
Abstract
There are lots of texts appearing in the web every
day. This fact enables the amount of texts in the web
to explode. Therefore, how to deal with large-scale
text collection becomes more and more important.
Clustering is a generally acceptable solution for text
organization. Via its unsupervised characteristic,
users can easily dig the useful information that they
desired. However, traditional clustering algorithms
can only deal with small-scale text collection. When
it enlarges, they lose their performances. The main
reason attributes to the high-dimensional vectors
generated from texts. Therefore, to cluster texts in
large amount, this paper proposes a novel clustering
algorithm, where only the features that can represent
cluster are preserved in cluster’s vector. In this al-
gorithm, clustering process is separated into two
parts. In one part, feature’s weight is fine-tuned to
make cluster partition meet an optimization function.
In the other part, features are reordered and only the
useful features that can represent cluster are kept in
cluster’s vector. Experimental results demonstrate
that our algorithm obtains high performance on both
small-scale and large-scale text collections.

1 Introduction
Facing the large-scale texts in the web, it is difficult for users
to manually dig useful information from websites. This sit-
uation forces many text based analysis tools to appear. In
general, clustering is a popular tool for text analysis due to its
unsupervised characteristic. Unfortunately, most of tradi-
tional clustering algorithms can only handle small-scale text
collection. They lose their high performances on large-scale
text collection. The reason to this situation mostly attributes
to the fact that most of traditional clustering algorithms apply
vector space model to organize texts and clusters. When text
collection is small, this model is all right, whereas when it
enlarges, vector space model will generate high-dimensional
and sparse vectors. This kind of vectors brings in three
problems. The first is that the weights of many entries are
close to zero, which depresses performance as indicated by
[Xu and Wunsch, 2005]. The second is that many useless

features are adopted to represent cluster. The last is that high-
dimensional vectors make similarity calculation expensive.

To cluster large-scale text collection efficiently, this paper
proposes a vector reconstruction based clustering algorithm,
abbreviated as VRCA, where cluster’s vector is formed by
only choosing a few features that are useful to represent
cluster. Two alternately repeated sub-processes are carried
out for this purpose. In one sub-process, feature’s weight is
fine-tuned to gradually reduce one predefined optimization
function via iterative tuning process. In the other sub-process,
two measures, respectively measuring cluster’s intra ag-
glomeration and cluster’s inter distinctness, are calculated,
and the useful features that are not only capable to represent
one cluster but also capable to separate different clusters
apart are chosen to reconstruct cluster’s vector.

Two large-scale text collections, ClueWeb9 and TRC2,
are adopted to test the performance of our algorithm. Besides,
another two popular text collections (Reuters and Newsgroup)
are also adopted to prove our algorithm’s high performance
on small-scale text collection.

2 Related Work
Until now, many text clustering algorithms have been pro-
posed. They can be partitioned into five categories: a) parti-
tion based; b) density based; c) hierarchy based; d) grid based;
e) model based. K-means [MacQueen, 1967], DBSCAN
[Martin et al., 1996], BIRCH [Zhang et al., 1996], STING
[Wang et al., 1997], Neuron Network [Kohonen et al., 2000]
are their typical exemplars. To further improve clustering
performance, some algorithms are even derived from the
other subjects, such as Spectral Clustering from Physics [Cai
et al., 2008], Non-Regression Matrix Factorization from
Mathematics [Wang et al., 2007], LDCC based on Latent
Dirichlet Allocation from Topic Models [Shafiei and Milios,
2006]. Nevertheless, to our best knowledge, though it has
been proposed so many clustering algorithms, the organiza-
tion model applied by them seldom changes. That is vector
space model. It will generate high-dimensional and sparse
vectors in the situation that text collection becomes too large.
Therefore, this model makes traditional clustering algorithms
fail to cluster large-scale text collection. For this reason,
many ways are designed to improve this model. The most
popular ones are feature selection and dimension reduction.

VRCA: A Clustering Algorithm for Massive Amount of Texts

Ming Liu Lei Chen Bingquan Liu Xiaolong Wang
HIT, China BNUZ, China HIT, China HIT, China

liuming1981@hit.edu.cn chenlei@bnuz.edu.cn {liubq, wangxl}@insun.hit.edu.cn

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2355

For feature selection, it is often conducted to preserve the
features that are useful for separating input texts apart. Liu et
al., [2013] applied probability model to choose features.
Zhao et al., [2010] added an entropy based choosing process
for further filtering useless features. With time passing, more
and more plans are proposed, e.g. mutual information based
in [Kwak and Choi, 2002], correlation parameter based in
[Sakar and Kursun, 2012]. The common point shared by
them is that they treat feature selection as the preprocessing
step of clustering. The two processes (selection and cluster-
ing) run for two distinct objectives.

