formulate social image pars-
ing as a cross-modal data refinement problem:

A
7|\Y XW||F+ tr(WTXTLXW)

HllIl
v>0,X, W

Y =Y, 2

where Y € RV*C stores the ideal labels of regions, X e
RN*4 denotes the ideal visual representation of regions (ini-
tialized as X), W € R*C denotes the correlation matrix
between Y and X, \ and ~ denote the positive regularization
parameters, and tr( ) denotes the trace of a matrix. Since the
two modalities of regions (i.e. X and V) can be optimized al-
ternately (see our later explanation), solving Eq. (2) is called
as cross-modal data refinement (CMDR) in this paper.

The objective function given by Eq. (2) is further discussed
as follows. The first term denotes the Frobenius-norm fit-
ting constraint, which means that X W should not change



too much from Y. The second term denotes the smooth-
ness constraint, also known as Laplacian regularization [Zhu
et al., 2003; Zhou et al., 2004; Fu et al., 201 11, which means
that XW should not change too much between similar re-
gions. The third term denotes the L;-norm fitting constraint,
which can impose direct noise reduction on the original Y
due to the nice property of L;-norm optimization [Elad and
Aharon, 2006; Figueiredo et al., 2007; Mairal et al., 2008;
Wright et al., 2009; Chen et al., 2011].

Although we have given the problem formulation for so-
cial image parsing, there remain two key problems to be ad-
dressed: 1) how to smooth the initial labels of regions stored
in'Y, and 2) how to efficiently solve the cross-modal data re-
finement problem in Eq. (2). In the next two subsections, we
will address these two key problems, respectively.

2.2 Initial Label Smoothing

It should be noted that there exists much noise in the ini-
tial labels of regions stored in Y which are estimated simply
from the image-level labels. In the following, we adopt two
smoothing techniques to suppress the noise in Y and reesti-
mate Y as accurately as possible for image parsing.

We first smooth the initial labels of regions stored in Y by
considering the relative size of regions. Let p; be the ratio
of the region X; occupying the image that X; belongs to,
where ¢ = 1, ..., N. We directly define the smoothed labels
of regions Y = {¥i; } Nxc as follows:

Yij = Pilij (3)
which means that a larger region is more important for our
cross-modal data refinement. More notably, such smoothing
technique can suppress the negative effect of tiny regions pro-
duced by oversegmentation.

We further refine the smoothed Y by exploiting the seman-
tic context of object categories. In the task of image parsing,
some object categories may be semantically correlated, e.g.,
“water” and “sky” are at a high probability to occur in the
same image while “water” and “book™ are less possible to
occur together. In fact, such semantic context can be defined
using a single matrix S = {s;;s }cxc based on the Pearson
product moment correlation. Let the image-level labels of M
images be collected as Z = {z;; } arxc, where z;; = 1 if im-
age 1 is labeled with category j and z;; = 0 otherwise. We
then define S = {s;,/ }cxc by:

M
Siir — doiza (i — ) (zigr — pyr)
27 (M o 1)0_j0_j/ )

“

where p; and o; are the mean and standard deviation of col-
umn j of Z, respectively. By directly using the label propaga-
tion technique [Zhou et al., 2004], we further smooth Y with
the semantic context as follows:

Y =Y —a.D;Y28D; /%)L, )

where . is a positive parameter to control the strength of
smoothing, and D, is a diagonal matrix with its j-th diagonal
element being > j+55- In this paper, we directly set e =
0.04 in all the experiments.

2171

When we have obtained the final smoothed Y using the
above two smoothing techniques, we reformulate our cross-
modal data refinement problem as:

1~ 4 A SO
~min ||V = XW||E + Ste(WTXTLXW)
v>0,X,W 2

AV = Y1, (6)

In the following, we will develop an efficient algorithm to
solve the above problem for image parsing.

