
Abstract 
There are lots of texts appearing in the web every 
day. This fact enables the amount of texts in the web 
to explode. Therefore, how to deal with large-scale 
text collection becomes more and more important. 
Clustering is a generally acceptable solution for text 
organization. Via its unsupervised characteristic, 
users can easily dig the useful information that they 
desired. However, traditional clustering algorithms 
can only deal with small-scale text collection. When 
it enlarges, they lose their performances. The main 
reason attributes to the high-dimensional vectors 
generated from texts. Therefore, to cluster texts in 
large amount, this paper proposes a novel clustering 
algorithm, where only the features that can represent 
cluster are preserved in cluster’s vector. In this al-
gorithm, clustering process is separated into two 
parts. In one part, feature’s weight is fine-tuned to 
make cluster partition meet an optimization function. 
In the other part, features are reordered and only the 
useful features that can represent cluster are kept in 
cluster’s vector. Experimental results demonstrate 
that our algorithm obtains high performance on both 
small-scale and large-scale text collections. 

1 Introduction 
Facing the large-scale texts in the web, it is difficult for users 
to manually dig useful information from websites. This sit-
uation forces many text based analysis tools to appear. In 
general, clustering is a popular tool for text analysis due to its 
unsupervised characteristic. Unfortunately, most of tradi-
tional clustering algorithms can only handle small-scale text 
collection. They lose their high performances on large-scale 
text collection. The reason to this situation mostly attributes 
to the fact that most of traditional clustering algorithms apply 
vector space model to organize texts and clusters. When text 
collection is small, this model is all right, whereas when it 
enlarges, vector space model will generate high-dimensional 
and sparse vectors. This kind of vectors brings in three 
problems. The first is that the weights of many entries are 
close to zero, which depresses performance as indicated by 
[Xu and Wunsch, 2005]. The second is that many useless 

features are adopted to represent cluster. The last is that high- 
dimensional vectors make similarity calculation expensive. 

To cluster large-scale text collection efficiently, this paper 
proposes a vector reconstruction based clustering algorithm, 
abbreviated as VRCA, where cluster’s vector is formed by 
only choosing a few features that are useful to represent 
cluster. Two alternately repeated sub-processes are carried 
out for this purpose. In one sub-process, feature’s weight is 
fine-tuned to gradually reduce one predefined optimization 
function via iterative tuning process. In the other sub-process, 
two measures, respectively measuring cluster’s intra ag-
glomeration and cluster’s inter distinctness, are calculated, 
and the useful features that are not only capable to represent 
one cluster but also capable to separate different clusters 
apart are chosen to reconstruct cluster’s vector. 

Two large-scale text collections, ClueWeb9 and TRC2, 
are adopted to test the performance of our algorithm. Besides, 
another two popular text collections (Reuters and Newsgroup) 
are also adopted to prove our algorithm’s high performance 
on small-scale text collection. 

2 Related Work 
Until now, many text clustering algorithms have been pro-
posed. They can be partitioned into five categories: a) parti-
tion based; b) density based; c) hierarchy based; d) grid based; 
e) model based. K-means [MacQueen, 1967], DBSCAN 
[Martin et al., 1996], BIRCH [Zhang et al., 1996], STING 
[Wang et al., 1997], Neuron Network [Kohonen et al., 2000] 
are their typical exemplars. To further improve clustering 
performance, some algorithms are even derived from the 
other subjects, such as Spectral Clustering from Physics [Cai 
et al., 2008], Non-Regression Matrix Factorization from 
Mathematics [Wang et al., 2007], LDCC based on Latent 
Dirichlet Allocation from Topic Models [Shafiei and Milios, 
2006]. Nevertheless, to our best knowledge, though it has 
been proposed so many clustering algorithms, the organiza-
tion model applied by them seldom changes. That is vector 
space model. It will generate high-dimensional and sparse 
vectors in the situation that text collection becomes too large. 
Therefore, this model makes traditional clustering algorithms 
fail to cluster large-scale text collection. For this reason, 
many ways are designed to improve this model. The most 
popular ones are feature selection and dimension reduction. 
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For feature selection, it is often conducted to preserve the 
features that are useful for separating input texts apart. Liu et 
al., [2013] applied probability model to choose features. 
Zhao et al., [2010] added an entropy based choosing process 
for further filtering useless features. With time passing, more 
and more plans are proposed, e.g. mutual information based 
in [Kwak and Choi, 2002], correlation parameter based in 
[Sakar and Kursun, 2012]. The common point shared by 
them is that they treat feature selection as the preprocessing 
step of clustering. The two processes (selection and cluster-
ing) run for two distinct objectives. 