For dimension reduction, it is often conducted to cut down
vectors from high dimension to low dimension. Latent se-
mantic indexing (LSI) proposed by Todd and Michael [1997]
is one of the most prevalent methods, whereas the defect of it
is that the features in the reduced vector lose their semantic
meanings. Another powerful tool is principal component
analysis (PCA) utilized in graph processing. Gomez and
Moens [2012] imported it in text classification and obtained
high performance. Unfortunately, the same issue happens to
them as to the methods for feature selection, that is, the two
processes (reduction and clustering) are isolated from each
other. Thus, the way that treats clustering and dimension
reduction or feature selection as two isolated processes does
not definitely obtain prominent results.

Aiming at solving the drawbacks of traditional algorithms,
this paper proposes an algorithm by combing vector recon-
struction and text clustering together.

3 Clustering Process of VRCA
Due to its simple structure, vector space model is extensively
used to organize texts and clusters as vectors. For simplicity,
this model is also used in our algorithm. However, this model
imports many useless features and depresses clustering per-
formance very much. Therefore, if we can define a threshold,
and only choose features that are useful to represent cluster to
reconstruct cluster’s vector, clustering performance should
be improved. Our algorithm designs two processes to achieve
this goal. In detail, text clustering is conducted in partial
tuning sub-process, where texts are partitioned into clusters
to reduce one predefined optimization function, and cluster’s
vector is reconstructed in overall tuning sub-process, where
no more than three hundred features that are useful to rep-
resent cluster are chosen to reconstruct cluster’s vector.

3.1 Partial Tuning Sub-Process
In this sub-process, texts are partitioned into clusters to re-
duce one predefined optimization function as

1

; 2 2

1 1

_
j i

j i

j i

v

d c
l

v v
d D c C

d c
l l

V l V l
op func

V l V l

 (1)

in which D denotes text collection and dj denotes one text in
D; C denotes cluster set and ci denotes one cluster in C; Vdj
denotes the text vector of dj and Vci denotes the cluster’s
vector of ci; v denotes vector dimension; Vdj(l) and Vni(l)
denote the weights of lth entry in Vdj and in Vci. Eq.1 is

extensively used to control clustering process. As indicated
later that our algorithm employs iterative tuning process from
self-organizing-mapping (SOM) algorithms to partition texts,
we also adopt the convergence condition used in [Alahakoon
et al., 2000] to stop our clustering algorithm. That condition
is when the difference between two values obtained by Eq.1
through two successive steps falls below 0.0001, cluster
partitions obtained by these two successive steps are very
close. Then, we can stop clustering algorithm.

As indicated in [Kohonen et al., 2000], in SOM algorithms,
neuron can be seen as cluster’s center (in vector space model,
cluster’s center is represented by vector, so it is also called
cluster’s vector). This kind of algorithms organizes neuron
(or cluster’s vector) into topology, and via its iterative tuning
process, neurons (or clusters) are partitioned well and one
neuron is more similar to its adjacent neurons than to the
other neurons. This characteristic is similar to neuron in
human’s brain. Therefore, in SOM, cluster’s vector is called
neuron. In our algorithm, we just borrow the iterative tuning
process from SOM algorithms to fine-tune cluster partition.
However, traditional SOM algorithms employ concurrence
based similarity measurements to calculate similarity be-
tween text and neuron, and also never consider removing
useless features. Therefore, their performances are lower
than our algorithm (VRCA), which can be clearly seen from
experimental results (Table 2 and Table 3).

In text clustering, it is difficult to predefine cluster number.
Therefore, we employ the method used in [Andreas et al.,
2002]. If convergence condition is not met after running
iterative tuning process once, each neuron’s cohesion is then
measured by Eq.2 and one neuron will be created by Eq.3 to
make cluster partition approach to convergence condition.

1

2 2

1 1

_
j i

j i i

j i

v

d n
l

i v v
d n c

d n
l l

V l V l
op func n

V l V l

 (2)

in which ni denotes the neuron corresponding to the cluster ci;
Vni denotes the neuron vector of ni ; it is also the cluster’s
vector of ci; dj denotes one text included by the cluster ci.