2.3 Efficient CMDR Algorithm

In fact, the CMDR problem in Eq. (6) can be solved in two
alternate optimization steps as follows:

. 1w, o A 5
W*, X* = argmin -|[V* — XW||% + SLAP(W, X),
W,X2 2
N 1. - N N _
Y* =argmin _||Y — X*W*||% +~[]Y = Y|,
¥>02

where LAP(W, X) = tr(WTXTLXW). We set X* = X
and Y* = Y initially. As a basic L;-norm optimization prob-
lem, the second subproblem has an explicit solution:

V* = soft_thr(X*W*, Y ,), (7)

where soft_thr(, -,~y) is a soft-thresholding function. Here,
we directly define z = soft_thr(z,y,~) as:

st
fi>fo

where f1 = (21 — )% + 27|21 —y| and fo = (22 — 2)? +
27|22 — y|- In the following, we focus on efficiently solving
the first quadratic optimization subproblem.

Let Q(W, X) = 1[|Y* — XW|]% + 3LAP(W, X). We
can still adopt the alternate optimization technique for the first
subproblem miny, ¢ Q(W, X): 1) fix X = X*, and update
W by W* = argminy Q(W, X*); 2) fix W = W*, and
update X by X* = arg min ¢ Q(W*, X)

Updating WW: When X is fixed at X*, miny, Q(W, X*) can
be solved by setting the gradients of Q(W, X*) to zeros:

(XTI + AL)XHW = (X5)TY*, (8)

Since (X*)T(I + AL)X* € R™? and d < N, the above
linear equation can be solved very efficiently.

Updating X: When W is fixed at W*, min ¢ Q(W*, X) can
be solved by setting the gradients of Q(1W*, X) to zeros:

(I +AL)XW W' =y<w*T, )
Let F(X) = XW*W*T. Since I + AL is a positive definite
matrix, the above linear equation has an analytical solution:

F*(X) = (I +AL)"'Y*w*", (10)

However, this analytical solution is not efficient for large im-
age datasets, since matrix inverse has a time complexity of
O(N3). Fortunately, this solution can also be efficiently found

Lo a= max(z — v,y),
zo = max (0, min(z + v, y)),



using the label propagation technique proposed in [Zhou et
al., 2004] based on k-NN graph. Finally, the solution of

min ¢ Q(W*, X) is found by solving:

XW*w*Ty = F*(X). (11)

Since W*W*T € R4 and d < N, the above linear equa-
tion can be solved very efficiently.
The complete CMDR algorithm is outlined as follows:

(1) Construct a k-NN graph with its affinity matrix A being
defined over all the regions X;

(2) Compute the normalized Laplacian matrix L = [ —

D 2AD™ 3% according to Eq. (1);

(3) Iitialize X* = X and Y* = V;

(4) Find the best solution W* by solving ((X*)T(I +
2 L)X*)W = (X*)TY*, which is exactly Eq. (8)
witha = A/(1+ A) € (0,1);

(5) Iterate Fyy1(X) = ol — L)F,(X) + (1 — a)YV*W*T
until convergence, where a solution can thus be found
just the same as Eq. (10) with a = A/(1 + \);

(6) Find the best solutior} X* by solving Eq. (11):
X(W*w*T) = F*(X), where F*(X) denotes the
limit of the sequence {F;(X)};

(7) Tterate Steps (4)—(6) until the stopping condition is satis-
fied, and update Y* = soft_thr(X*W*, Y, ~);

(8) Iterate Steps (4)—(7) until the stopping condition is satis-
fied, and output the final parsing results Y *.

Similar to the convergence analysis in [Zhou et al., 2004],

the iteration in Step (5) converges to F*(X) = (1 — a)(I —
oI —L))~'y*W*T, which is equal to the solution given by
Eq. (10) with o = A/(1 4+ \). Moreover, in our experiments,
we find that the iterations in Steps (5) , (7), and (8) generally
converge in a limited number of steps (<10). Finally, since
the time complexity of Steps (4)-(7) is respectively O(d*>C +
dCN + d®N + kdN), O(dCN + kdN), O(d*C + d?N),
and O(dCN) (k,d,C < N), the proposed algorithm can be
applied to a large set of regions.