For dimension reduction, it is often conducted to cut down 
vectors from high dimension to low dimension. Latent se-
mantic indexing (LSI) proposed by Todd and Michael [1997] 
is one of the most prevalent methods, whereas the defect of it 
is that the features in the reduced vector lose their semantic 
meanings. Another powerful tool is principal component 
analysis (PCA) utilized in graph processing. Gomez and 
Moens [2012] imported it in text classification and obtained 
high performance. Unfortunately, the same issue happens to 
them as to the methods for feature selection, that is, the two 
processes (reduction and clustering) are isolated from each 
other. Thus, the way that treats clustering and dimension 
reduction or feature selection as two isolated processes does 
not definitely obtain prominent results. 

Aiming at solving the drawbacks of traditional algorithms, 
this paper proposes an algorithm by combing vector recon-
struction and text clustering together. 

3 Clustering Process of VRCA 
Due to its simple structure, vector space model is extensively 
used to organize texts and clusters as vectors. For simplicity, 
this model is also used in our algorithm. However, this model 
imports many useless features and depresses clustering per-
formance very much. Therefore, if we can define a threshold, 
and only choose features that are useful to represent cluster to 
reconstruct cluster’s vector, clustering performance should 
be improved. Our algorithm designs two processes to achieve 
this goal. In detail, text clustering is conducted in partial 
tuning sub-process, where texts are partitioned into clusters 
to reduce one predefined optimization function, and cluster’s 
vector is reconstructed in overall tuning sub-process, where 
no more than three hundred features that are useful to rep-
resent cluster are chosen to reconstruct cluster’s vector. 

3.1 Partial Tuning Sub-Process 
In this sub-process, texts are partitioned into clusters to re-
duce one predefined optimization function as 
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in which D denotes text collection and dj denotes one text in 
D; C denotes cluster set and ci denotes one cluster in C; Vdj 
denotes the text vector of dj and Vci denotes the cluster’s 
vector of ci; v denotes vector dimension; Vdj(l) and Vni(l) 
denote the weights of lth entry in Vdj and in Vci. Eq.1 is 

extensively used to control clustering process. As indicated 
later that our algorithm employs iterative tuning process from 
self-organizing-mapping (SOM) algorithms to partition texts, 
we also adopt the convergence condition used in [Alahakoon 
et al., 2000] to stop our clustering algorithm. That condition 
is when the difference between two values obtained by Eq.1 
through two successive steps falls below 0.0001, cluster 
partitions obtained by these two successive steps are very 
close. Then, we can stop clustering algorithm. 

As indicated in [Kohonen et al., 2000], in SOM algorithms, 
neuron can be seen as cluster’s center (in vector space model, 
cluster’s center is represented by vector, so it is also called 
cluster’s vector). This kind of algorithms organizes neuron 
(or cluster’s vector) into topology, and via its iterative tuning 
process, neurons (or clusters) are partitioned well and one 
neuron is more similar to its adjacent neurons than to the 
other neurons. This characteristic is similar to neuron in 
human’s brain. Therefore, in SOM, cluster’s vector is called 
neuron. In our algorithm, we just borrow the iterative tuning 
process from SOM algorithms to fine-tune cluster partition. 
However, traditional SOM algorithms employ concurrence 
based similarity measurements to calculate similarity be-
tween text and neuron, and also never consider removing 
useless features. Therefore, their performances are lower 
than our algorithm (VRCA), which can be clearly seen from 
experimental results (Table 2 and Table 3). 

