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Abstract

An important aspect of music perception in humans
is the ability to segment streams of musical events
into structural units such as motifs and phrases.
A promising approach to the computational mod-
eling of music segmentation employs the statisti-
cal and information-theoretic properties of musical
data, based on the hypothesis that these properties
can (at least partly) account for music segmenta-
tion in humans. Prior work has shown that in par-
ticular the information content of music events, as
estimated from a generative probabilistic model of
those events, is a good indicator for segment bound-
aries. In this paper we demonstrate that, remark-
ably, a substantial increase in segmentation accu-
racy can be obtained by not using information con-
tent estimates directly, but rather in a bootstrapping
fashion. More specifically, we use information con-
tent estimates computed from a generative model
of the data as a target for a feed-forward neural net-
work that is trained to estimate the information con-
tent directly from the data. We hypothesize that the
improved segmentation accuracy of this bootstrap-
ping approach may be evidence that the generative
model provides noisy estimates of the information
content, which are smoothed by the feed-forward
neural network, yielding more accurate information
content estimates.

1 Introduction

A prominent theory about human perception and cognition
states that ‘chunking’ is a key mechanism in human infor-
mation processing [Gobet et al., 2001]. By internally repre-
senting information in ‘chunks’—meaningful constituents—
humans are capable of interpreting information more effi-
ciently than when information is processed in terms of lower
level information units. A prominent example of chunk-
ing has been shown in the context of chess [Gobet and Si-
mon, 1998], where increased skill level is associated with
more efficient chunking of information about board configu-
rations. Moreover, chunking is involved more generally in vi-
sual [McCollough and Vogel, 2007] and acoustic/speech pro-
cessing [Baddeley, 1966] tasks. Just as in speech, perception
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in terms of meaningful constituents is a principal trait of mu-
sic cognition. This is immanent in the ubiquitous notion of
constituent structure in music theory.

The formation of chunks involves grouping and segmen-
tation of information. To account for those phenomena in
music perception, a prominent approach from music the-
ory and cognitive psychology has been to apply perceptual
grouping mechanisms, such as those suggested by Gestalt
psychology. Gestalt principles, such as the laws of prox-
imity, similarity, and closure, were first discussed in vi-
sual perception [Wertheimer, 1938], and have been success-
fully applied to auditory scene analysis [Bregman, 1990]
and inspired theories of music perception [Meyer, 1956;
Narmour, 1990; Lerdahl and Jackendoff, 1983]. Narmour’s
Implication-Realization theory [Narmour, 1990], for exam-
ple, uses measures of pitch proximity and closure that offer
insight into how listeners perceive the boundaries between
musical phrases. This type of theory-driven approach has
given rise to various rule-based computational models of seg-
mentation. This class of models relies upon the specifica-
tion of one or more principles according to which musical
sequences are grouped.

An alternative account of grouping and segmentation is
based on the intuition that the distribution, or statistical struc-
ture of the sensory information, has an important effect on
how we perceive constituent structure. This idea has been
explored for different areas, such as vision [Glicksohn and
Cohen, 2011], speech [Brent, 1999], and melody percep-
tion [Pearce et al., 2010b]. The key idea is that the sen-
sory information that comprises a chunk is relatively con-
stant, whereas the succession of chunks (which chunk follows
which) is more variable. In information-theoretic terms, this
implies that the information content (informally: unexpect-
edness) of events within a chunk is lower than that of events
that mark chunk boundaries. As a side note on vocabulary:
We will use the term segment, rather than chunk in the rest of
this paper, to express that we take an agnostic stance toward
the precise nature of constituents, and rather focus on their
demarcation.

While Gestalt principles are sometimes rather abstractly
defined laws, information theory has a certain potential to for-
mally describe and quantify such perceptive phenomenons.
The Gestalt idea of grouping based on “good form” (i.e.
Prignanz), for example, has an information theoretic coun-



terpart in the work of [von Helmholtz, 2005], where human
vision is assumed to resolve ambiguous perceptive stimuli by
preferring the most probable interpretation. In addition, it
is intuitively clear that in most real-word scenarios, the un-
certainty about expectations (i.e. the entropy) tends to in-
crease with higher distances from observed events in any rel-
evant dimension. Thus, while a direct link between the two
paradigms is beyond dispute, the question remains which of it
is more parsimonious and might have given rise for the other
to emerge as a perceptual mechanism.