After measuring neuron’s cohesion, the neuron of the least
cohesion (ne) and its one neighbor (nd) are chosen to create
one new neuron (nr) as

1.. 2
e d

r

n n
n
l v

V l V l
V l (3)

in which Vnr(l) is the mean between Vne(l) and Vnd(l).
Traditional SOM algorithms apply concurrence based

similarity measurements to calculate similarity between text
and neuron. In this kind of measurements, similarity result is
affected by each feature's weight. However, in text clustering,
the features that can better represent the topic of one cluster
are really useful in similarity calculation. The other features
not only prolong running time but also depress clustering
performance. Due to this reason, we use intersection between
text and neuron to measure similarity between them. In this
measurement, only the intersected features that are assigned
to non-zero weights in both text vector and neuron vector are
considered as

2356

max ,

1

2 2

1 1

, *log
j i

j i

q p

d n
l

j i q p

d n
l l

V l V l
Sim d n r

V l V l

 (4)

in which ni denotes ith neuron in neuron set; dj denotes jth
text in text collection; fl denotes lth feature and resides at lth
entry; Vni denotes the neuron vector formed from ni; Vdj
denotes the text vector formed from dj; Vdj(l) denotes the
weight of lth entry in Vdj, evaluated by TF-IDF; Vni(l) denotes
the weight of lth entry in Vni, updated by Eq.5; r denotes the
quantity of non-zero entries between Vdj and Vni; q and p
denote the quantities of non-zero entries in Vdj and in Vni.

In overall tuning sub-process (Section 3.2), our algorithm
uses two measures to weigh features and assigns the features
that are capable to represent the topic of one cluster to non-
zero weights. If many features are of non-zero weights in one
text vector and one neuron vector, it indicates that the text
and the neuron share the similar topic. They may be similar at
a high probability. Eq.4 just forms according to this idea.

As shown in Eq.4, the number of entries needed to be
scanned by our similarity measurement equals to max(q,p). It
means that time complexity of Eq.4 is O(max(q,p)). For q, it
is quite small, since each text has few features among vector
space. For p, if it is also small, our measurement will own
high running speed. Fortunately, via the threshold that is set
to limit the quantity of non-zero entries in overall tuning sub-
process introduced in Section 3.2, the characteristic of neu-
ron vector generated by our algorithm is sparseness.

To apply iterative tuning process of SOM, we need to tune
feature’s weight in neuron vector. Because our algorithm
replaces concurrence based similarity measurement by in-
tersection based similarity measurement, its neuron adjust-
ment function also needs to be changed as

; 0 & & 0
1

1.0; 0 & & 0

j i

i j i

j ii

j i

d n
n d n

d nn

d n

V l V lNH t
V l t a t If V l V l

dist V l V lV l t

If V l V l

 (5)

in which Vni(l)(t+1) and Vni(l)(t) are the weights of the feature
fl in neuron vector Vni after and before neuron adjustment;
a(t) denotes learning rate and descends along with tuning
process; dist and NH(t) denote distance function and neigh-
borhood range, which form the adjusting range. The neurons
in that range all need to be adjusted [Alahakoon et al., 2000].

For Eq.5, if two weights of one feature (e.g. fl) are both
non-zero in two vectors formed from one text and one neuron
(e.g. dj and ni), the upper sub-equation is applied to adjust the
weight of fl in ni. It lets the neuron ni approach to the text dj.
Because our algorithm reconstructs cluster’s vector, many
features are assigned to zero weights. Then, it is easy to occur
that some features’ weights are non-zero in text vector and
zero in neuron (or cluster’s) vector. These features are as-
signed to an initial weight by the lower sub-equation.

3.2 Overall Tuning Sub-Process
In partial tuning sub-process, neuron vector is tuned by an
iterative tuning process. However, this process may bring in
some features that are useless to represent cluster. To remove
them, our algorithm adds an overall tuning sub-process.

In text clustering, the quantity of features that are capable
to represent the topic of one cluster is much smaller than the
dimension of vector space [Hammouda and Kamel, 2004].
For example, if there is one cluster whose topic is about
“sport”, to represent it, it only needs the features whose
meanings are relevant to “sport”. Thus, we can define a
threshold to limit the number of features in cluster’s vector to
represent this cluster. Based on the analysis in [Martin et al.,
2004; Liu et al., 2014] and our experimental results (Figure 1
and Table 1), this threshold is no more than 300.

Since partial tuning sub-process may bring in some fea-
tures that are useless to represent cluster, we design two
measures to weigh feature’s ability as shown in Eq.6 and
Eq.8. These two equations respectively measure feature’s
ability to represent one cluster and the ability to separate one
cluster from the others. The features of less ability will be
assigned to zero weights to be removed from cluster’s vector.

Feature’s intra-cluster representative ability is measured
by Eq.6 to show how one feature can represent one cluster. In
other words, this ability stands for feature’s capacity to ag-
gregate similar texts into a compact cluster.

2 2
| |

1 1&& 1

_ ,
i i i

u m u i

u m u i

c c c
d d d n

l i
u m m u ud d d n

V l V l V l V l
InTraC M f n

V l V l V l V l
(6)

in which ci denotes one text cluster, which includes the texts
that are more similar to the neuron ni than to the other neu-
rons; |ci| denotes the amount of texts included by ci. The other
symbols are already explained in Eq.1.