In text clustering, it is difficult to predefine cluster number. 
Therefore, we employ the method used in [Andreas et al., 
2002]. If convergence condition is not met after running 
iterative tuning process once, each neuron’s cohesion is then 
measured by Eq.2 and one neuron will be created by Eq.3 to 
make cluster partition approach to convergence condition. 
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in which ni denotes the neuron corresponding to the cluster ci; 
Vni denotes the neuron vector of ni ; it is also the cluster’s 
vector of ci; dj denotes one text included by the cluster ci. 

After measuring neuron’s cohesion, the neuron of the least 
cohesion (ne) and its one neighbor (nd) are chosen to create 
one new neuron (nr) as 
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in which Vnr(l) is the mean between Vne(l) and Vnd(l). 
Traditional SOM algorithms apply concurrence based 

similarity measurements to calculate similarity between text 
and neuron. In this kind of measurements, similarity result is 
affected by each feature's weight. However, in text clustering, 
the features that can better represent the topic of one cluster 
are really useful in similarity calculation. The other features 
not only prolong running time but also depress clustering 
performance. Due to this reason, we use intersection between 
text and neuron to measure similarity between them. In this 
measurement, only the intersected features that are assigned 
to non-zero weights in both text vector and neuron vector are 
considered as 
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in which ni denotes ith neuron in neuron set; dj denotes jth 
text in text collection; fl denotes lth feature and resides at lth 
entry; Vni denotes the neuron vector formed from ni; Vdj 
denotes the text vector formed from dj; Vdj(l) denotes the 
weight of lth entry in Vdj, evaluated by TF-IDF; Vni(l) denotes 
the weight of lth entry in Vni, updated by Eq.5; r denotes the 
quantity of non-zero entries between Vdj and Vni; q and p 
denote the quantities of non-zero entries in Vdj and in Vni. 

In overall tuning sub-process (Section 3.2), our algorithm 
uses two measures to weigh features and assigns the features 
that are capable to represent the topic of one cluster to non- 
zero weights. If many features are of non-zero weights in one 
text vector and one neuron vector, it indicates that the text 
and the neuron share the similar topic. They may be similar at 
a high probability. Eq.4 just forms according to this idea. 

As shown in Eq.4, the number of entries needed to be 
scanned by our similarity measurement equals to max(q,p). It 
means that time complexity of Eq.4 is O(max(q,p)). For q, it 
is quite small, since each text has few features among vector 
space. For p, if it is also small, our measurement will own 
high running speed. Fortunately, via the threshold that is set 
to limit the quantity of non-zero entries in overall tuning sub- 
process introduced in Section 3.2, the characteristic of neu-
ron vector generated by our algorithm is sparseness. 

To apply iterative tuning process of SOM, we need to tune 
feature’s weight in neuron vector. Because our algorithm 
replaces concurrence based similarity measurement by in-
tersection based similarity measurement, its neuron adjust-
ment function also needs to be changed as 
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in which Vni(l)(t+1) and Vni(l)(t) are the weights of the feature 
fl in neuron vector Vni after and before neuron adjustment; 
a(t) denotes learning rate and descends along with tuning 
process; dist and NH(t) denote distance function and neigh-
borhood range, which form the adjusting range. The neurons 
in that range all need to be adjusted [Alahakoon et al., 2000]. 

For Eq.5, if two weights of one feature (e.g. fl) are both 
non-zero in two vectors formed from one text and one neuron 
(e.g. dj and ni), the upper sub-equation is applied to adjust the 
weight of fl in ni. It lets the neuron ni approach to the text dj. 
Because our algorithm reconstructs cluster’s vector, many 
features are assigned to zero weights. Then, it is easy to occur 
that some features’ weights are non-zero in text vector and 
zero in neuron (or cluster’s) vector. These features are as-
signed to an initial weight by the lower sub-equation. 