Prior work has shown that the information content of mu-
sic events, as estimated from a generative probabilistic model
of those events, is a good indicator for segment boundaries
in melodies [Pearce et al., 2010al. In this paper we demon-
strate that, remarkably, a substantial increase in segmentation
accuracy can be obtained by not using information content es-
timates directly, but rather in a bootstrapping fashion. More
specifically, we use information content estimates computed
from a generative model of the data as a target for a feed-
forward neural network (FFNN) that is trained to estimate the
information content directly from the data.

In an experimental setup, we compare our method to other
methods in an evaluation against human segment boundary
annotations. Moreover, we offer an explanation for the im-
proved accuracy by describing how our method can be re-
garded as employing a form of entropy regularization [Grand-
valet and Bengio, 2004].

The structure of the paper is as follows. In Section 2, we
discuss statistical models for melody segmentation, as well as
related work regarding the pseudo-supervised regularization
scheme. In Section 3, we describe how we estimate the con-
ditional probability and information content of notes using a
Restricted Boltzmann Machine (RBM), how notes are repre-
sented as input to the model, how an FFNN is used to predict
information content, and how the information content is used
to predict segment boundaries. Section 4 describes the ex-
perimental setup for evaluation of the model. The results are
presented and discussed in Section 5, and conclusions and
future work are presented in Section 6.

2 Related work

A notable information theory driven method for melodic seg-
mentation is based on IDyOM, a class of variable order
markov models for capturing the statistical structure of mu-
sic [Pearce, 2005]. After training on musical data, IDyOM
can produce a variety of information-theoretic quantities for
a given musical context, such as entropy, expressing how con-
fidently the model can predict the continuation of the context,
and information content, expressing how unexpected the ac-
tual continuation of the context is, under the model. In par-
ticular the information content has been shown to be a good
indicator of segment boundaries in monophonic melodies, us-
ing adaptive thresholding to predict segment boundaries when
the information content (IC) of a note is high with respect to
the IC values of its predecessors [Pearce et al., 2010al.
Pearce et al. compare their probabilistic melody segmen-
tation method, along with some other information theoretic
models inspired by [Brent, 19991, to several knowledge based
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methods for melody segmentation, notably Grouper [Tem-
perley, 2001], LBDM [Cambouropoulos, 2001], and sev-
eral grouping rules that are part of the Generative Theory
of Tonal Music [Lerdahl and Jackendoff, 19831, as formal-
ized in [Frankland and Cohen, 2004]. The results of this
comparison (that are partly reported in Section 5) show that
IDyOM predicts segment boundaries much better than sim-
pler information-theoretic methods, although not as accu-
rately as Grouper and LEDM.

In prior work, we have proposed a probabilistic segmen-
tation method analogous to IDyOM, but using an RBM as
a probabilistic model of the data, rather than variable or-
der markov models [Lattner et al., 2015]. This method was
shown to predict segment boundaries less accurately than
Grouper and LBDM, but better than IDyOM. In Sections 3.1
to 3.3, we recapitulate the RBM based approach to com-
pute IC values for melody notes. The actual contribution of
this paper is an extension of this approach to what we call
a pseudo-supervised scenario (Section 3.4). In this setting,
rather than using the IC estimations from the RBM directly
for predicting segments, they are used as targets for a FFNN,
which is trained to predict IC values directly from the data
(without a probabilistic model).

Although the term pseudo-supervised does not (yet) seem
to have a well-established meaning, our use of the term is
compatible with its use in [Ngklestad, 2009], in the sense that
a supervised approach is used to predict targets that are com-
puted from the input data, rather than relying on hand-labeled
(or otherwise authoritative) targets. The automatically gener-
ated targets (in this case IC values) are not themselves the
actual targets of interest (the boundary segments), but are in-
strumental to the prediction of the actual targets.

Similar methods are proposed by [Lee, 2013] and [Hin-
ton et al., 2014], where supervised models are used to gen-
erate targets (pseudo labels or soft-targets) from new data.
But in contrast to a pseudo-supervised approach, these meth-
ods require hand-labeled data, and are strictly taken a semi-
supervised approach, in which predictive models are trained
partly in an unsupervised manner, and partly using hand-
labeled data.