There are two parts in Eq.6 separated by a plus. The left
part is calculated based on the fact that if one feature (e.g. fl)
is assigned to similar weights among the texts included by
one cluster (e.g. ci), fl can help aggregate similar texts into ci.
For the right part, since our algorithm is just based on tradi-
tional SOM algorithms, neuron in our algorithm also repre-
sents cluster’s center. Then, if the weight of fl in each text
included by ci is similar to the weight of fl in ni, fl can help
assemble similar texts around the center of ci.

In fact, if one feature has larger intra-cluster representative
ability, it will be assigned to smaller value by Eq.6. Thus,
Eq.6 is reversed to

 _ max _ , ;

, _ _ ,i i

l bb

l l

InTraC Max InTraC M f n

InTraC f n InTraC Max InTraC M f n
 (7)

The equation used to measure feature’s inter-cluster dis-
criminable ability to separate one cluster from the others is
shown as

2

1&&
, i b

i b

k
n n

l i
b b i n n

V l V l
InTerD f n

V l V l
 (8)

in which k denotes the quantity of neurons.
In traditional SOM algorithms, the weight of one feature in

one neuron vector is the mean weight of that feature among
the texts mapped to that neuron [Kohonen et al., 2000]. Since
our algorithm employs iterative tuning process from SOM
algorithms, our algorithm also obeys this principle. Then, if
one feature has distinct weights among most of neuron vec-
tors, this feature can help separate clusters apart. Eq.8 just
forms according to this idea.

2357

3.3 Algorithm Workflow and Related Analyses

Algorithm Workflow
Input: text set D; maximum neuron (or cluster) number k; current
neuron (or cluster) number ck; convergence condition maxth;
iterative index t; the quantity of steps to enter into overall tuning
sub-process maxt; the threshold to limit the selected features maxp.
Output: neuron (or cluster) set N (or C, in our algorithm, one neuron
corresponds to one cluster).
Initialization:
1. Initialize t=0;
2. Select ink random texts from D, ink<<k, and treat these ink texts
as ink initial neurons;
3. ck=ink.
Partial Tuning Sub-Process:
4. Select one random text dj from D;
5. Use Eq.4 to calculate similarity between dj and each neuron in N;
6. Select the neuron with the maximum similarity, and mark it as ni;
7. Use Eq.5 to adjust ni and its adjacent neurons in N;
8. Check whether the difference between two values obtained by
Eq.1 at step t and step t-1 is below maxth or not; if yes, stop;
9. Calculate the cohesion of each neuron by Eq.2;
10. Select the neuron that has the least cohesion, and mark it as ne;
11. Select the neuron that has the least cohesion in the neighbors of
ne, and mark it as nd;
12. Insert one new neuron between ne and nd by Eq.3;
13. ck=ck+1;
14. Check whether ck is larger than k or not, if yes stop.
15. t=t+1;
16. Check whether t is the integral times of maxt or not; if yes, go to
step 17 to enter into overall tuning sub-process; else, go to step 4.
Overall Tuning Sub-Process:
For each neuron ni
 For each feature fl in ni
 17. Use Eq.7 to measure intra-cluster representative ability of fl;

18. Use Eq.8 to measure inter-cluster discriminable ability of fl;
 19. Add these two abilities together;
 End For
End For
20. Sort features in terms of their abilities, and choose maxp features
of larger abilities to reconstruct cluster’s vector.
21. Go to step 4 to enter into partial tuning sub-process.

Parameter Setting
The previous workflow has five initial parameters needed to
be fixed in advance. They are k, ink, maxth, maxt, maxp.

For k, it denotes the maximum cluster number. We set it as
the square root of n. As indicated in [Liang et al., 2012],
cluster number is often smaller than the square root of the
size of text set. When k exceeds this number, cluster partition
becomes incredible. We can stop clustering process. For ink,
it denotes the initial neuron number. We set it as 2 without
loss of generality. For maxth and maxt, they respectively de-
note convergence condition and the quantity of steps during
partial tuning sub-process. We set them according to the
parameter setting in [Alahakoon et al., 2000]. The reason is
that our algorithm is just based on SOM. Then, we can bor-
row the parameter setting from SOM algorithms. Besides, as

stated in [Alahakoon et al., 2000], the setting on maxth and
maxt does not deeply affect clustering results. For maxp, it
denotes the threshold to limit the number of selected features
to reconstruct cluster’s vector. We set it as 300 according to
the analysis in [Martin et al., 2004; Liu et al., 2014] and our
experimental results in Section 4.1 (Figure 1 and Table 1).

Time Complexity
The workflow is partitioned into three parts: initialization,
partial tuning sub-process, and overall tuning sub-process.