3.2 Overall Tuning Sub-Process 
In partial tuning sub-process, neuron vector is tuned by an 
iterative tuning process. However, this process may bring in 
some features that are useless to represent cluster. To remove 
them, our algorithm adds an overall tuning sub-process. 

In text clustering, the quantity of features that are capable 
to represent the topic of one cluster is much smaller than the 
dimension of vector space [Hammouda and Kamel, 2004]. 
For example, if there is one cluster whose topic is about 
“sport”, to represent it, it only needs the features whose 
meanings are relevant to “sport”. Thus, we can define a 
threshold to limit the number of features in cluster’s vector to 
represent this cluster. Based on the analysis in [Martin et al., 
2004; Liu et al., 2014] and our experimental results (Figure 1 
and Table 1), this threshold is no more than 300. 

Since partial tuning sub-process may bring in some fea-
tures that are useless to represent cluster, we design two 
measures to weigh feature’s ability as shown in Eq.6 and 
Eq.8. These two equations respectively measure feature’s 
ability to represent one cluster and the ability to separate one 
cluster from the others. The features of less ability will be 
assigned to zero weights to be removed from cluster’s vector. 

Feature’s intra-cluster representative ability is measured 
by Eq.6 to show how one feature can represent one cluster. In 
other words, this ability stands for feature’s capacity to ag-
gregate similar texts into a compact cluster. 
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in which ci denotes one text cluster, which includes the texts 
that are more similar to the neuron ni than to the other neu-
rons; |ci| denotes the amount of texts included by ci. The other 
symbols are already explained in Eq.1. 

There are two parts in Eq.6 separated by a plus. The left 
part is calculated based on the fact that if one feature (e.g. fl) 
is assigned to similar weights among the texts included by 
one cluster (e.g. ci), fl can help aggregate similar texts into ci. 
For the right part, since our algorithm is just based on tradi-
tional SOM algorithms, neuron in our algorithm also repre-
sents cluster’s center. Then, if the weight of fl in each text 
included by ci is similar to the weight of fl in ni, fl can help 
assemble similar texts around the center of ci. 

In fact, if one feature has larger intra-cluster representative 
ability, it will be assigned to smaller value by Eq.6. Thus, 
Eq.6 is reversed to 
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The equation used to measure feature’s inter-cluster dis-
criminable ability to separate one cluster from the others is 
shown as 
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in which k denotes the quantity of neurons. 
In traditional SOM algorithms, the weight of one feature in 

one neuron vector is the mean weight of that feature among 
the texts mapped to that neuron [Kohonen et al., 2000]. Since 
our algorithm employs iterative tuning process from SOM 
algorithms, our algorithm also obeys this principle. Then, if 
one feature has distinct weights among most of neuron vec-
tors, this feature can help separate clusters apart. Eq.8 just 
forms according to this idea. 
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3.3 Algorithm Workflow and Related Analyses 

Algorithm Workflow 
Input: text set D; maximum neuron (or cluster) number k; current 
neuron (or cluster) number ck; convergence condition maxth; 
iterative index t; the quantity of steps to enter into overall tuning 
sub-process maxt; the threshold to limit the selected features maxp. 
Output: neuron (or cluster) set N (or C, in our algorithm, one neuron 
corresponds to one cluster). 
Initialization: 
1. Initialize t=0; 
2. Select ink random texts from D, ink<<k, and treat these ink texts 
as ink initial neurons; 
3. ck=ink. 
Partial Tuning Sub-Process: 
4. Select one random text dj from D; 
5. Use Eq.4 to calculate similarity between dj and each neuron in N; 
6. Select the neuron with the maximum similarity, and mark it as ni; 
7. Use Eq.5 to adjust ni and its adjacent neurons in N; 
8. Check whether the difference between two values obtained by 
Eq.1 at step t and step t-1 is below maxth or not; if yes, stop; 
9. Calculate the cohesion of each neuron by Eq.2; 
10. Select the neuron that has the least cohesion, and mark it as ne; 
11. Select the neuron that has the least cohesion in the neighbors of 
ne, and mark it as nd; 
12. Insert one new neuron between ne and nd by Eq.3; 
13. ck=ck+1; 
14. Check whether ck is larger than k or not, if yes stop. 
15. t=t+1; 
16. Check whether t is the integral times of maxt or not; if yes, go to 
step 17 to enter into overall tuning sub-process; else, go to step 4. 
Overall Tuning Sub-Process: 
For each neuron ni 
   For each feature fl in ni 
      17. Use Eq.7 to measure intra-cluster representative ability of fl; 