In general, both semi- and pseudo-supervised learning ap-
proaches benefit from the use of unlabeled information by
using Bayesian approaches, which make assumptions over
the distribution of unlabeled data. From a formal standpoint,
these techniques act as regularizers of the model parameters,
and thus, prevent overfitting. Approaches like entropy regu-
larization [Grandvalet and Bengio, 2004] use the principle of
maximum entropy to select a prior distribution of the model
parameters, and then optimize the model in Maximum a Pos-
teriori (MAP) sense.

3 Method

In this Section, we describe the methods used to predict
melody segment boundaries. We start by describing how con-
ditional probabilities of music events can be estimated by
training an RBM as a probabilistic model of the data (Sec-
tion 3.1). The representation of music events is described in
Section 3.2. Section 3.3 details how the IC of music events



is computed based on their estimated conditional probabili-
ties. In Section 3.4, we describe how training a supervised
model using IC values as (pseudo) targets can act as a form
of regularization. Finally, Section 3.5 describes how segment
boundaries are predicted from sequences of IC values.

3.1 Probability approximation through Monte
Carlo techniques

An RBM is a stochastic Neural Network with two layers, a
visible layer with units v € {0,1}" and a hidden layer with
units h € {0, 1} [Hinton, 2002]. The units of both layers are
fully interconnected with weights W € R"*9, while there are
no connections between the units within a layer.

In a trained RBM, the marginal probability distribution of
a visible configuration v is given by the equation

1
p(v) =D e PO, )

h

where E(v,h) is an energy function. The computation of
this probability distribution is intractable, because it requires
summing over all possible joint configurations of v and h as

Z =Y e Fvh, )

However, with Monte Carlo techniques it is possible to ap-
proximate the probability of a visible unit configuration v. To
that end, for N randomly initialized fantasy particles' Q, we
execute Gibbs sampling until thermal equilibrium. In the vis-
ible activation vector q; of a fantasy particle ¢, element g;;
specifies the probability that visible unit j is on. Since all vis-
ible units are independent given h, a single estimate based on
one fantasy particles visible activation is computed as

V|q1 Hp UJ|Q1] 3)

As we are using binary units, such an estimate can be cal-
culated by using a binomial distribution with one trial per
unit. We average the results over /V fantasy particles, leading
to an increasingly close approximation of the true probability
of v as N increases:

p(v|Q) = NZH( )qw —a) 7. @)

Posterior probabilities of visible units

When the visible layer consists of many units, N will need
to be very large to obtain good probability estimates with the
method described above. However, for conditioning a small
subset of visible units vy, C v on the remaining visible units
v. = Vv \ Vg, the above method is very useful. This can be
done by Gibbs sampling after randomly initializing the units
v while clamping all other units v, according to their initial
state in v. In Eq. 4, all v, contribute a probability of 1, which
results in the conditional probability of v, given v..

'See [Tieleman, 2008]
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Figure 1: Seven examples of n-gram training instances
(n=10) used as input to the RBM. Within each instance (de-
limited by a dark gray border), each of the 10 columns repre-
sents a note. Each column consists of four one-hot encoded
viewpoints: |interval|, contour, I0I and OOI (indicated by
the braces on the left). The viewpoints are separated by hori-
zontal light gray lines for clarity. The first instance shows an
example of noise padding (in the first six columns) to indicate
the beginning of a melody.

We use this approach to condition the units belonging to
the last time step of an n-gram on the units belonging to pre-
ceding time steps. For the experiments reported in this paper,
we found that it is sufficient to use 150 fantasy particles and
for each to perform 150 Gibbs sampling steps.

Training

We train a single RBM using persistent contrastive diver-
gence (PCD) [Tieleman, 2008] with fast weights [Tieleman
and Hinton, 20091, a variation of the standard contrastive di-
vergence algorithm [Hinton et al., 2006]. This method yields
models which are well-suited for sampling, because it results
in a better approximation of the likelihood gradient.

Based on properties of neural coding, sparsity and selectiv-
ity can be used as constraints for the optimization of the train-
ing algorithm [Goh ef al., 2010]. Sparsity encourages com-
petition between hidden units, and selectivity prevents over-
dominance by any individual unit. A parameter p specifies
the desired degree of sparsity and selectivity, whereas another
parameter ¢ determines how strongly the sparsity/selectivity
constraints are enforced.