With respect to initialization, time complexity of steps 1, 3
is O(1); time complexity of 2 is O(ink); because ink is much
smaller than k, time complexity of 2 is at most O(k). There-
fore, time complexity of initialization is O(1+k)=O(k).

With respect to partial tuning sub-process, time com-
plexity of steps 4, 12 to 16 is O(1); time complexity of 5, 7 is
O(kmax(maxq,maxp)), in which maxq denotes the maximum
quantity of non-zero entries in text vector, maxp denotes the
maximum number of selected features to reconstruct clus-
ter’s vector; because text vector is inevitably sparse, maxp is
often larger than maxq; then, O(kmax(maxp,maxq)) equals to
O(kmaxp); time complexity of 8, 9 is O(knmaxp); time com-
plexity of 6, 10 is O(ck); since ck<k, time complexity of 6, 10
is at most O(k); time complexity of 11 is O(nb), in which nb
denotes the number of neighbors around one neuron; because
nb is also smaller than k, time complexity of 11 is at most
O(k). Therefore, time complexity of partial tuning sub-
process is O(1+k+kmaxp+knmaxp)=O(knmaxp).

With respect to overall tuning sub-process, time com-
plexity of step 17 is O(maxci), in which maxci denotes the
maximum quantity of texts included by one cluster (e.g. ci);
since maxci<n, time complexity of 17 is at most O(n); time
complexity of 18 is O(k); since k<n (cluster number k is
smaller than the size of text set n), time complexity of 18 is at
most O(n); time complexity of 19 is O(1); these three steps
roll for O(kmaxp) times; then, time complexity of this loop is
O(knmaxp); step 20 is ranking step, thus time complexity of it
is O(maxplogmaxp); time complexity of step 21 is O(1).
Therefore, time complexity of overall tuning sub-process is
O(knmaxp+maxplogmaxp+1)=O(knmaxp+maxplogmaxp).

In conclusion, for initialization, it only needs to run once;
for partial tuning sub-process, supposing that it runs for
about l times to converge, then for overall tuning sub-process,
it runs for l/maxt times. Thereby, the total time complexity is
O(k+l*(knmaxp)+l/maxt*(knmaxp+maxplogmaxp))=O(klnmaxp+
(lmaxplogmaxp)/maxt).

Taking traditional efficient clustering algorithms, such as
K-means, GSOM, and GHSOM (their high-speed abilities can
be seen from Table 3), for comparison, their time complexity
is linear, O(klnmaxp) [Shahpurkar and Sundareshan, 2004].
The differences between them and our algorithm are two
points. One is that maxp in our algorithm is quite smaller than
that in them, since our algorithm limits the number of se-
lected features. The other is that our algorithm has an addi-
tional part, O(lmaxplogmaxp). However, because maxp in our
algorithm is set as constant, this part can be neglected. Due to
these two reasons, our algorithm should possess higher run-
ning velocity than traditional clustering algorithms, which
can also be observed from experimental results (Table 3).

2358

4 Experiments and Analyses
The following experiments are partitioned into three parts.
The first part discusses how to set threshold (denoted as maxp)
to choose features to reconstruct cluster’s vector. The second
and the third parts are conducted to compare our algorithm
with several popular baseline algorithms in time performance
and clustering precision to demonstrate our algorithm’s high
quality. The baseline algorithms include K-means, STING,
DBSCAN, BIRCH, GSOM, GHSOM, Spectral Clustering,
Non-Regression Matrix Factorization (NRMF), and LDCC.
Four testing collections are employed in the experiments,
including two prevalent testing collections, Reuters (21,578)
and Newsgroup (2,000), and two large-scale text collections,
TRC2 (1.8 millions), and released ClueWeb9 after removing
empty and short texts (100 millions).

In order to compare the precisions of different algorithms,
two metrics are employed. They are NMI (Normalized Mu-
tual Information) and ARI (Adjusted Random Index) respec-
tively introduced in [Zhao and Karypis, 2002] and [Hubert
and Arabie, 1985].

NMI is calculated in Eq.9. It is calculated based on entropy.
Due to the reason that NMI does not need to predefine cluster
number and utilizes inter-cluster distinctness and intra-
cluster agglomeration to measure clustering precision, it is
extensively applied in clustering evaluation scenario.

1 1

1 1

*log * *

*log *log

2

k k
q q q
r r r

r q

k k
q q

r r
r q

n n n n n n
NMI

n n n n n n n n

 (9)

in which Sr denotes rth cluster obtained by clustering algo-
rithm; nr denotes the quantity of texts included by Sr; Cq
denotes qth cluster predefined by user; nq denotes the quan-
tity of texts included by Cq; nq

r denotes the quantity of texts
included by the intersection between Sr and Cq; n denotes set
size; k denotes cluster number.