18. Use Eq.8 to measure inter-cluster discriminable ability of fl; 
      19. Add these two abilities together; 
   End For 
End For 
20. Sort features in terms of their abilities, and choose maxp features 
of larger abilities to reconstruct cluster’s vector. 
21. Go to step 4 to enter into partial tuning sub-process. 

Parameter Setting 
The previous workflow has five initial parameters needed to 
be fixed in advance. They are k, ink, maxth, maxt, maxp. 

For k, it denotes the maximum cluster number. We set it as 
the square root of n. As indicated in [Liang et al., 2012], 
cluster number is often smaller than the square root of the 
size of text set. When k exceeds this number, cluster partition 
becomes incredible. We can stop clustering process. For ink, 
it denotes the initial neuron number. We set it as 2 without 
loss of generality. For maxth and maxt, they respectively de-
note convergence condition and the quantity of steps during 
partial tuning sub-process. We set them according to the 
parameter setting in [Alahakoon et al., 2000]. The reason is 
that our algorithm is just based on SOM. Then, we can bor-
row the parameter setting from SOM algorithms. Besides, as 

stated in [Alahakoon et al., 2000], the setting on maxth and 
maxt does not deeply affect clustering results. For maxp, it 
denotes the threshold to limit the number of selected features 
to reconstruct cluster’s vector. We set it as 300 according to 
the analysis in [Martin et al., 2004; Liu et al., 2014] and our 
experimental results in Section 4.1 (Figure 1 and Table 1). 

Time Complexity 
The workflow is partitioned into three parts: initialization, 
partial tuning sub-process, and overall tuning sub-process. 

With respect to initialization, time complexity of steps 1, 3 
is O(1); time complexity of 2 is O(ink); because ink is much 
smaller than k, time complexity of 2 is at most O(k). There-
fore, time complexity of initialization is O(1+k)=O(k). 

With respect to partial tuning sub-process, time com-
plexity of steps 4, 12 to 16 is O(1); time complexity of 5, 7 is 
O(kmax(maxq,maxp)), in which maxq denotes the maximum 
quantity of non-zero entries in text vector, maxp denotes the 
maximum number of selected features to reconstruct clus-
ter’s vector; because text vector is inevitably sparse, maxp is 
often larger than maxq; then, O(kmax(maxp,maxq)) equals to 
O(kmaxp); time complexity of 8, 9 is O(knmaxp); time com-
plexity of 6, 10 is O(ck); since ck<k, time complexity of 6, 10 
is at most O(k); time complexity of 11 is O(nb), in which nb 
denotes the number of neighbors around one neuron; because 
nb is also smaller than k, time complexity of 11 is at most 
O(k). Therefore, time complexity of partial tuning sub-  
process is O(1+k+kmaxp+knmaxp)=O(knmaxp). 

With respect to overall tuning sub-process, time com-
plexity of step 17 is O(maxci), in which maxci denotes the 
maximum quantity of texts included by one cluster (e.g. ci); 
since maxci<n, time complexity of 17 is at most O(n); time 
complexity of 18 is O(k); since k<n (cluster number k is 
smaller than the size of text set n), time complexity of 18 is at 
most O(n); time complexity of 19 is O(1); these three steps 
roll for O(kmaxp) times; then, time complexity of this loop is 
O(knmaxp); step 20 is ranking step, thus time complexity of it 
is O(maxplogmaxp); time complexity of step 21 is O(1). 
Therefore, time complexity of overall tuning sub-process is 
O(knmaxp+maxplogmaxp+1)=O(knmaxp+maxplogmaxp). 