3.2 Data Representation

From the monophonic melodies, we construct a set of n-
grams by using a sliding window of size n and a step size
of 1. For each note in the n-gram, four basic features are
computed: 1) absolute values of the pitch interval between
the note and its predecessor (in semitones); 2) the contour
(up, down, or equal); 3) inter-onset-interval; and 4) onset-to-
offset-interval. The IOI and OOI values are quantized into
semiquaver and quaver, respectively. Each of these four fea-
tures is represented as a binary vector and its respective value
for any note is encoded in a one-hot representation. The first
n-1 n-grams in a melody are noise-padded to account for the
first n-1 prefixes of the melody. Some examples of binary
representations of n-grams are given in Figure 1).



3.3 Information Content

After we trained the model as described in Section 3.1, we es-
timate the probability of the last note conditioned on its pre-
ceding notes for each n-gram as introduced in Section 3.1.
From the probabilities p(e; | e}~ ;) computed in this way,
we calculate the IC as

1
(et | € =ng)’

t—n-+1

where e; is a note event at time step t, and 62 is a note se-
quence from position k to [ of a melody. IC is a measure
of the unexpectedness of an event given its context. Accord-
ing to a hypothesis of [Pearce er al., 2010al, segmentation in
auditory perception is determined by perceptual expectations
for auditory events. In this sense, the IC relates directly to
this perceived boundary strength, thus we refer to the IC over
a note sequence as the boundary strength profile (BSP).

&)

hier | et 1) = loga

3.4 Pseudo-Supervised optimization

Algorithm 1: Pseudo-supervised training

Data: Setof n-grams: V = {vy,...,vnx}
1 Train an RBM by optimizing the model parameters as

0 = argmax log p(v | 0) (6)
0

. ty}as

N

Compute the set of pseudo-targets T = {t1, ..

te(vi;0) = h(et | e

t—

1
t—n+1%

where v is the encoding of the n-gram
{et—nt1,.... e}, and h(ey | ef—) ) is the IC
computed as in Eq. (5).

Build a three layered FFNN and optimize it in a
supervised way, using the set of pseudo-targets T as

N

6= arg;nin ZHt(Vt; 9) —y(vy; 9)”2a
i=1

®)

where y(v¢; 6) is the output of the FENN for v, given
the model parameters 6.

return Model parameters 6

In contrast to our prior work, we do not use the BSP es-
timated from the RBM for segmentation. Instead, we train
an FFNN to predict the estimated BSP directly from the data
in a non-probabilistic manner, and use that curve for predict-
ing segment boundaries (by the procedure described in Sec-
tion 3.5). This is a way of context sensitive smoothing, which
is achieved by the generalization ability of the NN. Note that
no labeled data is used at any stage of the processing pipeline.
The fact that this approach still improves the segmentation
results is evidence that the generative model, as described in
Section 3.1, provides noisy IC estimates. This is either due to
poor approximations to the actual IC by the model itself, or
the data can be considered to be noisy with respect to proto-
typical segment endings.
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The proposed pseudo-supervised training method is shown
in Algorithm 1. Formally, this method is an approximate
MAP estimation of the parameters using entropy regulariza-
tion [Grandvalet and Bengio, 2004]. In this method, the MAP
estimate of the model parameters is computed as

Opap = argmaxlogp(v | 0) — AH(t | v;0), (9)
0

where H(t | v) is the conditional Shannon entropy of the

targets given the inputs, and ) is a Lagrange multiplier. In

the proposed algorithm, this approximation is obtained by in-

dependently optimizing log p(v | ) (see Eq. (6)), and then

minimizing Eq. (8), which is equivalent to maximizing

p(t[vi0,8) = N(t|y(v,0),57),

where [3 is the precision (inverse variance) of the distribution.
This precision can be found by minimizing the negative log-
likelihood of the above probability to give

N

(10)

8= 5. (11)
2illti =y (vi, 0
The Shannon entropy for this distribution is given by
H(t [v;0,8) =E{-logp(t | v)}
1 2 1
= -1 — = 12
5 108 ( 3 ) t3 (12)

which is minimal, since ), ||t; — y(v;,0) |* is minimal.
Therefore, optimizing Eq. (8) is equivalent to minimizing the
entropy term in Eq. (9).