Different from NMI that needs to relate the labels indi-
cating the clusters obtained by clustering algorithm to the
labels predefined by user, ARI frees from predefining cluster
partition. It combines two texts as one pair-point, and uses
four situations to identify clustering results:

a) Two texts in one pair-point are manually labeled in the
same cluster, and in clustering results they are also in the
same cluster. b) Two texts in one pair-point are manually
labeled in the same cluster, and in clustering results they are
in different clusters. c) Two texts in one pair-point are
manually labeled in different clusters, and in clustering re-
sults they are also in different clusters. d) Two texts in one
pair-point are manually labeled in different clusters, and in
clustering results they are in the same cluster.

Apparently, a and c stand for the rightly partitioned pair-
points, and can be used to measure clustering precision as

2

2

2

n
a c a b a d b c c d

ARI
n

a b a d b c c d

 (10)

4.1 The Number of Selected Features
In our algorithm, we need to set a threshold, labeled as maxp,
and choose features less than maxp to reconstruct cluster’s
vector. Figure 1 shows how maxp affects clustering precision
on the four testing collections. For clarity, Table 1 shows the
value of maxp when precision in Figure 1 becomes stable.

100 200 300 400 500 600 700 800 900 1000
65

70

75

80

85

90

95

100

NM
I (

%
)

The number of selected features (maxp)

 Reuters
 Newsgroup
 ClueWeb9
 TRC2

100 200 300 400 500 600 700 800 900 1000

65

70

75

80

85

90

95

100

AR
I (

%
)

The number of selected features (maxp)

 Reuters
 Newsgroup
 ClueWeb9
 TRC2

(a) NMI (b) ARI

Figure 1. Clustering precisions of different maxp

Table 1. maxp in Figure 1 when precision becomes stable

 Reuters Newsgroup ClueWeb9 TRC2
NMI (a) 283 287 293 292
ARI (b) 285 285 294 291

One phenomenon can be observed from Figure 1. That is

all the precision curves in Figure 1 own the same track. They
all climb along with the increase of maxp at the beginning, and
when maxp is beyond certain value (a little smaller than 300)
they become stable. The reason to this phenomenon is that in
our algorithm, we measure features via their abilities to rep-
resent cluster. When we increase the number of selected
features (maxp), more useful features will be imported to
reconstruct cluster’s vector and therefore increase clustering
precision. However, when this number exceeds certain value,
the imported features are useless to represent cluster. Fortu-
nately, in our algorithm, the useless features will be assigned
to zero weights. Therefore, precision curves become stable,
but importing many useless features obviously prolongs
running time. By combining Figure 1 and Table 1, it can be
observed that when clustering precision becomes stable,
different collections correspond to similar maxp. Among
these four collections, the size of TRC2 is about one thou-
sand times of the size of Newsgroup, while maxp on them is
very close. The reason to this phenomenon is that the texts
included by one cluster should reflect one similar topic. Then,
only the semantically similar features that are related to the
topic are really useful to represent this cluster. The number of
those semantically similar features only occupies a small
proportion of vector space, and does not increase much when
text collection enlarges. Based on Table 1 and several pre-
vious literatures [Martin et al., 2004; Liu et al., 2014], this
number seldom exceeds 300. Therefore, we set maxp as 300 to
be the threshold to limit the number of selected features to
reconstruct cluster’s vector.

4.2 Clustering Precision
We record clustering precisions of different algorithms
measured by NMI and ARI on Reuters, Newsgroup, Clue-
Web9, and TRC2 in Table 2.