In conclusion, for initialization, it only needs to run once; 
for partial tuning sub-process, supposing that it runs for 
about l times to converge, then for overall tuning sub-process, 
it runs for l/maxt times. Thereby, the total time complexity is 
O(k+l*(knmaxp)+l/maxt*(knmaxp+maxplogmaxp))=O(klnmaxp+ 
(lmaxplogmaxp)/maxt). 

Taking traditional efficient clustering algorithms, such as 
K-means, GSOM, and GHSOM (their high-speed abilities can 
be seen from Table 3), for comparison, their time complexity 
is linear, O(klnmaxp) [Shahpurkar and Sundareshan, 2004]. 
The differences between them and our algorithm are two 
points. One is that maxp in our algorithm is quite smaller than 
that in them, since our algorithm limits the number of se-
lected features. The other is that our algorithm has an addi-
tional part, O(lmaxplogmaxp). However, because maxp in our 
algorithm is set as constant, this part can be neglected. Due to 
these two reasons, our algorithm should possess higher run-
ning velocity than traditional clustering algorithms, which 
can also be observed from experimental results (Table 3). 
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4 Experiments and Analyses 
The following experiments are partitioned into three parts. 
The first part discusses how to set threshold (denoted as maxp) 
to choose features to reconstruct cluster’s vector. The second 
and the third parts are conducted to compare our algorithm 
with several popular baseline algorithms in time performance 
and clustering precision to demonstrate our algorithm’s high 
quality. The baseline algorithms include K-means, STING, 
DBSCAN, BIRCH, GSOM, GHSOM, Spectral Clustering, 
Non-Regression Matrix Factorization (NRMF), and LDCC. 
Four testing collections are employed in the experiments, 
including two prevalent testing collections, Reuters (21,578) 
and Newsgroup (2,000), and two large-scale text collections, 
TRC2 (1.8 millions), and released ClueWeb9 after removing 
empty and short texts (100 millions). 

In order to compare the precisions of different algorithms, 
two metrics are employed. They are NMI (Normalized Mu-
tual Information) and ARI (Adjusted Random Index) respec-
tively introduced in [Zhao and Karypis, 2002] and [Hubert 
and Arabie, 1985]. 

NMI is calculated in Eq.9. It is calculated based on entropy. 
Due to the reason that NMI does not need to predefine cluster 
number and utilizes inter-cluster distinctness and intra- 
cluster agglomeration to measure clustering precision, it is 
extensively applied in clustering evaluation scenario. 
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in which Sr denotes rth cluster obtained by clustering algo-
rithm; nr denotes the quantity of texts included by Sr; Cq 
denotes qth cluster predefined by user; nq denotes the quan-
tity of texts included by Cq; nq

r denotes the quantity of texts 
included by the intersection between Sr and Cq; n denotes set 
size; k denotes cluster number. 

Different from NMI that needs to relate the labels indi-
cating the clusters obtained by clustering algorithm to the 
labels predefined by user, ARI frees from predefining cluster 
partition. It combines two texts as one pair-point, and uses 
four situations to identify clustering results: 

a) Two texts in one pair-point are manually labeled in the 
same cluster, and in clustering results they are also in the 
same cluster. b) Two texts in one pair-point are manually 
labeled in the same cluster, and in clustering results they are 
in different clusters. c) Two texts in one pair-point are 
manually labeled in different clusters, and in clustering re-
sults they are also in different clusters. d) Two texts in one 
pair-point are manually labeled in different clusters, and in 
clustering results they are in the same cluster. 