We use the fact that the RBM is a generative model, and
therefore, the pseudo targets t come from the computation
of the IC from a probabilistically sound estimate of the input
data. In this way, pseudo-supervised learning can be under-
stood as a suboptimal entropy-regularized MAP model of the
model parameters.

Training

To compute 6 in Equation (8), we use a three layered FFNN
with sigmoid hidden units and a single linear unit in the
output layer. We pre-train the hidden layer with PCD and
fine-tune the whole stack with Backpropagation, by minimiz-
ing the mean square error. As targets, we use the boundary
strength values, estimated by the initial model described in
Section 3.1. .

After training, the outputs y(v;; 6) of the FFNN are used as
(improved) estimates of the information content of e;, given
{€i—nt1,. - ee—1}.

3.5 Peak Picking

Based on the BSP described in Section 3.3 and the outputs
y(v;0) of the FENN (see Algorithm 1), respectively, we
need to find a discrete binary segmentation vector. For that,
we use the peak picking method described in [Pearce er al.,
2010a]. This method finds all peaks in the profile and keeps
those which are k times the standard deviation greater than
the mean boundary strength, linearly weighted from the be-
ginning of the melody to the preceding value:
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where S, is the m-th value of the BSP, and w; are the weights
which emphasize recent values over those of the beginning of
the song (triangular window), and & has to be found empiri-
cally.

4 Experiment

To allow for a comparison of our segmentation method with
other approaches, the experimental setup of the proposed
method follows [Pearce et al., 2010a] both in terms of data
and procedure.

4.1 Data

For training and testing, we use the Essen Folk Song Col-
lection (EFSC) [Schaffrath, 1995], a widely used corpus in
music information retrieval (MIR). This database consists of
more than 6000 transcriptions of folksongs primarily from
Germany and other European regions. Due to the fact that
phrase markers are encoded, the EFSC is one of the most
used collections for testing computational models of music
segmentation.

In accordance with [Pearce et al., 2010al, we use the Erk
subset of the EFSC, which consists of 1705 German folk
melodies with a total of 78, 995 note events. Encoded phrase
boundary annotations in the corpus constitute the baseline of
about 12% positive examples.

4.2 Procedure

The model is trained and tested on the data described in
Section 4.1 with various n-gram lengths between 3 and
10. For each n-gram length, we perform 5-fold cross-
validation and average the results over all folds. Sim-
ilar to the approach in [Pearce et al., 2010al, after
computing the BSPs, we evaluate different & from the
set {0.70,0.75,0.80,0.85,0.90,0.95,1.00} (initial IC esti-
mation), and {0.24,0.26,0.28,0.30,0.32,0.34,0.36} (after
pseudo-supervised optimization), and choose the value that
maximizes F1 for the respective n-gram length. To make re-
sults comparable to those reported in [Pearce et al., 2010al,
the output of the model is appended with an implicit (and cor-
rect) phrase boundary at the end of each melody.

Since the hyper-parameters of the model are inter-
dependent, it is infeasible to exhaustively search for the op-
timal parameter setting. We have manually chosen a set of
hyper-parameters that give reasonable results for the different
models tested. For the initial IC estimation, we use 200 hid-
den units, a momentum of 0.6, and a learning rate of 0.0085
which we linearly decrease to zero during training. With in-
creasing n-gram length we linearly adapt the batch size from
250 to 1000. In addition, we use 50% dropout on the hidden
layer and 20% dropout on the visible layer.

The fast weights used in the training algorithm (see Sec-
tion 3.1) help the fantasy particles mix well, even with small
learning rates. The learning rate of the fast weights is in-
creased from 0.002 to 0.007 during training. The training is
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Figure 2: F1 scores for different N-gram lengths and meth-
ods.

continued until convergence of the parameters (typically be-
tween 100 and 300 epochs). The sparsity parameters (see
Section 3.1) are set to ;. = 0.04, and ¢ = 0.65, respectively.
In addition, we use a value of 0.0035 for L2 weight regular-
ization, which penalizes large weight coefficients.

For pre-training of the first layer in the FFNN, we change
the learning rate to 0.005, leave the batch size constant at 250
and increase the weight regularization to 0.01. We again use
dropout, for both the pre-training and the fine-tuning.