2359

Table 2. Clustering precisions of different algorithms

 Reuters Newsgroup ClueWeb9 TRC2

K-means NMI
ARI

74.65 86.65 55.43 66.58
76.53 88.13 57.02 68.11

STING NMI
ARI

75.11 88.13 57.15 69.67
76.92 89.54 58.87 71.33

DBSCAN NMI
ARI

73.82 85.03 56.16 68.17
75.33 86.43 57.73 69.84

BIRTH NMI
ARI

75.34 87.91 50.36 65.05
77.29 89.31 52.17 66.92

GSOM NMI
ARI

80.32 91.47 68.29 74.51
82.16 93.34 70.04 76.35

GHSOM NMI
ARI

81.47 92.80 69.28 75.79
83.57 94.27 70.88 77.12

SPECTRAL NMI
ARI

83.72 93.67 70.45 77.24
85.44 95.12 71.87 78.71

NRMF NMI
ARI

86.50 93.68 73.73 78.82
88.48 95.26 75.35 80.58

LDCC NMI
ARI

88.33 94.06 74.22 81.34
90.43 95.67 75.78 82.93

VRCA NMI
ARI

90.75 94.22 82.83 86.84
92.27 95.95 84.21 88.43

By observing Table 2, one conclusion can be drawn. That

is clustering precisions of VRCA on small-scale and large-
scale text collections are both outstanding, while the other
clustering algorithms all fail to cluster large-scale text col-
lection. They cannot copy their high quality from small-scale
text collection to large-scale text collection. Due to space
transition executed by SOM, clustering precisions of GSOM
and GHSOM do not drop greatly on large-scale text collec-
tion. Besides, together with dimension reduction, Spectral
Clustering, NRMF, and LDCC can achieve much higher
precisions than GSOM and GHSOM. Nevertheless, in com-
parison with VRCA, their precisions are also too weak, since
they keep many useless features in cluster’s vector. These
features decrease clustering precision. For K-means, STING,
DBSCAN, and BIRTH, they not only run in uncompressed
space, but also do nothing to remove useless features from
cluster’s vector. Their precisions are the lowest.

4.3 Time Performance
Due to the high-dimensional vectors generated by vector
space model, traditional clustering algorithms are time-
consuming on clustering large-scale text collection. In order
to demonstrate our algorithm’s high efficiency, we record
running time of different algorithms in Table 3.

Two observations can be found from Table 3: (a) VRCA
spends the least time on ClueWeb9, TRC2, and spends the
second least time on Reuters, while VRCA only ranks the
fourth on Newsgroup. By contrast, on Reuters and News-
group, K-means has the best time performance, and ranks the
second on ClueWeb9 and TRC2; (b) all the algorithms spend
similar amount of time when text collection is small, while
when it enlarges, VRCA spends extremely less time. The
reason to this phenomenon mainly attributes to VRCA’s re-
constructive plan and its fast intersection based similarity
measurement, where only the features that are useful to rep-

resent cluster are adopted in similarity calculation. In com-
parison with VRCA, K-means, STING, DBSCAN, BIRTH,
GSOM, and GHSOM all generate high-dimensional vectors,
and consequently run much slower. Since K-means, GSOM,
GHSOM own linear time complexity, and STING, DBSCAN
run by space partition, their running time is less than the
others. However, due to the high-dimensional vectors, their
time performances are lower than VRCA. In comparison with
the pervious baseline algorithms, the vectors generated by
Spectral Clustering, NRMF, and LDCC are much denser and
shorter, whereas they need to perform an additional dimen-
sion reduction process. Thus, they are also time-consuming.
BIRTH is one kind of hierarchical clustering algorithms, thus
it has square time complexity and spends the most time.

Table 3. Running time of different algorithms

 Reuters Newsgroup ClueWeb9 TRC2
 time (sec) time (sec) time (min) time (min)

K-means 16.4 4.5 359.7 42.3
STING 32.2 7.7 648.6 78.1
DBSCAN 37.8 10.2 1156.2 106.4
BIRTH 91.3 20.1 4223.0 394.6
GSOM 34.0 7.3 994.5 89.1
GHSOM 40.5 12.6 1336.5 134.6
SPECTRAL 58.3 11.8 1541.4 157.9
NRMF 67.6 12.1 1825.8 211.3
LDCC 80.9 18.2 2147.1 254.8
VRCA 19.7 7.9 124.2 22.5

5 Conclusions
Because of the high-dimensional problem aroused by vector
space model and time-consuming issue brought from con-
currence based similarity measurement, most of traditional
clustering algorithms fail to cluster large-scale text collection.
Facing the massive amount of web texts, only if clustering
algorithms can efficiently handle large-scale text collection,
they can be used in real applications. Thus, this paper pro-
poses a clustering algorithm particularly for large-scale texts.
This algorithm consists of two sub-processes and alternately
repeats them until convergence. The two sub-processes are:
partial tuning sub-process and overall tuning sub-process. In
the former sub-process, an iterative tuning process based on
SOM is adopted to tune neuron vector. Besides, an intersec-
tion based similarity measurement is also implemented. In
the latter sub-process, two measures are calculated to choose
features to reconstruct cluster’s vector. Through comparing
our algorithm with the other nine popular clustering algo-
rithms, it demonstrates that our algorithm performs well on
both small-scale and large-scale text collections.

Acknowledgments
This research is supported by National Natural Science
Foundation of China (No. 61300114), Specialized Research
Fund for the Doctoral Program of Higher Education
(No.20132302120047), the Special Financial Grant from the
China Postdoctoral Science Foundation (No.2014T70340),
CCF-Tencent Open Fund.

2360

References
[Alahakoon et al., 2000] Alahakoon D., Halgamuge S. K.,

and Srinivasan B. Dynamic self-organizing maps with
controlled growth for knowledge discovery. IEEE
Transactions on Neural Networks, 11: 601-614, 2000.

[Andreas et al., 2002] Andreas R., Dieter M., and Michael D.
The growing hierarchical self-organizing map:
Exploratory analysis of high-dimensional data. IEEE
Transactions on Neural Networks, 13: 1331-1341, 2002.