Apparently, a and c stand for the rightly partitioned pair- 
points, and can be used to measure clustering precision as 
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4.1 The Number of Selected Features 
In our algorithm, we need to set a threshold, labeled as maxp, 
and choose features less than maxp to reconstruct cluster’s 
vector. Figure 1 shows how maxp affects clustering precision 
on the four testing collections. For clarity, Table 1 shows the 
value of maxp when precision in Figure 1 becomes stable. 
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Figure 1. Clustering precisions of different maxp 

Table 1. maxp in Figure 1 when precision becomes stable 

 Reuters Newsgroup ClueWeb9 TRC2 
NMI (a) 283 287 293 292 
ARI (b) 285 285 294 291 

 
One phenomenon can be observed from Figure 1. That is 

all the precision curves in Figure 1 own the same track. They 
all climb along with the increase of maxp at the beginning, and 
when maxp is beyond certain value (a little smaller than 300) 
they become stable. The reason to this phenomenon is that in 
our algorithm, we measure features via their abilities to rep-
resent cluster. When we increase the number of selected 
features (maxp), more useful features will be imported to 
reconstruct cluster’s vector and therefore increase clustering 
precision. However, when this number exceeds certain value, 
the imported features are useless to represent cluster. Fortu-
nately, in our algorithm, the useless features will be assigned 
to zero weights. Therefore, precision curves become stable, 
but importing many useless features obviously prolongs 
running time. By combining Figure 1 and Table 1, it can be 
observed that when clustering precision becomes stable, 
different collections correspond to similar maxp. Among 
these four collections, the size of TRC2 is about one thou-
sand times of the size of Newsgroup, while maxp on them is 
very close. The reason to this phenomenon is that the texts 
included by one cluster should reflect one similar topic. Then, 
only the semantically similar features that are related to the 
topic are really useful to represent this cluster. The number of 
those semantically similar features only occupies a small 
proportion of vector space, and does not increase much when 
text collection enlarges. Based on Table 1 and several pre-
vious literatures [Martin et al., 2004; Liu et al., 2014], this 
number seldom exceeds 300. Therefore, we set maxp as 300 to 
be the threshold to limit the number of selected features to 
reconstruct cluster’s vector. 

4.2 Clustering Precision 
We record clustering precisions of different algorithms 
measured by NMI and ARI on Reuters, Newsgroup, Clue-
Web9, and TRC2 in Table 2. 
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Table 2. Clustering precisions of different algorithms 

  Reuters Newsgroup ClueWeb9 TRC2 

K-means NMI 
ARI 

74.65 86.65 55.43 66.58 
76.53 88.13 57.02 68.11 

STING NMI 
ARI 

75.11 88.13 57.15 69.67 
76.92 89.54 58.87 71.33 

DBSCAN NMI 
ARI 

73.82 85.03 56.16 68.17 
75.33 86.43 57.73 69.84 

BIRTH NMI 
ARI 

75.34 87.91 50.36 65.05 
77.29 89.31 52.17 66.92 

GSOM NMI 
ARI 

80.32 91.47 68.29 74.51 
82.16 93.34 70.04 76.35 

GHSOM NMI 
ARI 

81.47 92.80 69.28 75.79 
83.57 94.27 70.88 77.12 

SPECTRAL NMI 
ARI 

83.72 93.67 70.45 77.24 
85.44 95.12 71.87 78.71 

NRMF NMI 
ARI 

86.50 93.68 73.73 78.82 
88.48 95.26 75.35 80.58 

LDCC NMI 
ARI 

88.33 94.06 74.22 81.34 
90.43 95.67 75.78 82.93 

VRCA NMI 
ARI 

90.75 94.22 82.83 86.84 
92.27 95.95 84.21 88.43 

 
By observing Table 2, one conclusion can be drawn. That 

is clustering precisions of VRCA on small-scale and large- 
scale text collections are both outstanding, while the other 
clustering algorithms all fail to cluster large-scale text col-
lection. They cannot copy their high quality from small-scale 
text collection to large-scale text collection. Due to space 
transition executed by SOM, clustering precisions of GSOM 
and GHSOM do not drop greatly on large-scale text collec-
tion. Besides, together with dimension reduction, Spectral 
Clustering, NRMF, and LDCC can achieve much higher 
precisions than GSOM and GHSOM. Nevertheless, in com-
parison with VRCA, their precisions are also too weak, since 
they keep many useless features in cluster’s vector. These 
features decrease clustering precision. For K-means, STING, 
DBSCAN, and BIRTH, they not only run in uncompressed 
space, but also do nothing to remove useless features from 
cluster’s vector. Their precisions are the lowest. 