3 Social Image Parsing

In the previous section, we assume that the large set of regions
have been provided in advance. In the following, we discuss
how to generate this input for our CMDR algorithm.

Given a set of images, we adopt the Blobworld method
[Carson et al., 2002] for oversegmentation. Concretely, we
first extract a 6-dimensional vector of color and texture fea-
tures for each pixel of an image and then model this image
as a Gaussian mixture model. The pixels within this image
are then grouped into regions, and the number of regions is
automatically detected by a model selection principle. To en-
sure an oversegmentation of each image, we slightly modify
the original Blobworld method in two ways: 1) the number
of regions is initially set to a large value; 2) model selection
is forced to be less important during segmentation.
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After we have oversegmented all the images into regions,
we collect them into a single matrix X € RY*?  Here,
each region X, is denoted as a 137-dimensional feature vec-
tor by concatenating color and texture features: three mean
color features with their standard deviations (6-dimensional),
three mean texture features with their standard deviations (6-
dimensional), and color histogram (125-dimensional). Fi-
nally, we compute a Gaussian kernel over X for our cross-
modal data refinement algorithm.

The full algorithm for social image parsing is as follows:

(1) Oversegment each image into multiple regions using the
modified Blobworld method;

(2) Extract a 137-dimensional feature vector from each re-
gion by concatenating color and texture features;

(3) Perform image parsing by running our CMDR algorithm
over the large set of regions.

4 Experimental Results

In this section, our CMDR algorithm for image parsing is
evaluated by conducting two groups of experiments: test with
noisily tagged images and test with social images.

4.1 Test with Noisily Tagged Images

Experimental Setup

We select two benchmark datasets for performance evalua-
tion: MSRC [Shotton et al., 2006] and LabelMe [Liu et al.,
2011]. The MSRC dataset contains 591 images, accompa-
nied with a hand labeled object segmentation of 21 object
categories. Pixels on the boundaries of objects are usually
labeled as background and not taken into account in these
segmentations. The LabelMe dataset (also called as the SIFT
Flow dataset) contains 2,688 outdoor images, densely labeled
with 33 object categories using the LabelMe online annota-
tion tool. For these two benchmark datasets, we oversegment
each image into multiple regions and then totally obtain about
7,500 regions and 33,000 regions, respectively.

To study whether our CMDR algorithm can deal with nois-
ily tagged images, we add random noise into the image-level
labels that are initially provided for image parsing. More
concretely, we randomly select certain percent of images and
then attach each selected image with one extra wrong label.
This means that the noise strength is determined by the per-
cent of noisily tagged images (see Table 1) in the following
experiments. It should be noted that the noise level is ac-
tually high, although we only add one wrong label for each
selected image. That is, since most of the images used in our
experiments are segmented into three or four objects in the
ground-truth segmentations, one wrong label induces 1/5 to
1/4 noise within an image. More notably, we will also make
evaluation with realistic noise in the next subsection.

To verify the effectiveness of our cross-modal data refine-
ment for image parsing, we first consider a baseline method
that is a variant of our CMDR algorithm without optimiz-
ing X in Eq. (6) (thus denoted as DR). Moreover, we com-
pare our CMDR algorithm with two representative methods
[Tang et al., 2009; Chen ef al., 2011] for data refinement by



Table 1: Average accuracies (%) of different image parsing
methods on the two benchmark datasets. The standard devia-
tions are also provided along with average accuracies.