[Cai et al., 2008] Cai D., He X. F., and Han J. W. SRDA: An
efficient algorithm for large-scale discriminant analysis.
IEEE Transactions on Knowledge and Data Engineering,
20: 1-12, 2008.

[Gomez and Moens, 2012] Gomez J. C., and Moens M. F.
PCA document reconstruction for email classification.
Computational Statistics & Data Analysis, 56: 741-751,
2012.

[Hubert and Arabie, 1985] Hubert L., and Arabie P.
Comparing partitions. Journal of Classification, 2:
193-218, 1985.

[Hammouda and Kamel, 2004] Hammouda K. M., and
Kamel M. S. Efficient phrase-based document indexing
for web document clustering. IEEE Transactions on
Knowledge and Data Engineering, 16: 1279-1296, 2004.

[Kohonen et al., 2000] Kohonen T., Kaski S., Lagus K.,
Salojärvi J., Honkela J., Paatero V., and Saarela A. Self
organization of a massive document collection. IEEE
Transactions on Neural Networks, 11: 574-585, 2000.

[Kwak and Choi, 2002] Kwak N., and Choi C. H. Input
feature selection by mutual information based on parzen
window. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24: 1667-1671, 2002.

[Liang et al., 2012] Liang J. Y., Zhao X. W., Li D. Y., Cao F.
Y., and Dang C. Y. Determining the number of clusters
using information entropy for mixed data. Pattern
Recognition, 45: 2251-2265, 2012.

[Liu et al., 2013] Liu M., Liu Y. C., Liu B. Q., and Lin L.
Probability-based text clustering algorithm by alternately
repeating two operations. Journal of Information Science,
39: 372-383, 2013.

[Liu et al., 2014] Liu M., Wu C., and Liu Y. C. Weight
evaluation for features via constrained data-pairs.
Information Sciences, 282: 70-91, 2014.

[MacQueen, 1967] MacQueen J. Some methods for
classification and analysis of multivariate observations. In
Proceedings of 5th Berkeley Symposium on Mathematical
Statistics and Probability, pages 281-297, 1967.

[Martin et al., 1996] Martin E., Hans P. K., Jörg S., and Xu X.
W. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of the
2nd International Conference on Knowledge Discovery
and Data Mining, Pages 226-231, 1996.

[Martin et al., 2004] Martin H. C. L., Mario A. T. F., and Anil
K. J. Simultaneous feature selection and clustering using
mixture models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26: 1154-1166, 2004.

[Shahpurkar and Sundareshan, 2004] Shahpurkar S. S., and
Sundareshan M. K. Comparison of self-organizing map
with k-means hierarchical clustering for bioinformatics
applications. In Proceedings of the International Joint
Conference on Neural Networks, pages 1221-1226, 2004.

[Shafiei and Milios, 2006] Shafiei M. M., and Milios E. E.
Latent dirichlet co-clustering. In Proceedings of the 6th
IEEE International Conference on Data Mining, pages
542-551, 2006.

[Sakar and Kursun, 2012] Sakar C. O., and Kursun O. A
method for combining mutual information and canonical
correlation analysis: Predictive mutual information and its
use in feature selection. Expert Systems with Applications,
39: 3333-3344, 2012.

[Todd and Michael, 1997] Todd A. L., and Michael W. B.
Large-scale information retrieval with latent semantic
indexing. Information Sciences, 100: 105-137, 1997.

[Wang et al., 1997] Wang W., Yang J., and Richard R. M.
STING: A statistical information grid approach to spatial
data mining. In Proceedings of the 23rd International
Conference on Very Large Data Bases, pages 186-195,
1997.

[Wang et al., 2007] Wang F., Zhang C. S., and Li T.
Regularized clustering for documents. In Proceedings of
the 30th International ACM SIGIR Conference on
Research & Development in Information Retrieval, pages
95-102, 2007.

[Xu and Wunsch, 2005] Xu R., and Wunsch D. Survey of
clustering algorithms. IEEE Transactions on Neural
Networks, 16: 645-678, 2005.

[Zhang et al., 1996] Zhang T., Raghu R., and Miron L.
BIRCH: An efficient data clustering method for very large
databases. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages
103-114, 1996.

[Zhao and Karypis, 2002] Zhao Y., and Karypis G. Criterion
functions for document clustering: Experiments and
analysis. Technical Report, #01-40, University of
Minnesota, 2002.

[Zhao et al., 2010] Zhao F., Jiao L. C., Liu H. Q., Gao X. B.,
and Gong M. G. Spectral clustering with eigenvector
selection based on entropy ranking. Neurocomputing, 73:
1704-1717, 2010.

2361