4.3 Time Performance 
Due to the high-dimensional vectors generated by vector 
space model, traditional clustering algorithms are time- 
consuming on clustering large-scale text collection. In order 
to demonstrate our algorithm’s high efficiency, we record 
running time of different algorithms in Table 3. 

Two observations can be found from Table 3: (a) VRCA 
spends the least time on ClueWeb9, TRC2, and spends the 
second least time on Reuters, while VRCA only ranks the 
fourth on Newsgroup. By contrast, on Reuters and News-
group, K-means has the best time performance, and ranks the 
second on ClueWeb9 and TRC2; (b) all the algorithms spend 
similar amount of time when text collection is small, while 
when it enlarges, VRCA spends extremely less time. The 
reason to this phenomenon mainly attributes to VRCA’s re-
constructive plan and its fast intersection based similarity 
measurement, where only the features that are useful to rep-

resent cluster are adopted in similarity calculation. In com-
parison with VRCA, K-means, STING, DBSCAN, BIRTH, 
GSOM, and GHSOM all generate high-dimensional vectors, 
and consequently run much slower. Since K-means, GSOM, 
GHSOM own linear time complexity, and STING, DBSCAN 
run by space partition, their running time is less than the 
others. However, due to the high-dimensional vectors, their 
time performances are lower than VRCA. In comparison with 
the pervious baseline algorithms, the vectors generated by 
Spectral Clustering, NRMF, and LDCC are much denser and 
shorter, whereas they need to perform an additional dimen-
sion reduction process. Thus, they are also time-consuming. 
BIRTH is one kind of hierarchical clustering algorithms, thus 
it has square time complexity and spends the most time. 

Table 3. Running time of different algorithms 

 Reuters Newsgroup ClueWeb9 TRC2 
 time (sec) time (sec) time (min) time (min) 

K-means 16.4 4.5 359.7 42.3 
STING 32.2 7.7 648.6 78.1 
DBSCAN 37.8 10.2 1156.2 106.4 
BIRTH 91.3 20.1 4223.0 394.6 
GSOM 34.0 7.3 994.5 89.1 
GHSOM 40.5 12.6 1336.5 134.6 
SPECTRAL 58.3 11.8 1541.4 157.9 
NRMF 67.6 12.1 1825.8 211.3 
LDCC 80.9 18.2 2147.1 254.8 
VRCA 19.7 7.9 124.2 22.5 

5 Conclusions 
Because of the high-dimensional problem aroused by vector 
space model and time-consuming issue brought from con-
currence based similarity measurement, most of traditional 
clustering algorithms fail to cluster large-scale text collection. 
Facing the massive amount of web texts, only if clustering 
algorithms can efficiently handle large-scale text collection, 
they can be used in real applications. Thus, this paper pro-
poses a clustering algorithm particularly for large-scale texts. 
This algorithm consists of two sub-processes and alternately 
repeats them until convergence. The two sub-processes are: 
partial tuning sub-process and overall tuning sub-process. In 
the former sub-process, an iterative tuning process based on 
SOM is adopted to tune neuron vector. Besides, an intersec-
tion based similarity measurement is also implemented. In 
the latter sub-process, two measures are calculated to choose 
features to reconstruct cluster’s vector. Through comparing 
our algorithm with the other nine popular clustering algo-
rithms, it demonstrates that our algorithm performs well on 
both small-scale and large-scale text collections. 
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