Noisily tagged images
Datasets Methods 0% 25%  50%  T5% 100%
CMDR (ours) 74 70+1 66+1 63+2 59+2
DR (ours) 61 57+1 54+1 5142 48+2
MSRC | [Tang et al., 2009] | 67 61+1 59+1 53+1 51+1
[Chen et al.,2011]| 57 5341 48+1 4641 4441
[Liuetal,2013] | 70 5942 5243 4443 3843
CMDR (ours) 29 28+1 26+1 24+2 23+1
DR (ours) 18 16+1 15%1 1441 13+£1
LabelMe | [Tang ef al.,2009] | 22 2041 1741 16+1 15+1
[Chen et al.,2011]| 18 1741 1641 1541 1541
[Liu eral.,2013] | 26 2445 18+4 1442 1342

sparse coding. Finally, we make direct comparison to the re-
cent work [Liu et al., 2013]' on image parsing by inputting
noisily tagged images into the algorithm developed in [Liu et
al., 2013]. For fair comparison, we make use of the same ini-
tial label smoothing techniques proposed in Section 2.2 for all
the methods compared here. We evaluate the parsing results
on a subset of images equivalent to the test set used in [Vezh-
nevets et al., 2011; Liu et al., 2013]. The accuracy is com-
puted by comparing the parsing results to the ground truth
segmentations for each category and then averaged over all
the categories. Each trial is randomly repeated 25 times.

It should be noted that the ground-truth pixel-level labels
of all the images are unknown in our setting for image pars-
ing. Hence, it is not possible to select the parameters by
cross-validation for our CMDR algorithm. In this paper, we
thus uniformly set the parameters of our CMDR algorithm as
k = 110, a = 0.45 (equally A = 0.82), and v = 0.12 for
the two benchmark datasets. Moreover, we construct k-NN
graphs over all the regions for other related methods to speed
up image parsing. The parameters of these methods are also
set to their respective optimal values.

Parsing Results

We compare our CMDR algorithm for image parsing with
other related methods when different percents of noisily
tagged images are provided initially. The comparison results
on the two benchmark datasets are listed in Table 1. The im-
mediate observation is that our CMDR algorithm achieves the
best results in all cases (see example results in Figure 3). This
means that our CMDR algorithm is more effective for noisily
tagged image parsing than the two data refinement methods
[Tang er al., 2009; Chen et al., 2011] based on sparse coding.
The comparison of CMDR vs. DR shows that the “cross-
modal” idea plays an important role in our algorithm for im-
age parsing. More notably, our CMDR algorithm is shown
to obviously outperform the recent work [Liu et al., 2013],
mainly due to the fact that extra requirements are imposed on
the initial image-level labels in [Liu er al., 2013] while our
problem formulation is much more flexible.

!Originally developed for weakly supervised setting, but applied
to noisily tagged setting here for fair comparison.
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Table 2: Overview of the state-of-the-art results in different
image parsing settings on the MSRC dataset.

Settings | Methods Avg accuracies
[Shotton et al., 2008] 67
FS [Ladicky et al., 2009] 75
[Csurka and Perronnin, 2011] 64
[Lucchi et al., 2012] 76
[Verbeek and Triggs, 2007] 50
WS [Vezhnevets and Buhmann, 2010] 37
[Vezhnevets et al., 20111 67
[Zhang et al., 2013] 69
[Akbas and Ahuja, 2014] 62
[Liu ef al., 2013] (0% noise) 70
NT [Liu er al., 2013] (100% noise) 38
CMDR (0% noise) 74
CMDR (100% noise) 59

We further give an overview of the parsing results obtained
by our CMDR algorithm and the state-of-the-art results on the
two benchmark datasets in Tables 2 and 3, respectively. Here,
three settings for image parsing are considered: FS—fully su-
pervised image parsing using pixel-level labels, WS—weakly
supervised image parsing using clean image-level labels, and
NT-noisily tagged image parsing using noisy image-level la-
bels. Strictly speaking, the three settings for image parsing
cannot be compared directly. Here, we mainly want to give
an overview of them in Tables 2 and 3. In fact, from such
overview, we find that our CMDR algorithm can provide an
alternative and natural way to address the challenging prob-
lem of image parsing. That is, when the image-level labels
(maybe noisy) are easy to access in practice, we are able to
achieve promising results by our CMDR algorithm, without
the need to directly collect pixel-level labels as supervisory
information at too expensive cost. However, this conclusion



Table 3: Overview of the state-of-the-art results in different
image parsing settings on the LabelMe dataset.