5 Results and discussion

Figure 2 shows the F1 scores for different N-gram lengths
and methods. By using dropout, the F1 score increases con-
siderably, as dropout improves the generalization abilities of
the RBM. With the pseudo-supervised approach, again a sig-
nificant improvement of the classification accuracy can be
achieved. This is remarkable, considering that no additional
information was given to the FFNN, the improvement was
based solely on context-sensitive smoothing.

Figure 3 shows the adaptation of single IC values through
the pseudo-supervised optimization. Some previously true
positives are erroneously regularized downwards (green lines
from upper left to lower right), while some previously false
negatives are correctly moved upwards (green lines from
lower left to upper right). Quantitative tests show that our
method increases IC values at boundaries more often than it
decreases them. In general, if the initial BSP curve is correct
in most cases, in pseudo-supervised training such regularities
are detected and utilized.

Table 1 shows prediction accuracies in terms of precision,
recall, and F1 score, both for our method and for the vari-
ous alternative approaches mentioned in Section 2. The ta-
ble shows that with the proposed method (RBM10+DO+PS),
an information-theoretic approach is now on a par with a
Gestalt-based approach (LBDM), while Grouper still pro-
vides the best estimates of melodic segment boundaries.
However, Grouper exploits additional domain knowledge like
musical parallelism, whereas the LBDM model, as well as
(RBM10+DO+PS), are pure representatives of the Gestalt-
based paradigm and the information-theoretic paradigm, re-
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Figure 3: The effect of pseudo-training on estimated IC val-
ues; Line segments connect IC values estimated directly from
the probabilistic model (RBM10+DO) with the correspond-
ing IC values after pseudo-training (RBM10+DO+PS); Green
lines indicate music events that mark a segment boundary, red
lines indicate those that do not.

Model Precision Recall Fl1

Grouper 0.71 0.62 0.66
LBDM 0.70 0.60 0.63
RBM10+DO+PS 0.80 0.55 0.63
RBM10+DO 0.78 0.53 0.61
RBM10 0.83 0.50 0.60
IDyOM 0.76 0.50 0.58
GPR 2a 0.99 0.45 0.58

Table 1: Results of the model comparison, ordered by F1
score. RBM results are shown for 10-grams of the ini-
tial RBM, the RBM with Dropout (DO) and the RBM with
Pseudo-Supervised training (PS). Table adapted from [Pearce
et al., 2010al, with permission.

spectively.

The GPR 2a method is a simple rule that predicts a bound-
ary whenever a rest occurs between two successive notes.
Note how GPR 2a accounts for a large portion of the segment
boundaries (approx. 45%). This implies that the challenge is
mainly in recognizing boundaries that do not co-occur with a
rest. For boundaries without rests, the pseudo-supervised ap-
proach yields an improvement of 3.7% in the F-score, while
boundaries indicated by a rest did not improve any more (as
for those boundaries the initial approach already yields an F-
score of 0.99).

6 Conclusion and future work

In this paper, we show how a technique we call pseudo-
supervised training improves the prediction accuracy of a
probabilistic method for melody segmentation. Our method
is a purely probabilistic method, that does not rely on any
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knowledge about musical structure. We use the information
content (IC) of musical events (estimated from a probabilis-
tic model) as a proxy for the actual target to be predicted
(segment boundaries). With these pseudo targets, we train a
feed-forward neural network. We show that segment bound-
aries estimated from the output of this network are more accu-
rate than boundaries estimated from the pseudo targets them-
selves.

In this paper, we used the IC as estimated from an RBM,
but the pseudo-supervised approach may benefit from includ-
ing IC estimates from other models, such as IDyOM [Pearce,
2005]. In addition, there are other probabilistic architectures,
such as conditional RBMs [Taylor er al., 2006], that seem ap-
propriate for estimating IC values from data. Furthermore,
although the focus of this paper has been on IC, it is intu-
itively clear that IC is not the only factor that determines the
perception of segment boundaries in melodies. Future exper-
imentation is necessary to determine whether (combinations
of) other information-theoretic quantities are also helpful in
detecting melodic segment boundaries. Finally, we wish
to investigate whether there are further problems where our
method could be beneficial. In general, pseudo-supervised
optimization could improve features which are noisy either
because of the way they are calculated, or because of noise in
the data on which the features are based on.
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