Settings | Methods Avg accuracies
[Liu et al., 2011] 24
FS [Tighe and Lazebnik, 2010] 29
[Myeong et al., 2012] 32
[Tighe and Lazebnik, 2013] 30
WS [Vezhnevets et al., 2012] 21
[Liu ez al., 2013] (0% noise) 26
NT [Liu et al., 2013] (100% noise) 13
Our CMDR (0% noise) 29
Our CMDR (100% noise) 23

does not hold for the recent work on image parsing [Liu et al.,
20131, which means that our noisily tagged image parsing is
indeed a very challenging problem and the algorithm design
in this setting is very important.

Besides the above advantages, our CMDR algorithm has
another distinct advantage, i.e., it runs efficiently on a large
set of regions. For example, the running time of data re-
finement over Y taken by our CMDR algorithm, [Tang et
al., 2009], [Chen et al., 20111, and [Liu et al., 2013] on the
MSRC dataset (N =~ 7,500) is 23, 63, 30, and 68 seconds, re-
spectively. We run all the algorithms (Matlab code) on a com-
puter with 3.9GHz CPU and 32GB RAM. It can be clearly
observed that our CMDR algorithm runs the fastest among
the four related methods for image parsing.

4.2 Test with Social Images

Experimental Setup

In this paper, we actually derive a Flickr dataset with real-
istic noise from the PASCAL VOC2007 benchmark dataset
[Everingham et al., 2007]. The original VOC2007 dataset
contains 632 images, well segmented with 20 object cate-
gories. Since images in the VOC2007 dataset are originally
downloaded from the Flickr website, we choose to construct
a Flickr dataset based on this benchmark dataset. Concretely,
we directly copy all the images from the VOC2007 dataset
and then collect the image-level labels from the Flickr web-
site, instead of the original clean image-level labels from the
VOC2007 dataset. In our experiments, we only keep 100
object categories that most frequently occur in this Flickr
dataset. Moreover, the ground-truth pixel-level labels derived
from the original VOC2007 dataset are used for performance
evaluation. To this end, we only consider the 20 object cat-
egories that occur in the ground-truth segmentations in the
evaluation step (while 100 object categories are still consid-
ered in the other steps of image parsing).

To verify the effectiveness of our CMDR algorithm for
social image parsing with realistic noise, we compare it
with several closely related methods [Tang er al., 2009;
Chen et al., 2011; Liu et al., 2013]. Here, we just take the
same strategy of parameter selection and performance evalu-
ation as that on the MSRC and LabelMe datasets. In fact, the
experimental setup of this subsection is the same as that of
the previous subsection except that we consider the realistic
noise in image-level labels instead of random noise.
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Figure 4: Comparison of our CMDR algorithm to related
methods for social image parsing with realistic noise.
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Parsing Results

We show the comparison of our CMDR algorithm to related
methods in Figure 4. Overall, we can make the same obser-
vation on this new dataset as we have done with the MSRC
and LabelMe datasets in the previous subsection. That is, our
CMDR algorithm is still shown to achieve the best results in
social image parsing with realistic noise. This means that our
CMDR algorithm is more effective for data refinement over
the initial labels of regions even when the noisy image-level
labels are directly collected from the Flickr website. In fact,
our WSSL algorithm can be considered to provide an alter-
native and natural way to address the challenging problem
of image parsing, since the noisy image-level labels collected
from the Flickr website are much easier to access than pixel-
level labels (used in fully supervised setting). In fact, this is
also the place where we stand in the present work.

5 Conclusions

In this paper, we have investigated the challenging problem of
social image parsing. From the viewpoint of data refinement
over the labels of regions, we have formulated social image
parsing as a cross-modal data refinement problem. Based on
L1-optimization and label propagation techniques, we have
further developed an efficient algorithm to solve such cross-
modal data refinement problem. The experimental results
have demonstrated the effectiveness of our cross-modal data
refinement algorithm for image parsing. In the future work,
we will extend our algorithm to other challenging tasks in
computer vision for the need of data refinement.
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